04 Коаксиальный (трубчатый) тлеющий разряд в электроотрицательных газах

© А.П. Головицкий

Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия e-mail: alexandergolovitski@yahoo.com

(Поступило в Редакцию 8 июня 2015 г. В окончательной редакции 13 октября 2015 г.)

Рассмотрена плазма положительного столба электроотрицательного тлеющего разряда низкого и среднего давлений, горящего в зазоре между двумя коаксиально расположенными цилиндрическими трубками; ток направлен вдоль оси трубок. Полагается, что в состав смеси газов входят галогены, а ионная диффузия не пренебрежимо мала. Установлено, что характерной чертой коаксиального разряда является расслоение плазмы в поперечном к току направлении на три коаксиальные области с разным составом. Показано значительное увеличение частот ионизации и возбуждения атомов по сравнению с чисто цилиндрическим случаем даже при небольшой (0.05–0.15) величине отношения радиусов внутренней и внешней стенок. Из асимптотического анализа уравнений непрерывности получены аналитические соотношения, позволяющие быстро и легко оценить геометрические параметры пространственных распределений концентраций заряженных частиц, а также энергетические параметры плазмы при отношении радиусов, большем 0.3. Путем сравнения результатов аналитических и численных расчетов установлены условия применимости аналитических соотношений и их точность.

Введение

К настоящему времени общие свойства плазмы положительного столба (ПС) неизотермичного электроотрицательного (ЭО) разряда изучены в достаточной мере [1-9]. Установлено расслоение плазмы в поперечном к протеканию тока направлении на периферийную область электрон-ионной (e-i) плазмы (далее оболочка), практически не содержащей отрицательных ионов (ОИ) с близким к амбиполярному режимом диффузии плазмы, и центральную область ион-ионной (*i*-*i*) плазмы (далее — сердцевина), где концентрации ионов — и отрицательных n_n, и положительных n_p намного превышают концентрацию электронов ne и где при сильной электроотрицательности поперечное поле Е_х мало и имеет место близкая к свободной диффузия электронов при почти плоском пространственном распределении ne. В узкой области перехода от *i*-*i*- к *e*-*i*-плазме имеют место сильные изменения *n*_p и n_n. Для плоской и цилиндрической геометрий разряда получены простые аналитические соотношения, позволяющие с приемлемой точностью оценивать параметры пространственных распределений концентраций заряженных частиц и энергетические параметры плазмы ПС ЭО тлеющего разряда низкого и среднего давлений, не прибегая к численному моделированию [7-9].

Тем не менее отдельные варианты ПС тлеющего ЭО разряда остаются малоизученными. Целью настоящей работы является изучение плазмы ПС ЭО тлеющего разряда низкого и среднего давлений (1–40 Torr) в коаксиальной геометрии, т.е. когда разряд горит в зазоре между двумя коаксиально расположенными цилиндрическими трубками, плазма также имеет трубчатую форму, а продольное поле E_z и ток разряда направлены вдоль

оси трубок. Насколько известно автору, ни экспериментов по оценке параметров плазмы, ни теоретических исследований, ни численного моделирования ЭО разрядов в коаксиальной геометрии до сих пор проведено не было.

Актуальность и практическая ценность изучения коаксиальных разрядов продемонстрированы в [10-12], где подобный разряд в смесях Xe или Kr с Cl₂ предложен для использования в качестве эффективного и мощного источника УФ-излучения, не содержащего ртути. Излучающими частицами служили эксимерные молекулы XeCl* или KrCl*. Использование коаксиальной (как альтернативы цилиндрической) геометрии разряда позволило обеспечить небольшое межстеночное расстояние и тем самым сохранить диффузный характер разряда при повышенных давлениях газа и одновременно реализовать значительный объем плазмы при компактных размерах излучателя, а также легко осуществить охлаждение прибора прокачкой воды через внутреннюю трубку. Как результат, удалось достичь мощностей УФ-излучения до 200 W при длине прибора всего 40 cm и внешнем диаметре 6 cm [12].

Рассмотрим случай, когда ЭО компонентами газовой смеси являются галогены. В плазме галогенсодержащих разрядов, как показано в [5,13], среди положительных ионов преобладают молекулярные ионы галогена, а доминирующим механизмом гибели ОИ является диссоциативная ионионная рекомбинация, проходящая по реакции (пример для хлора) $Cl_2^+ + Cl^- \rightarrow 3Cl$.

Введем следующие обозначения: v_i , v_a — частоты ионизации и прилипания; ρ_i — коэффициент ион-ионной рекомбинации; R_1 , R_2 — радиусы внутренний и внешний стенок соответственно; T_j , μ_j , n_j и z_j — температуры, подвижности, абсолютные концентрации и знак заряда частиц *j*-го сорта; индексы *e*, *p*, *n* соответствуют элек-

тронам, положительным и отрицательным ионам; $D_{ap}^* = = \mu_p T_e / (eR_2^2); D_{an}^* = D_{ap}^* / \mu_{pn}$ — приведенные коэффициенты ионной диффузии; $\mu_{pn} = \mu_p / \mu_n; \mu_{np} = \mu_n / \mu_p; n_{e0}$ — максимальная абсолютная электронная концентрация; $v = v_i / D_{ap}^*; \alpha = v_a / D_{an}^*; \eta = n_{e0}\rho_i / D_{ap}^*; X = r/R_2$ — поперечная приведенная (безразмерная) радиальная координата: $X_1 \leq X \leq 1; X_1 = R_1 / R_2$ — приведенная координата внутренней стенки; $n(X) = n_e(X) / n_{e0}; N(X) = n_n(X) / n_{e0}; X_m$ — приведенная координата, при которой n(X) достигает максимума, т.е. $n(X_m) = 1$, а $\frac{dn}{dX}\Big|_{X_m} = 0; \tau_i = T_j / T_e; \tau_S = \tau_p + \tau_n; N_{0\tau}$ — отношение максимальных концентраций ОИ и электронов при $\tau_S > 0$ (степень электроотрицательности).

В излагаемой ниже модели принято, что v_i , v_a , ρ_i , D_j , μ_j постоянны по сечению плазмы. Параметр T_e , нужный для расчета величин D_{ap}^* и D_{an}^* , определим как $T_e = eD_e/\mu_e$; для максвелловского распределения электронов по энергиям он совпадает с электронной температурой. Считается, что ионные температуры конечны, т.е. что хотя $T_e \gg T_p$, T_n , но τ_p , τ_n не полагаются пренебрежимо малыми.

Аналитические оценки

При условии квазинейтральности плазмы $n_e + n_n = n_p$ исходная стационарная система уравнений для поперечных потоков заряженных частиц Γ_j и их дивергенций примет вид

$$\begin{cases} \nabla \Gamma_e = (v_i - v_a)n_e, \\ \nabla \Gamma_p = v_i n_e - \rho_i n_n n_p, \\ \nabla \Gamma_n = v_a n_e - \rho_i n_n n_p, \end{cases}$$
(1)

$$\Gamma_j = -D_j \nabla n_j + z_j n_j \mu_j E_r, \qquad (2)$$

$$\Gamma_p - \Gamma_n - \Gamma_e = 0. \tag{3}$$

Граничные условия (ГУ) задачи: $n_e(R_1) = n_p(R_1) = n_n(R_1) = 0$; $n_e(R_2) = n_p(R_2) = n_n(R_2) = 0$; $\Gamma_n(R_1) = \Gamma_n(R_2) = 0$. Если $T_e \gg T_p$, T_n , а концентрация электронов не слишком мала, то при $\mu_e n_e \gg \mu_p n_p$, $\mu_n n_n$ поперечное поле E_r , согласно (2) и (3), соответствует $E_r \cong -\frac{T_e}{eR_2} \frac{\nabla n(X)}{n(X)}$, где градиент берется по приведенной координате X. Исключая поле, из (1)–(3) можно получить

$$-\Delta N \cdot \tau_n + \nabla \left(\frac{N}{n} \nabla n\right) \approx \alpha n - \mu_{pn} \eta N P,$$
 (4)

$$-\Delta P \cdot \tau_p - \nabla \left(\frac{P}{n} \nabla n\right) \approx \nu n - \eta N P, \qquad (5)$$

Производные здесь берутся по безразмерной координате X.

Далее ограничимся случаем большой электроотрицательности, когда в сердцевине

$$N \approx R \gg n$$
, a $n \sim 1$. (6)

Сложив (4) и (5), получим для сердцевины

$$\Delta N \cdot \tau_S \approx (\mu_{pn} + 1)\eta N(N+n) - (\nu + \alpha)n - \Delta n, \qquad (7)$$

где $\tau_S = \tau_p + \tau_n$. Условия (6) позволяют упростить (7) до $\Delta N \cdot \tau_S \approx (\mu_{pn} + 1)\eta N^2 - (\nu + \alpha)$, а затем, обозначив $N_0 = \sqrt{\frac{\nu + \alpha}{(\mu_{pn} + 1)\eta}}$ и сделав подстановку $\chi = \sqrt{(\nu + \alpha)/(N_0\tau_S)}X$, $Y(\chi) = N(\chi)/N_0$, можно получить следующее, не зависящее ни от каких параметров уравнение:

$$\Delta Y(\chi) = Y^2(\chi) - 1. \tag{8}$$

ГУ задачи (8): $Y(\chi_L) = 0$ и $Y(\chi_R) = 0$, где

$$\chi_L = \sqrt{\frac{\nu + \alpha}{N_0 \tau_S}} X_L, \quad \chi_R = \sqrt{\frac{\nu + \alpha}{N_0 \tau_S}} X_R, \tag{9}$$

а X_L и X_R — такие приведенные расстояния от центра, где N(X) можно положить равной нулю (рис. 1); далее будем полагать $X_L < X_R$ (разность $X_R - X_L$ определяет размер сердцевины по основанию) и соответственно $X_L < X_R$. Переменную χ можно представить как $\chi = \sqrt{(\mu_{pn} + 1)/(2\mu_{pn}^2)}X/\lambda$ (при $\mu_{pn} = 1$ $\chi = X/\lambda$), где $\lambda \approx \sqrt{\frac{\tau_n}{\mu_{pn}\eta N_0}}$ — приведенная диффузионная длина ионов, в абсолютных единицах равная $\sqrt{\frac{D_n}{\rho_i n_n}}$. Таким образом, по физическому смыслу χ является координатой, выраженной в диффузионных длинах ионов.

В принципе можно получить и точное решение (8): оно выражается через функции, обратные к эллиптическим интегралам, однако это решение сложно и весьма затруднительно для анализа. Поэтому был проведен анализ асимптотического поведения решения (8) в двух предельных случаях: $Y \rightarrow 1$ и $Y \ll 1$.

Для больших, хотя и меньших единицы, величин τ (т.е. при сильной ионной диффузии) и незначительных величинах χ_L , χ_R реализуется случай $Y \ll 1$, а решение (8) выглядит как

$$Y(\chi) \approx \frac{\chi_R^2 - \chi^2}{4} - \frac{\chi_R^2 - \chi_L^2}{4 \ln(\chi_L/\chi_R)} \ln(\chi/\chi_R).$$
 (10)

В действительности, если $\chi_R \leq 1$, то невязка между (10) и точным решением (8) составляет не более 0.5%. При сужении межстеночного зазора, т.е. при $\chi_L \rightarrow \chi_R$, асимптотическое разложение решения (8)

$$Y(\chi) \rightarrow \left(\frac{1}{2} - \frac{\chi_R - \chi_L}{12\chi_R}\right) (\chi_R - \chi)(\chi - \chi_L) + \frac{(\chi_R - \chi)^2(\chi - \chi_L)}{6\chi_R}.$$

Главный член разложения — $Y(\chi) \approx (\chi_R - \chi)(\chi - \chi_L)/2$ — можно записать в виде

$$Y(\chi) \approx \frac{(\chi_R - \chi_L)^2}{8} \left\{ 1 - \left[\frac{\chi - (\chi_R + \chi_L)/2}{(\chi_R - \chi_L)/2} \right]^2 \right\}.$$
 (11)

При $0 < \tau \ll 1$ (т.е. при умеренной ионной диффузии) и больших величинах χ_0 реализуется случай $Y \sim 1$.

Рис. 1. Профили концентрации отрицательных ионов при различных отношениях радиусов внутренней и внешней стенок R_1/R_2 (пример для $\alpha = 1$, $\eta = 5 \cdot 10^{-4}$, $\tau_p = \tau_n = 0.05$ и $\mu_{np} = 1.3$): *1* — численная модель, *2* — расчет по (15)–(18); *a* — $R_1/R_2 = 0.28$, невязка 10%; *b* — $R_1/R_2 = 0.8$, невязка 4.3%.

При этом (8) перейдет в уравнение $\Delta Y(\chi) \approx 2[Y(\chi) - 1]$. Решение его при $Y(\chi_L) = 0$ и $Y(\chi_R) = 0$ выражается довольно громоздкой комбинацией функций Бесселя мнимого аргумента, однако асимптотика решения при $\chi_L \rightarrow \chi_R$ выглядит несложно:

$$Y(\chi) \approx 1 - \frac{\operatorname{ch}\left[\sqrt{2}\left(\chi - \frac{\chi_R + \chi_L}{2}\right)\right]}{\operatorname{ch}\left[(\chi_R - \chi_L)/\sqrt{2}\right]}.$$
 (12)

Сопоставление с результатами численной модели (см. ниже) показывает, что использование асимптотических выражений (11) при $\chi_R \leq 1$ или (12) при $\chi_R > 1$ для расчета профиля N(X) дает погрешности, не превышающие 6% при $0.5 \leq R_1/R_2 < 1$ и 12% при $0.3 \leq R_1/R_2 < 1$ (рис. 1).

Здесь следует отметить, что формы профилей распределения $Y(\chi) = N(\chi)/N_0$ (11) и (12) оказываются симметричными относительно координаты $(X_R + X_L)/2$; более того, они совпадают с формами $Y(\chi)$, полученными в [9] для плоской геометрии ЭО разряда. В общем очевидно, что при предельно узких межстеночных зазорах, т.е. при $R_1/R_2 \rightarrow 1$, коаксиальная геометрия разряда должна переходить в плоскую, однако вопрос о погрешностях, вносимых при таком переходе, до сих пор не изучался.

Ввиду незначительности погрешности далее ограничимся случаями, когда профиль N(X) описывается выражениями (11) или (12), тем более что величины R_1/R_2 для коаксиальных ЭО разрядов, интересных для практических применений, входят в указанный выше диапазон.

Симметрия (11) и (12), т.е. N(X), относительно координаты $(X_R + X_L)/2$ позволяет предположить, что и профили n(X) и P(X) также будут приемлемо симметричными при $0.3 \le R_1/R_2 < 1$ (что далее подтвердится при численном моделировании). Это дает возможность сдвинуть в точку $(X_R + X_L)/2$ нуль координаты X и проводить дальнейшие расчеты для коаксиальной геометрии, как для плоской. В этом случае приведенная координата внешней стенки (бывшая до сдвига координат равной единице) станет равной $\sigma = \frac{R_2 - R_1}{2R_2}$, а $X \in [0, \sigma]$. Сообразно с тем, меньше или больше единицы окажется величина $\chi_0 = \sqrt{\frac{\nu+lpha}{N_0 \tau_{\rm S}}} X_0 \ (X_0$ — отсчитываемая от нуля координата, при которой N(X) полагается равной нулю), реализуется режим сильной или умеренной ионной диффузии. В отличие от чисто плоской геометрии [9], теперь величина X_0 , численно равная $(X_R - X_L)/2$, будет $X_0 < \sigma < 1/2$; поэтому можно предположить, что режим сильной ионной диффузии будет для коаксиальной геометрии более вероятным при прочих равных условиях. Последующие расчеты показали, что при $R_1/R_2 \ge 0.3$ и $au_{p,n} \ge 0.01$ этот режим реализуется во всем нижеуказанном диапазоне условий разряда.

Если $\tau_n < 1$, то ОИ не попадают на стенки и гибнут исключительно в плазме. Средние по поперечному сечению плазмы скорости рождения и гибели ОИ должны быть равны. При сильной электроотрицательности, т.е. при выполнении (6), это означает:

$$\alpha \int_{0}^{\sigma} n(X) dX \approx \mu_{pn} \eta \int_{0}^{X_0} N^2(X) dX.$$
 (13)

В [14] показано, что на периферии ПС (в оболочке) зависимость n(x) при наличии ионной диффузии близка к линейной:

$$n(X) \approx (\sigma - X)/(\sigma - X_0), \qquad (14)$$

тогда $a = \int_{0}^{\sigma} n(X) dX = (\sigma + X_0)/2$. Из (11) следует, что

$$N(X) \approx \frac{\nu + \alpha}{2\tau_S} X_0^2 \left[1 - \left(\frac{X}{X_0}\right)^2 \right].$$
 (15)

Подставив (15) в (13), можно получить

$$X_0 \approx \left[\frac{15\alpha\sigma}{2\mu_{pn}\eta} a \left(\frac{\tau_S}{\nu+lpha}\right)^2\right]^{1/5}$$

При $a \ge 0.7\sigma$, что соответствует $0.4\sigma \le X < \sigma$, величину X_0 с погрешностью не более 5-10% можно оценивать и по более простой формуле

$$X_0 \approx \left[\frac{15\alpha\sigma}{2\mu_{pn}\eta} \left(\frac{\tau_S}{\nu+\alpha}\right)^2\right]^{1/5}.$$
 (16)

Указанная в таблице приведенная толщина обедненной отрицательными ионами пристеночной области e-i-плазмы δ_0 вычисляется как $\delta_0 = \sigma - X_0$. Из (15) следует $N_{0\tau} \approx \frac{\nu + \alpha}{2\tau_s} X_0^2$ или

$$N_{0\tau} = \frac{1}{2} \left(\frac{15\alpha\sigma}{2\mu_{pn}\eta} \sqrt{\nu + \alpha}\tau_S \right)^{2/5}.$$
 (17)

В оболочке (ввиду $n_p \approx n_e \gg n_n$) поток положительных ионов течет на стенку фактически в амбиполярном режиме [1,4]: $\Gamma_p = -D_{ap} \frac{dn_p}{dx}$; нарабатывается же этот поток в сердцевине плазмы: $\Gamma_p =$ $= v_i \int_{0}^{x_0} n_e(x) dx - \rho_i \int_{0}^{x_0} n_p(x) n_n(x) dx$ (здесь x_0 — абсолютная координата границы между i-i- и e-i-плазмой). Учтем, что в сердцевине при сильной электроотрицательности $n_p \approx n_n \gg n_e$ и $n_e \approx n_{e0}$ (6), а так как в оболочке $n_p \approx n_e$, то в соответствии с (14) $\frac{dn_p}{dx} \approx -\frac{n_{e0}}{(\sigma R_2 - x_0)}$. В итоге, приравняв выражения для потока и учтя (13), получим следующее уравнение для расчета v:

$$\nu - \frac{\alpha}{2\mu_{pn}} \frac{X_0 + \sigma}{X_0} \approx \frac{1}{X_0(\sigma - X_0)},$$
(18)

куда следует подставить X_0 из (16).

В случаях, когда $\tau \ge 0.05$, ионный профиль фактически доходит до стенки; $X_0 \to \sigma$ (рис. 1, 2). Тогда из (15) следует

$$N_{0\tau} = \sigma^2 \frac{\nu + \alpha}{2\tau_S}.$$
 (19)

Приравняв (19) к (17), получим в итоге простые формулы

$$\nu \approx \frac{\tau_S}{\sigma^2} \sqrt{\frac{15\alpha}{2\eta\mu_{pn}}} - \alpha,$$
(20)

$$N_{0r} \approx \frac{1}{2} \sqrt{\frac{15\alpha}{2\eta\mu_{pn}}}.$$
 (21)

На рис. 1 представлены избранные результаты расчетов профилей ОИ N(X) по вышеприведенным формулам в сопоставлении с результатами численного моделирования. При $R_1/R_2 \ge 0.3$ интегральная невязка модельных и аналитических результатов не превышает 10%.

Для количественных расчетов параметров плазмы по полученным выше формулам требуется знать значения таких исходных параметров как α , η , τ_p , τ_n , μ_p , μ_n , а также D_e и μ_e . Рекомендации по априорному вычислению этих параметров изложены в [9,15].

Численная модель

Обозначая $F_j = \Gamma_j / (D_{aj}^* R_2 n_{e0})$, можно преобразовать (1)-(3) к виду

$$\frac{dF_p}{dX} + \frac{F_p}{X} = \nu n - \eta N(N+n), \qquad (22)$$

$$\frac{dF_n}{dX} + \frac{F_n}{X} = \alpha n - \eta N(N+n)\mu_{pn}, \qquad (23)$$

$$\frac{dn}{dX} = -\frac{n}{n(1+\tau_p) + N(1+\mu_{np})} \bigg\{ F_p - F_n \mu_{np} + \frac{\mu_{np}\tau_n - \tau_p}{n\tau_n(1+\tau_p) + N(\tau_n + \tau_p)} \left[F_n(n+n\tau_p+N) + F_p N \right] \bigg\},$$
(24)

$$\frac{dN}{dX} = -\frac{1}{n\tau_n(1+\tau_p) + N(\tau_n+\tau_p)} \times [F_n(n+n\tau_p+N) + F_pN].$$
(25)

Граничные условия (ГУ) задачи

$$n(1) = n(X_1) = 0, \quad N(1) = N(X_1) = 0,$$
 (26)

$$F_n(X_1) = F_n(1) = 0.$$
 (27)

К ним можно было бы добавить $\frac{dF_n}{dX}\Big|_{X=X_1} = \frac{dF_n}{dX}\Big|_{X=1} = 0$ (что означает физическую невозможность потока ОИ

непосредственно от стенок), но эти условия автоматически выполняются при выполнении (26)–(27).

В [9] аналогичная система решалась для цилиндрической геометрии, когда геометрический центр симметрии стенки (X = 0) совпадает с центром плазмы, ввиду чего профили концентраций заряженных частиц при X = 0максимальны, а их потоки равны нулю. Нулевые ГУ для n(X) и N(X) ставились лишь при X = 1; поэтому для решения было достаточно двух собственных чисел. В коаксиальной геометрии геометрический центр симметрии находится вне плазмы, а относительно стенок профили заряженных частиц несимметричны. Для обеспечения нулевого ГУ по потоку ОИ (27) на обеих стенках потребовалось введение третьего собственного числа, а в связи с этим — и изменение методики численного решения системы (22)–(25) по сравнению с [9].

Журнал технической физики, 2016, том 86, вып. 7

α	τ	R_{1}/R_{2}	$\nu^{(num)}$	ν	ν	Асимметрия <i>N</i> (<i>X</i>)	Асимметрия $n(X)$	$\delta_{0L}^{(\rm num)}/\delta_{0R}^{(\rm num)}$	δ_0	$N_{0 au}^{(m num)}$	$N_{0\tau}$	$N_{0\tau}$
				(16) + (18)	(20)				(16)		(17)	(21)
8	0.05	0.147	231	224	209	0.123	0.023	0.008/0.017	0.011	198.3	200.2	197.5
8	0.05	0.281	330	319	298	0.084	0.018	0.009/0.014	0.0093	197.0	200.1	197.5
8	0.05	0.643	1142	1123	1063	0.033	0.007	0.006/0.007	0.005	195.6	200.0	197.5
8	0.05	0.804	4343	4354	4090	0.015	0.004	0.0027/0.0032	0.0024	195.6	199.9	197.5
8	0.01	0.16	70.5	57.7	36.7	0.12	0.041	0.029/0.052	0.06	200.0	213.3	197.5
8	0.01	0.288	93.9	80.6	54.4	0.088	0.031	0.030/0.043	0.047	200.0	211.8	197.5
8	0.01	0.617	292	283	207	0.039	0.015	0.020/0.023	0.022	201.5	209.7	197.5
8	0.01	0.804	1071	1085	812	0.018	0.0064	0.011/0.012	0.011	202.5	209.2	197.5
1	0.05	0.090	73.4	79.0	66.4	0.173	0.049	0.015/0.040	0.030	71.6	72.3	69.8
1	0.05	0.144	84.9	89.4	75.2	0.141	0.038	0.018/0.036	0.029	71.0	72.3	69.8
1	0.05	0.279	123	126.5	107	0.096	0.026	0.019/0.029	0.024	70.0	72.2	69.8
1	0.05	0.440	206	209.6	177	0.062	0.017	0.016/0.022	0.018	69.8	72.2	69.8
1	0.05	0.616	440	447	378	0.037	0.011	0.012/0.014	0.0125	69.5	72.2	69.8
1	0.05	0.804	1687	1713	1449	0.017	0.0055	0.0065/0.0071	0.0064	69.5	72.2	69.8
0.1	0.05	0.144	34.3	38.5	24.0	0.186	0.068	0.041/0.085	0.073	22.7	24.3	22.1
0.1	0.05	0.280	50.4	54.4	34.0	0.126	0.046	0.043/0.068	0.062	22.5	24.3	22.1
0.1	0.05	0.616	182	192	120	0.049	0.018	0.028/0.033	0.033	22.3	24.4	22.1
0.1	0.05	0.804	699	733	459	0.023	0.009	0.016/0.018	0.017	22.3	24.4	22.1

Результаты расчетов

В настоящей работе система (22)-(25) решалась как краевая задача с тремя собственными значениями. В качестве первого была избрана приведенная частота ионизации ν , второго — величина $N_m = N(X_m)$ и третьего — F_{p0} — величина приведенного потока положительных ионов при координате X_m . Величина N_m , вообще говоря, не совпадает с $N_{0\tau}$. Перед началом решения системы (22)-(25) задавались значения собственных чисел и величина X_m , а также начальные условия при $X = X_m$: $n(X_m) = 1; N(X_m) = N_m; F_p(X_m) = F_{p0}$ и, как следует из (24),

$$F_n(X_m) = F_{p0} \frac{1 + N_m \frac{\mu_{np}\tau_n - \tau_p}{\tau_n(1+\tau_p) + N_m(\tau_n + \tau_p)}}{\mu_{np} + \frac{(\mu_{np}\tau_n - \tau_p)(1+\tau_p + N_m)}{\tau_n(1+\tau_p) + N_m(\tau_n + \tau_p)}}$$

Особо отметим, что следует задавать $F_{p0} < 0$, иначе не удается получить физически разумного решения ни при каких ν и N_m .

Далее по порядку:

1. Интегрирование системы (22)-(25) начиналось от $X = X_m$ вправо до X = 1 по методу Рунге-Кутта IV порядка с апостериорным уточнением решения по Рунге [16]. Подбором значений ν и N_m достигалось выполнение ГУ (26) и (27) при X = 1.

2. При найденных ν и N_m система интегрировалась влево от $X = X_m$ до такого значения X (априори неизвестного), при котором достигалось $n(X) \approx 0$; это значение X принималось за X_1 . Отметим, что всегда выполнялось $X_m - X_1 < 1 - X_m$.

3. Если выполняется $F_n(X_1) \approx 0$, то решение найдено; если нет, то изменялось значение F_{p0} и все повторялось с шага 1. Расчеты проводились при $0.1 \le \alpha \le 8$; $0.001 \le \tau_n$; $\tau_p \le 0.2$; $\mu_{np} \approx 1.3$; $\eta \approx 5 \cdot 10^{-4}$ и $0 < X_1 < 1$. (Фактически входным параметром модели была величина X_m , а не X_1 ; последняя рассчитывалась на шаге 2, исходя из заданной X_m , причем для любых $0 < X_m < 1$ было $0 < X_1 < X_m$.) Указанные величины параметров характерны для тлеющего разряда в смесях инертных газов с хлором при составах и давлениях, типичных для вышеупомянутых газоразрядных эксимерных источников УФ-излучения. Некоторые результаты вычислений представлены в таблице и на рис. 2.

Численное моделирование позволило установить следующие характерные черты ЭО разряда в коаксиальной геометрии.

— Типичное для ЭО разрядов расслоение плазмы на практически не содержащую ОИ периферийные слои e-i-плазмы (где $n_n \ll n_p$, n_e) и центральную область i-i-плазмы (где n_p , $n_n \gg n_e$), имеет место и в коаксиальной геометрии. В данном случае плазма расслаивается на три коаксиально расположенных области, поскольку образуются два слоя e-i-плазмы — и у внешней, и у внутренней стенок (рис. 2), а область i-i-плазмы локализована между слоями e-i-плазмы. Приведенные толщины этих слоев обозначены в таблице как δ_{0R} и δ_{0L} соответственно; δ_{0L} всегда меньше, чем δ_{0R} .

— При $X_1 \to 1$, т.е. при $R_2 - R_1 \ll R$, профили n(X), N(X) и приведенных ионных потоков практически симметричны относительно вертикальной линии с координатой $X_S = (X_1 + 1)/2$ (рис. 2), т.е. близки к профилям, характерным для плоской геометрии разряда, а $\delta_{0L} \to \delta_{0R}$.

— При $X_1 \to 0$ профили N(X) и n(X) (рис. 2), а также величина ν (рис. 3, *a*) приближаются к таковым

Рис. 2. Эволюция профилей концентраций электронов n(X) (1), отрицательных ионов $N(X)/N_{0r}$ (2) и потока отрицательных ионов $\Gamma_n(X)$ (3) при увеличении отношения R_1/R_2 (пример для $\alpha = 1$, $\eta = 5 \cdot 10^{-4}$, $\tau_p = \tau_n = 0.5$ и $\mu_{np} = 1.3$): $a - R_1/R_2 = 0$ (цилиндрическая геометрия), $b - R_1/R_2 = 0.047$, $c - R_1/R_2 = 0.29$, $d - R_1/R_2 = 0.8$.

для цилиндрической геометрии разряда. Следует все же заметить, что даже при $X_1 \approx 0.05 - 0.15$ наличие внутренней стенки приводит к тому, что величина и оказывается существенно большей, чем для случая чисто цилиндрической геометрии [9] при прочих равных условиях. Сказанное характерно для всех вышеуказанных условий разряда. Так, при $X_1 = R_1/R_2 \approx 0.15$ сопоставление данных [9] с данными настоящей работы (см. таблицу) показывает, что отношение приведенных частот ионизации $\nu_{\rm coax}/\nu_{\rm cyl}$ составляет 1.9–2.15. Так как для инертных газов при средних давлениях $T_e \ll W_{\rm exc}, W_i$ (W_{exc} и W_i — энергии возбуждения и ионизации), частоты ионизации и возбуждения зависят от Те приблизительно экспоненциально, а отношение частот возбуждения атомов $v_{\text{coax}}^*/v_{\text{cyl}}^*$ можно оценить через уравнение Аррениуса — $\frac{\nu_{\text{coax}}^*}{\nu_{\text{cyl}}^*} \approx \exp\left[\frac{W_{\text{exc}}}{W_i} \ln\left(\frac{\nu_{\text{coax}}}{\nu_{\text{cyl}}}\right)\right]$. Для Xe оно составит 1.4-1.7. Примерно так же возрастет и удельная мощность излучения плазмы. Соответственно должна возрасти и полная мощность, ибо объем плазмы в целом снизится лишь на 2.3%. Данное обстоятельство может представлять практический интерес с точки зрения увеличения выходной мощности газоразрядных источников УФ и видимого излучения путем простого технического решения, заключающегося во введении диэлектрического стержня в центр цилиндрической разрядной трубки.

Степень асимметрии профилей заряженных частиц при $X_1 \rightarrow 0$ растет¹ (см. таблицу и рис. 2). Но при не очень малых X_1 она все же не очень значительна: для N(X) при $X_1 \ge 0.3$ — не более 12%, а при $X_1 \ge 0.4$ не более 8%. Для n(X) степень асимметрии при любых условиях оказывается в 3–4 раза меньшей. В пристеночных областях n(X) нарастает линейно от 0 у самой стенки до ~ 1 на расстояниях от стенки порядка δ_{0R} и δ_{0L}

¹ Под степенью асимметрии переменной здесь понимается относительная интегральная невязка правого и левого фрагментов этой переменной относительно оси X_S .

Рис. 3. Результаты численного моделирования для коаксиальной геометрии (примеры для $\tau_p = \tau_n = 0.05$, $\alpha = 1$): a — зависимость приведенной частоты ионизации ν от $X_1 = R_1/R_2$ (1) и величина ν для цилиндрической геометрии [9] (2), b — приведенные потоки отрицательных (1) и положительных ионов (2), c — концентрации заряженных частиц вблизи максимумов (1) n(X); 2 — нормированный профиль N(X).

(см. (14)). Асимметрия ионных потоков (относительно корней F_p и F_n) выражена сильнее и становится меньше 10% лишь при $X_1 \ge 0.8$ (рис. 2).

— Точка, в которой потоки электронов, положительных и отрицательных ионов были бы одновременно равны нулю, отсутствует, а максимум N(X), т.е. $N_{0\tau}$, достигается при $X_N > X_m$ — несколько правее максимума n(X) (рис. 3, *b*, *c*). Данный факт ранее не отмечался в литературе. Различие, впрочем, невелико и заметно лишь при малых X_1 , а при $X_1 \ge 0.3$ оно не превосходит 1% и убывает при возрастании X_1 .

— Величина N_m , как и ожидалось, оказалась меньше максимальной величины $N(X_N) = N_{0r}$, но весьма незначительно: даже при $X_1 = 0.05$ различие не превышает 1% и убывает с ростом X_1 .

— Ширина плазмы $L = 1 - X_1$ оказывается меньшей, чем $2(1 - X_m)$; различие, однако, мало: даже при $X_1 \approx 0.3$ оно не превышает 10%, и убывает с возрастанием X_1 .

Заключение

В таблице приведены результаты как модельных вычислений (отмечены индексом "num"), так и расчета величин ν , $\delta_0 = \sigma - X_0$, δ_{0R} , δ_{0L} и $N_{0\tau}$ по приведенным в настоящей работе аналитическим формулам для различных α , τ (принято $\tau_p = \tau_n = \tau$) и R_1/R_2 . Номера формул, по которым производился расчет, указаны в таблице под обозначением соответствующей расчетной величины. Жирным шрифтом выделены те значения, которые согласуются с величинами, полученными численным моделированием, с погрешностью не хуже 20%.

Формула (20) оказывается весьма чувствительной к выполнению условия $X_0 \rightarrow \sigma$ и не обеспечивает удовлетворительной оценки ν , если $1 - X_0/\sigma > 0.025$, т.е. при малых τ и/или малых α .

Напротив, простая формула (21), хотя и полученная при тех же до- пущениях, что и (20), но непосредственно не зависящая от v, σ и τ , в действительности обеспечи-

вает вполне удовлетворительные оценки N₀, в широком диапазоне величин $0.003 \le \tau \le 0.2$ и $0.1 \le \alpha \le 8$, когда значение $1 - X_0 / \sigma$ может доходить до 0.1. Устойчивость и надежность оценок $N_{0\tau}$, даваемых (21), уже констатировались в [9] для цилиндрической и плоской геометрий. Физически это объясняется тем, что (21) можно получить (с точностью до множителя порядка единицы) не только из (15)-(17), но и непосредственно из общего для неизотермических ЭО плазм положения: при $\tau_n < 1$ ОИ не могут достичь стенок, а значит, интегральные по сечению плазмы скорости рождения и гибели ОИ должны быть равны. При сильной электроотрицательности, т.е. при выполнении (6), применяя к (13) теорему о среднем значении интеграла, получим $N_{0\tau} \propto \sqrt{rac{lpha}{\eta\mu_{pn}}}$. Последняя зависимость также носит общий характер, причем для любой геометрии (что отмечено и в [2], где при $au_{p,n} = 0$ получена близкая зависимость $N_{0\tau} \propto \sqrt{lpha/\eta}$, поэтому она сохраняется даже при существенных, однако не нарушающих (6) вариациях условий разряда, которые отразятся лишь в незначительном изменении численного множителя перед корнем (равного 1.37 в (21)).

Значения ν , рассчитанные по (16) + (18), способны обеспечить хорошее согласие с численной моделью во всем вышеуказанном диапазоне условий, а при их подстановке в (16) и (17) получается хорошее соответствие величин δ_0 и N_{0r} вплоть до $1 - X_0/\sigma \approx 0.1$.

Сопоставление с численной моделью показывает, что приведенные в настоящей работе формулы позволяют обеспечить точность оценок параметров плазмы ПС ЭО разряда в КГ при $R_1/R_2 \ge 0.3$ не хуже 15-20%. С ростом R_1/R_2 точность оценок возрастает. Отметим, что в упомянутых во введении коаксиальных источниках эксимерного УФ-излучения с тлеющим разрядом используются небольшие межстеночные зазоры, а отношение R_1/R_2 составляет 0.67-0.92 [11,12]. В частности, в [11] опытным путем было установлено, что оптимальная ширина зазора, при которой реализовывались максимальные мощности УФ-излучения, составила 8 mm при диаметре внешней стенки 60 mm ($R_1/R_2 \approx 0.73$). В ином варианте коаксиального ЭО разряда среднего давления, предложенном для безртутных люминесцентных ламп [17], отношение R_1/R_2 составляло 0.58. Можно заключить, что приведенные в настоящей работе аналитические выражения вполне пригодны для оценок энергетических параметров ЭО плазмы и геометрических параметров профилей концентраций заряженных частиц при масштабных соотношениях, характерных для реальных ЭО разрядов коаксиальной геометрии.

Список литературы

- [1] Цендин Л.Д. // ЖТФ. 1989. Т. 59. Вып. 1. С. 21-28.
- [2] Rozhansky V.A., Tsendin L.D. Transport phenomena in partially ionized plasma. London & NY: Taylor & Francis, 2001. 488 p.

- [3] *Кудрявцев А.А., Смирнов А.С., Цендин Л.Д.* Физика тлеющего разряда. СПб.: Лань, 2010. 512 с.
- [4] Volynets V.N., Lukyanova A.V., Rakhimov A.T. et al. // J. Phys. D: Appl. Phys. 1993. Vol. 26. P. 647–656.
- [5] Franklin R.N., Daniels P.G., Snell J. // J. Phys. D: Appl. Phys. 1993. Vol. 26. P. 1638–1649.
- [6] Franklin R. N., Snell J. // J. Phys. D: Appl. Phys. 1994. Vol. 27.
 P. 2102–2106.
- [7] Богданов Е.А., Кудрявцев А.А., Цендин Л.Д. и др. // ЖТФ. 2003. Т. 73. Вып. 9. С. 70–77.
- [8] Головицкий А.П., Цендин Л.Д. // ЖТФ. 2014. Т. 84, Вып. 3. С. 44–49.
- [9] Головицкий А.П. // ЖТФ. 2014. Т. 84. Вып. 11. С. 21–30.
- [10] Панченко А.Н., Скакун В.С., Соснин Э.А. и др. // Письма в ЖТФ. 1995. Т. 21. Вып. 20. С. 77-80.
- [11] Lomaev M.I., Panchenko A.N., Skakun V.S. et al. // Laser and Particle Beams. 1997. Vol. 15. N 2. P. 339–345.
- [12] Panchenko A.N., Sosnin E.A., Tarasenko V.F. // Opt. Commun. 1999. N 161. P. 249–252.
- [13] Rogoff G.L., Kramer J.M., Piejak R.B. // IEEE Trans. Plasma Sci. 1986. Vol. PS-14. N 2. P. 103–111.
- [14] Головицкий А.П. // Сб. матер. всеросс. конф. "Физика низкотемпературной плазмы. ФНТП-2014", Казань, 2014. Т. 1. С. 65-69.
- [15] Головицкий А.П. // Научно-технические ведомости СПбГПУ. Физ.-мат. науки. 2015. № 1 (213). С. 69–75.
- [16] *Калиткин Н.Н.* Численные методы. М.: Наука, 1976. 512 с.
- [17] Головицкий А.П. // Письма в ЖТФ. 1998. Т. 24. № 6. С. 63-67.