Квантовые точки в системе InSb/GaSb, выращенные методом жидкофазной эпитаксии

© Я.А. Пархоменко, П.А. Дементьев, К.Д. Моисеев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: mkd@iropt2.ioffe.rssi.ru

E-mail: mkd@iropt2.ione.rssi.ru

(Получена 29 декабря 2015 г. Принята к печати 18 января 2016 г.)

Мы сообщаем о первых результатах по выращиванию квантовых точек в системе InSb/GaSb методом жидкофазной эпитаксии и исследованию их структурных характеристик методом атомно-силовой микроскопии. Показано, что поверхностная плотность, форма и размеры наноостровков зависят от температуры наращивания и химии поверхности матрицы. Получены массивы квантовых точек InSb на подложках GaSb (001) в интервале температур $T = 450-465^{\circ}$ C, со средними размерами: высота h = 3 нм, продольный размер D = 30 нм и поверхностная плотность $3 \cdot 10^9$ см⁻².

1. Введение

Гетероструктуры на основе соединения InSb, полученные на узкозонных подложках InAs и GaSb, являются перспективными для создания оптоэлектронных приборов, работающих в среднем инфракрасном (ИК) диапазоне 2-5 мкм, который представляет интерес для приложений в области экологии и медицины [1-3]. Антимонид индия имеет наименьшие значения ширины запрещенной зоны и эффективной массы электронов среди бинарных соединений А^{ШВV}, что позволяет использовать InSb при создании квантовых нанообъектов пониженной размерности (квантовых точек, квантовых штрихов, квантовых нитей и др.) [4–6]. Гетероструктуры на основе квантовых штрихов InSb, помещенных в узкозонную униполярную матрицу n-InAs, характеризовались электролюминесценцией в интервале длин волн 3-4 мкм в широком диапазоне температур вплоть до комнатной. Наблюдаемая люминесценция была обусловлена интерфейсными излучательными переходами электронов из самосогласованных квантовых ям на стороне матричных слоев InAs через разъединенную гетерограницу II рода InSb/InAs на уровни размерного квантования дырок в квантовых штрихах InSb [7]. Однако наногетероструктуры в системе InSb/InAs работают только в длинноволновой части ИК диапазона (от 3 до 5 мкм), тогда как для проникновения в коротковолновую часть (от 2 до 3 мкм) потребуются матрицы с большей шириной запрещенной зоны.

Такой матрицей может быть бинарное соединение антимонид галлия или многокомпонентные твердые растворы на его основе, изопериодные с подложкой GaSb. Первые слои наноостровков InSb были получены на подложке GaSb методом молекулярно-пучковой эпитаксии (МПЭ) при температуре 455°С [8]. Поверхностная плотность их не превышала $3 \cdot 10^7$ см⁻². Особенности технологии получения квантовых точек методом газофазной эпитаксии из металлоорганических соединений (МОГФЭ) были подробно рассмотрены в работах [9,10]. Было отмечено, что при стандартном процессе наращивания узкозонных материалов на основе полупроводниковых соединений, например антимонида индия, как методом МПЭ, так и методом МОГФЭ, плотность массивов когерентных квантовых точек на поверхности бинарной подложки не превышала $(2-5) \cdot 10^9$ см⁻² [11]. Данная особенность была вызвана увеличением диффузионной длины атомов индия на поверхности оборванных связей атомов сурьмы из-за низкой энергии связи In—Sb и свойств поверхностно-активных радикалов сурьмы [12]. В настоящей работе мы сообщаем о получении слоев квантовых точек InSb на бинарной поверхности матрицы GaSb методом жидкофазной эпитаксии (ЖФЭ).

2. Технология изготовления структур и методика экспериментов

Для выращивания гетероструктур с квантовыми точками InSb была применена стандартная установка жидкофазной эпитаксии на базе диффузионной печи СДО-125/4. Эпитаксиальное наращивание массивов квантовых точек проводилось в горизонтальном кварцевом реакторе с использованием графитовой кассеты "пенального" типа в потоке водорода. В качестве подложек использовались монокристаллические пластины GaSb с ориентацией рабочей поверхности в кристаллографической плоскости (001). Перед процессом эпитаксиального наращивания поверхность подложки была предварительно подготовлена путем влажного химического полирующего травления. Наращивание проводилось из растворов-расплавов, обогащенных атомарным индием. Для приготовления шихты использовались индий в элементарном виде с чистотой 99.999% по массе и бинарное соединение антимонид индия с концентрацией остаточных примесей $\sim 10^{15}\,\mbox{cm}^{-3}.$ Эпитаксиальное осаждение проводилось в температурном интервале T = 430-480°C при скорости охлаждения системы 0.6°С/мин. При достижении заданного значения температуры подложка плавно протаскивалась под раствором-расплавом. Образование массивов квантовых точек InSb происходило непосредственно в момент контакта расплавленной шихты с поверхностью подложки.

Рис. 1. АСМ-изображения поверхности матрицы GaSb, полученные при различных температурах осаждения из раствора—расплава InSb методом ЖФЭ: T = 430 (*a*), 450 (*b*) 465 (*c*), 480°С (*d*).

Рельеф поверхности изучался с помощью атомносиловых микроскопов (ACM) Solver P47H и зондовой лаборатории "Нтегра-Аура" производства российской компании НТ-МДТ (г. Зеленоград, Россия). Измерения проводились в полуконтактном режиме с применением кремниевых консолей (кантилеверов) NSG01 с типичной резонансной частотой ~ 150 кГц и характерной жесткостью 5 Н/м. Амплитуда свободных резонансных колебаний самого кончика кантилевера, где крепится зонд АСМ, составляла ~ 60 нм. АСМ-исследования проводились в атмосферных условиях при комнатной температуре. Средняя сила взаимодействия зонда с поверхностью образца выбиралась достаточно малой, на уровне ~ 0.5 нH, что, в свою очередь, не приводило к деформации и разрушению нанообъектов на поверхности, однако позволяло минимизировать влияние неравномерного электростатического и адгезионного взаимодействий между зондом и образцом. Экспериментальные данные, полученные из АСМ-изображений поверхностей массивов незаращённых квантовых точек InSb, анализировались с помощью программы статистической обработки Nova-1508.

3. Экспериментальные результаты и обсуждение

Известно, что при гетероэпитаксиальном наращивании энергия деформации, вызванная несоответствием параметров кристаллической решетки контактирующих полупроводников, является движущей силой для формирования самоорганизующихся трехмерных островков [13]. Поскольку рассогласование постоянных решеток для систем InSb/InAs (6.9%) и InSb/GaSb (6.3%) примерно одинаково, то формирование квантовых точек InSb на бинарной поверхности матрицы GaSb методом ЖФЭ предполагалось примерно в том же температурном диапазоне, что и для системы InSb/InAs [14]. Однако верхняя граница появления трехмерных наноостровков в системе InSb/GaSb была сдвинута в область более высоких значений температуры контакта при сохранении прочих технологических условий. При T = 430°C поверхность матрицы GaSb имела повышенную шероховатость в масштабе разброса 1-2 нм в высоту и отсутствие отдельно стоящих нанообъектов (рис. 1, a), тогда как в системе InSb/InAs при данной температуре поверхностная концентрация квантовых точек InSb достигала 1 · 10¹⁰ см⁻². Дальнейшее увеличение температуры осаждения приводило к появлению квантовых штрихов при $T = 450^{\circ}$ С (рис. 1, *b*) и квантовых точек при $T = 465^{\circ}$ С (рис. 1, *c*) с поверхностной концентрацией $\sim 3 \cdot 10^9$ см⁻², что близко к средним значениям, полученным методом МОГФЭ [11]. При температуре $T = 480^{\circ}$ С и выше поверхность подложки GaSb была полностью разрушена в результате взаимодействия с раствором-расплавом, обогащенным индием (рис. 1, d). В результате температурный интервал $T = 450 - 465^{\circ}$ С при наращивании методом ЖФЭ совпадал с температу-

Рис. 2. Гистограммы распределения квантовых точек InSb на поверхности матрицы GaSb по высоте (a) и продольному размеру (b) для образца, полученного методом ЖФЭ при $T = 465^{\circ}$ C.

рами, достигнутыми для других эпитаксиальных методов [8,10]. Таким образом, температурный режим для формирования самообразующихся наноостровков InSb на бинарной поверхности матрицы GaSb не зависит от конкретного способа эпитаксиального наращивания, а определяется несоответствием параметров кристаллической решетки контактирующих полупроводников.

Для преднамеренно выбранной температуры $T = 465^{\circ}$ С были рассмотрены структурные параметры квантовых точек в системе InSb/GaSb, полученных методом ЖФЭ, а также изучена зависимость поверхностной концентрации от состава жидкой фазы раствора-расплава. Типичные гистограммы распределения по высоте h и продольному размеру *D* наноостровков представлены на рис. 2. Полученные гистограммы можно аппроксимировать кривыми, которые подчиняются нормальному распределению Гаусса со средними значениями для высоты h = 3 нм и "диаметра" D = 30 нм. Тогда характерный структурный параметр квантовой точки может быть определен как h/D = 0.1, что существенно отличается ОТ значения 0.27, найденного лля

9*

Физика и техника полупроводников, 2016, том 50, вып. 7

когерентных квантовых точек в системе InSb/InAs [14]. Поверхностная концентрация в массивах полученных квантовых точек $3 \cdot 10^9$ см⁻² почти не менялась в интервале атомных долей сурьмы от -0.003 до +0.003 относительно оптимального состава раствора-расплава. Средний структурный параметр для квантовых точек также оставался неизменным (h/D = 0.1). Отклонение атомной доли содержания сурьмы в растворе-расплаве на 0.006 относительно оптимума (больше или меньше) являлось предельным, вне данного интервала невозможно было получить квантовые точки. При недосыщенной жидкой фазе (при отклонении менее -0.006 осаждались наноостровки в виде капель атомарного индия, тогда как при пересыщенной (при отклонении более +0.006) наблюдалось неконтролируемое вываливание сплава на поверхность подложки.

Следует подчеркнуть, что при достаточно близких значениях рассогласования в системах InSb/InAs и InSb/GaSb существуют различия для постоянных кристаллических решеток в структурных характеристиках самих квантовых точек, полученных при одинаковых технологических условиях. Определение "технологические условия" подразумевает, что условия применения растворов-расплавов были одинаковыми. Квантовые точки были воспроизводимо получены в температурном интервале ~ 15°С как для системы InSb/InAs (425-445°С), так и для системы InSb/GaSb (450-465°С). Более того, жидкая фаза расплава была стабильна в диапазоне составов с отклонением в атомных долях ± 0.003 для обеих систем. Это говорит о том, что процесс формирования наращиваемой твердой фазы полностью определяется химией поверхности матрицы.

Хотя абсолютная величина температурного диапазона для роста квантовых точек одинакова, однако сам диапазон сдвинут на 25°C по температуре в зависимости от системы ($T = 425^{\circ}$ С для InSb/InAs и $T = 450^{\circ}$ С для InSb/GaSb). Кроме того, поверхностная концентрация полученных наноостровков в системе InSb/GaSb в 3 раза меньше и структурный параметр тоже меньше в 3 раза. Наблюдаемые различия могут быть вызваны принципиальными особенностями в химической структуре данных систем. Отметим, что система InSb/InAs обладает общим катионом из III группы (In) и различными анионами из V группы, тогда как система InSb/GaSb выступает зеркальной ей противоположностью: различные катионы из III группы и общий анион из V группы (Sb). Таким образом, ключевым фактором, определяющим структурные характеристики квантовых точек, является природа химической связи между матрицей и нанообъектом. Система твердых растворов Ga-In-As-Sb позволяет получать эпитаксиальные слои GaInAsSb, изопериодные с подложкой GaSb в широком интервале составов, от обогащенных GaSb с малым содержанием InAs до обогащенных InAs с небольшой добавкой GaSb [15,16]. Управление химией поверхности матрицы с использованием многокомпонентных матричных слоев открывает возможности контролировать форму, размер и концентрацию квантовых точек, что ранее было показано на примере системы InSb/InAs(Sb,P) [4].

4. Заключение

Квантовые точки в системе InSb/GaSb были получены методом ЖФЭ впервые. Эпитаксиальное наращивание на подложке GaSb (001) осуществлялось в температурном интервале 430-480°С. Массивы квантовых точек InSb с поверхностной плотностью $3 \cdot 10^9$ см⁻² и средним структурным параметром h/D = 0.1 были получены при температуре $T = 465^{\circ}$ С. Установлено, что особенности данной системы определяются природой химических связей поверхности матрицы и нанообъекта. Управление химией поверхности матрицы с использованием многокомпонентных матричных слоев даст возможность контролировать форму, размер и концентрацию выращенных квантовых точек. Использование экономически недорогого эпитаксиального метода ЖФЭ позволит достаточно оперативно создавать широкий ряд наногетероструктур и моделировать их свойства для последующего внедрения наработанных подходов в создание оптоэлектронных приборов, работающих в среднем инфракрасном диапазоне.

Работа частично поддержана в рамках проекта РФФИ (14-02-01102а).

Список литературы

- А.Н. Именков, Н.М. Колчанова, П. Кубат, К.Д. Моисеев, С. Цивиш, Ю.П. Яковлев. ФТП, 35, 375 (2001).
- [2] Н.Д. Стоянов, М.П. Михайлова, О.В. Андрейчук, К.Д. Моисеев, И.А. Андреев, М.А. Афраилов, Ю.П. Яковлев. ФТП, 35, 467 (2001).
- [3] В.В. Романов, Э.В. Иванов, А.Н. Именков, Н.М. Колчанова, К.Д. Моисеев, Н.Д. Стоянов, Ю.П. Яковлев. Письма ЖТФ, 27, 80 (2001).
- [4] K. Moiseev, V. Romanov, P. Dement'ev, M. Mikhailova. J. Cryst. Growth, 318, 379 (2011).
- [5] K.D. Moiseev, Ya.A. Parkhomenko, V.N. Nevedomsky. Thin Sol. Films, 543, 74 (2013).
- [6] K. Moiseev, V. Romanov, P. Dement'ev, E. Ivanov. J. Cryst. Growth, 414, 177 (2015).
- [7] В.В. Романов, Э.В. Иванов, К.Д. Моисеев. ФТП, 48 (7), 938 (2014).
- [8] N. Bertru, O. Brandt, M. Wassermeier, K. Ploog. Appl. Phys. Lett., 68, 31 (1996).
- [9] P. Mock, G.R. Booker, N.J. Mason, R.J. Nicholas, E. Aphandery, T. Topuria, N.D. Browning. Mater. Sci. Eng. B, 80, 112 (2001).
- [10] S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, Y. Rosenwaks. J. Cryst. Growth, 291, 363 (2006).
- [11] N. Deguffroy, V. Tasco, A.N. Baranov, E. Tournie, B. Satpari, A. Trampert, M. Dunaevski, A. Titkov, M. Ramonda. J. Appl. Phys., **101**, 124 309 (2007).
- [12] E. Tournié, K.H. Ploog. Thin Sol. Films, 231, 43 (1993).
- [13] H.T. Johnson, L.B. Freund. J. Appl. Phys., 81, 6081 (1997).
- [14] К.Д. Моисеев, Я.А. Пархоменко, Е.В. Гущина, А.В. Анкудинов, М.П. Михайлова, Н.А. Берт, Ю.П. Яковлев. ФТП, 43, 1142 (2009).
- [15] N.A. Bert, V.N. Nevedomsky, P.A. Dement'ev, K.D. Moiseev. Appl. Surf. Sci., 267, 77 (2013).

[16] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, К.Д. Моисеев, А.Ф. Липаев, Ю.П. Яковлев. ФТП, 40, 519 (2006).

Редактор Л.В. Шаронова

Quantum dots in InSb/GaSb system grown by liquid-phase epitaxy method

Ya.A. Parkhomenko, P.A. Dement'ev, K.D. Moiseev

loffe Institute, Russian Academy of Sciences 194021 St. Petersburg, Russia

Abstract We report first results on growing of quantum dots in InSb/GaSb system by liquid-phase epitaxy method and study of their structural characteristics using atomic force microscopy. It has been shown that surface density, shape and sizes of nanoislands depend on a deposition temperature and matrix surface chemistry. Arrays of InSb quantum dots with the surface density of $3 \cdot 10^9$ cm⁻², an average height h = 3 nm and an average base parameter D = 30 nm were obtained on GaSb (001) substrates in the temperature range $T = 450-465^{\circ}$ C.