13,07

Процессы рекристаллизации и образования сфероидных частиц золота в аморфноподобном AIN—TiB₂—TiSi₂ в результате отжига и последующей имплантации

© А.Д. Погребняк¹, А.А. Демьяненко¹, В.М. Береснев², О.В. Соболь³, О.М. Ивасишин⁴, K. Oyoshi⁵, Y. Takeda⁵, H. Amekura⁵, А.И. Купчишин⁶

¹ Сумский государственный университет,

Сумы, Украина

² Харьковский национальный университет им. В.Н.Каразина,

Харьков, Украина

³ Национальный технический университет "Харьковский политехнический институт",

Харьков, Украина

⁴ Институт металлофизики им. Г.В. Курдюмова НАН Украины,

Киев, Украина

⁵ National Institute for Material Science (NIMS),

Sakura, Ibaraki, Japan

⁶ Казахский национальный педагогический университет,

Алматы, Казахстан

E-mail: alexp@i.ua

(Поступила в Редакцию 14 апреля 2015 г. В окончательной редакции 30 декабря 2015 г.)

Использовался пучок отрицательных ионов Au⁻ и проводился высокотемпературный отжиг для рекристаллизации структуры рентгеноаморфного AlN–TiB₂–TiSi₂, имеющего характерные размеры областей ближнего упорядочения 0.8-1 nm. Прямые измерения методами высокоразрешающей просвечивающей электронной микроскопии и рентгеновским микроанализом (SEM with EDS) показали, что термический отжиг при 1300°C на воздухе приводит к образованию наноразмерных фаз 10–15 nm из AlN, AlB₂, Al₃O₃ и TiO₂, а ионная имплантация отрицательных ионов Au⁻ приводит к фрагментации (уменьшению) размера нанозерен до 2-5 nm с образованием нанокристаллитов из Au "шаровой" формы размером в несколько nm и формированию аморфной оксидной пленки в глубине (приповерхностном слое) покрытия за счет баллистического ионного перемешивания и каскадов столкновений.

Работа была выполнена в рамках бюджетных тематик № 0115U000682 "Разработка материаловедческих основ структурной инженерии вакуумно-плазменных сверхтвердых покрытий с целью достижения необходимых функциональных свойств", № 0113U000137с "Физические принципы плазменной технологии для комплексной обработки многокомпонентных материалов и покрытий", а также при сотрудничестве с National Institute for Materials Science, Tsukuba, Япония.

1. Введение

Нанокомпозиты представляют новую генерацию материалов благодаря небольшому размеру зерен (≤ 10 nm) и значительной роли граничных областей, окружающих отдельные зерна [1–3]. Нанокомпозитные покрытия обладают улучшенными свойствами, а также ведут себя совершенно иным образом по отношению к обычным материалам (≥ 100 nm размером зерна) [3–7].

Сочетания высокой скорости нанесения покрытия и точности воспроизводимого состава можно достигать с помощью магнетронного способа распыления. Использование ионной имплантации интенсивных пучков отрицательных ионов с применением соответствующих типов ускорителей позволяет целенаправленно изменять свойства материалов в локальной области [8]. Например, легирование диэлектриков (SiO₂) для получения излучения в ультрафиолетовом диапазоне (с помощью люминесценции), где центрами излучения являются наночастицы сформированные из ионов Au⁻ и Cu в результате имплантации [9].

При этом, несомненным преимуществом отрицательных ионов является то, что при имплантации их в диэлектрик он не заряжается. В то же время, нанокомпозиты (или наноматериалы) наряду с высокой твердостью (и одновременно пластичностью) должны обладать высокой стойкостью к термическому окислению. Формирование аморфноподобной структуры в многокомпонентных (градиентных) покрытиях является так же важным фактором, обусловливающим их высокие функциональные свойства, определяя высокую диффузионную стойкость к внешним воздействиям, из-за отсутствия в аморфноподобной матрице путей легкой диффузии. И естественно, при этом аморфноподобные структуры являются термодинамически метастабильными, и в этой связи важным фактором их структурной перестройки является отжиг при высоких температурах. В то же время имплантация тяжелых ионов в аморфно-

Рис. 1. Топография и фрактограмма излома покрытия AlN-TiB₂-TiSi₂.

нанокристаллическую структуру покрытий с помощью высоких доз до $10^{17}\,{\rm cm}^{-2}$ ионов изучена недостаточно.

Таким образом, целью данной работы является изучение процессов, происходящих в микроструктуре аморфноподобных и нанокомпозитных покрытий на основе $AIN-TiB_2-TiSi_2$, в результате высокотемпературного отжига до 1300°C, а также исследование влияния микроструктуры на механические свойства этих покрытий и возможности формирования наноразмерных нанокластеров шаровой формы из золота как результат ионной имплантации отрицательных ионов Au^- .

2. Методы получения и исследования

Покрытия осаждали на полированные образцы Мо и Si методом импульсного магнетронного распыления мишени сложного состава $AlN-TiB_2-TiSi_2$ (фаза AlN 30 vol.%), благодаря которому в последнее время были получены высококачественные нанокомпозиты [5–9]. Толщина покрытий, состояние границ между основной и покрытием определялись с помощью растрового ионно-электронного микроскопа Quanta 600 FEG по фрактограммам излома. Кроме того, с помощью растровой электронной микроскопии изучалась морфология поверхности образцов — использовали JEOL-7000F с микроанализом. Для исследования структуры и субструктуры образцов с покрытиями использовали метод малоуглового рассеяния в Cr K_{α} -излучении на дифракто-

метре RINT-2500V. Съемку спектров XRD проводили под углами 2°, 3°, 10° и 30°. Дополнительно проводили исследования субструктуры на HRTEM на электронном микроскопе JEOL LEM-2100F в светлом и темном поле (с энергией электронов 200 keV).

Отрицательные ионы Au⁻ генерировались специализированным источником с помощью распыления плазмы, стимулируемой цезием Nissan High Voltage Co. Ltd. Интенсивный ионный пучок отрицательных ионов формировался с помощью двух электродов и ускорялся до 60 keV (ток Au⁻ пучка 4 mA).

3. Результаты и обсуждение

Топография и фрактограмма излома покрытия $AlN-TiB_2-TiSi_2$ толщиной около 7μ m приведены на рис. 1, *а*, *b*. Конструктивные принципы построения магнетронных устройств позволяют достаточно просто реализовать задачу нанесения однородных покрытий с характерными капельными вкраплениями размерами до 300-600 nm.

В таблице представлены результаты элементного состава покрытий из $AlN-TiB_2-TiSi_2$ в исходном состоянии и после отжига при 900°С и 1300°С. Видно, что с ростом температуры отжига уменьшается концентрация В с 34 до 23.37 at.%, азота N с 9.26 до 6.97 at.%, Al от 17.25 до 14.45 at.%, Si от 2.89 до 0.32 at.%, Ti с 6.92 до 0.49 at.%. В то же время наблюдается рост

Элементный состав покрытий AlN-TiB2-TiSi2

Состав	Элементы, входящие в состав покрытий AlN-TiB ₂ -TiSi ₂ , at.%						
	В	С	0	Ν	Al	Si	Ti
Исходный	34.49	17.27	11.92	9.26	17.25	2.89	6.92
После отжига при 900°С	38.07	12.70	13.14	8.32	18.30	2.70	6.72
После отжига при 1300°С	23.57	30.36	26.84	6.97	11.45	0.32	0.49

Рис. 2. Фрагменты дифрактограмм, полученные для покрытий $AIN-TiB_2-TiSi_2$. *1* — исходное состояние, *2* — после термического отжига в воздухе при 900°C, *3* — после отжига при 1300°C.

концентрации С с 17.27 до 30.36 at.%, кислорода с 11.52 до 26.84 at.%.

По результатам, полученным с помощью XRD (рис. 2), следует, что в процессе осаждения формируются покрытия с рентгеноаморфной структурой, что так же подтверждается результатами TEM- и HRTEM-анализа. На рентгенограммах в области углов $2\theta \approx 30-50^{\circ}$ и $65-75^{\circ}$ наблюдается гало с максимумом (при отсутствии четко выраженных дифракционных максимумов). Оценка области ближнего порядка упорядочения в покрытиях производится, используя соотношение

$$R_m \approx 10/\Delta s,$$
 (1)

где R_m — радиус корелляции; Δ_s — ширина первой широкоугловой "галообразной" кривой в координатах "интенсивность — вектор рассеяния *s*" (модуль вектора рассеяния $s = |\underline{s}| = 4\pi \sin \theta / \lambda$). Показывает, что области упорядочения $R_m \sim 10$ Å ~ 1 nm.

Рис. 3. Карты распределения элементов по сечению образца. *a* — B, C, O; *b* — Si, Al, Ti; *c* — Fe, Au.

Рис. 4. Результаты ТЕМ- и HRTEM-анализа с поатомным разрешением выделенных участков с микродифракцией. *а* — изображение Au около поверхностного слоя, *b* — изображение оксидного слоя.

Следует отметить, что выражение (1) следует из того, что радиус корреляции (величина области упорядочения) обратно пропорционален s

$$R_m = 2\pi \exp 3 \cdot z \exp 2/6.25\Delta s, \qquad (2)$$

где *z* — индекс максимума. Для первого максимума $(z=1) R_m \approx 10/\Delta s.$

Отжиг при более высокой температуре 1300°С приводит к принципиальному изменению картин дифракционного спектра. В покрытии формируются наноразмерные фазы из оксида алюминия Al₂O₃, заметно меньше AlB₂, а также обнаружены в небольших количествах — TiO₂, AlN, и "возможно" SiO₂. Формирование кристаллитов Al₂O₃ и AlB₂ в этом случае, обусловлено наибольшей теплотой образования, характерной для этих фаз. Следует отметить, что как при 900°С, так и в случае отжига при 1300°С, поверхность покрытия обеднена боридной фазой. А при ионном облучении Au⁻ (за счет травления-распыления поверхности и меньшей энергии связи), также уменьшается процентное содержание боридов, что проявляется в относительном уменьшении пиков от диборида алюминия. Наблюдается также уменьшение шероховатости, что проявляется в сравнительно низком разбросе фона дифракционного спектра, снятого в скользящей геометрии. Однако вблизи поверхности покрытия образовалась тонкая аморфная пленка из оксидов (рис. 3, *a*, 4, *b*).

На рис. 3, *а*-*с* представлены результаты элементного анализа состава в виде карт распределения элементов по сечению образца в элементном контрасте и в светлом поле. Из представленных карт видно, что С, Al, Ti, Si, B распределены равномерно, кроме поверхности, кислорода больше вблизи поверхности (на глубине 40-100 nm). Хорошо просматривается след Au-, лежащий на глубине покрытия с концентрацией около 0.4 at.%.

По визуализирующим данным высокоразрешающей просвечивающей микроскопии (рис. 4, а, b) после высокотемпературного отжига и последующей ионной имплантации в покрытии сформировались три характерные зоны: близко к поверхности — зона имплантации толщиной около 40 nm, с легированием имплантированным золотом. Благодаря поатомному разрешению в этой области с микродифракцией наблюдается образование имплантируемыми атомами золота в поверхностном слое, кластеров с упорядоченной структурой и размером упорядочения 2-3 nm. Определенные из данных микродифракции межплоскостные расстояния 0.244 и 0.210 nm

отвечают несколько увеличенным межплоскостным расстояниям решетки золота для плоскостей (111) и (200) соответственно.

Для второй зоны, с толщиной слоя около 60 nm, как показывают результаты высокоразрешающей электронной микроскопии, наблюдается аморфноподобное структурное состояние (рис. 4, *b*), характерное для оксидов. Об аморфизации также свидетельствует и галообразный вид микродифракции.

Для третьей зоны характерна кристаллическая структура, которая расположена на глубине, превышающей 100 nm. В этой зоне выявляется фазовая неоднородность — на глубине 130–100 nm, т. е. в кристаллических слоях, наиболее близких к поверхности — преобладает состав кристаллитов оксидных фаз TiO₂ и α-Al₂O₃, а также фазы AlN.

В более глубоких слоях, более 130 nm (рис. 5), сохраняется кристаллическая структура после высокотемпературного отжига (1300°С), которому был подвергнут образец.

4. Выводы

Таким образом, при импульсном магнетронном распылении мишени такого состава AlN—TiB₂—TiSi₂, происходит формирование однородного с небольшими капельными вкраплениями покрытия с аморфоподобной структурой. Тем самым обеспечивается высокая диффузионная стойкость к внешним воздействиям из-за отсутствия путей легкой диффузии.

В результате высокотемпературного отжига наблюдается формирование наноразмерных фаз из Al_2O_3 , AlB_2 , AlN и TiO_2 . Имплантация ионов Au^- дозой 10^{17} ions/cm² приводит к формированию оксидного (аморфного) подслоя толщиной 60 nm, а в приповерхностном слое формируются нанокластеры из Au^- шаровой формы.

Список литературы

- D.P. Datta, Y. Takeda, H. Amekura. Appl. Surf. Sci., 310, 164 (2014).
- [2] A.D. Pogrebnjak, V.M. Beresnev. Nanocoatings Nanosystems Nanotechnologies. Benth. Sci. Publ., Sharjah (2012). 147 p.
- [3] А.Д. Погребняк, А.П. Шпак, Н.А. Азаренков, В.М. Береснев. УФН 179, 35 (2009).
- [4] A.D. Pogrebnjak, G. Abadias, O.V. Bondar. Act. Phys. Pol. A 125, 1284 (2014).
- [5] А.Д. Погребняк, А.А. Багдасарян, И.В. Якущенко, В.М. Береснев. Успехи химии 83, 1027 (2014).
- [6] A.D. Pogrebnjak, D. Eyidi, G. Abadias, O.V. Bondar, V.M. Beresnev, O.V. Sobol. Int. J. Refract. Met. Hard Mater. 48, 222 (2015).
- [7] A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol. Mater. Chem. Phys. 147, 1079 (2014).
- [8] А.Д. Погребняк, С.Н. Братушка, В.М. Береснев, N. Levintant-Zayonts. Успехи химии **82**, 1135 (2013).
- [9] V. Ivashchenko, S. Veprek, A.D. Pogrebnjak, B.A. Postolnyi. Sci. Techn. Adv. Mater. 15, 025 007 (2014).