05,04

Разбавленный ферримагнетизм ильменитов $Mn_3FeTiSbO_9$ и $Mn_4FeTi_2SbO_{12}$

© Г.В. Базуев¹, А.В. Королев², Б.Г. Головкин¹

¹ Институт химии твердого тела УрО РАН, Екатеринбург, Россия ² Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия E-mail: bazuev@ihim.uran.ru

(Поступила в Редакцию 8 декабря 2015 г.)

Методом закаливания при обычных условиях получены метастабильные твердые растворы (TP) $Mn_3FeTiSbO_9$ и $Mn_4FeTi_2SbO_{12}$ со структурой ильменита (пространственная группа $R\overline{3}$). Состав соединений подтвержден данными EDX-спектроскопии и рентгенографически. Магнитные свойства TP проанализированы на основе сравнения с ферримагнитным ильменитом Mn_2FeSbO_6 ($T_N = 269$ K) — природным минералом и керамикой, полученной при высоком давлении и высокой температуре. TP характеризуются как разбавленные магнитные системы, образованные в результате замещения части катионов Fe^{3+} и Sb⁵⁺ немагнитными катионами Ti⁴⁺. $Mn_3FeTiSbO_9$ рассматривается как перколяционный ферримагнетик с $T_N = 171$ K, а $Mn_4FeTi_2SbO_{12}$ — как магнетик с концентрацией магнитных кластеров ниже порога перколяции.

Работа частично поддержана РФФИ (грант № 14-03-00354а).

1. Введение

Соединения со структурой минерала ильменита FeTiO₃ обладают практически важными физическими и физико-химическими свойствами и по этой причине привлекают внимание специалистов в области материаловедения. Структуру ильменита (гексагональная пространственная группа $R\overline{3}$), кроме FeTiO₃ имеют также титанаты других переходных металлов (Co, Ni и Mn) [1]. В настоящее время они широко используются в качестве пигментов, диэлектриков, электродов топливных ячеек, газовых сенсоров, эффективных катализаторов и др. [2–4].

Структура ильменита (рис. 1) основывается на гексагональной плотноупакованной кислородной решетке с атомами металлов, занимающими две трети имеющихся октаэдрических позиций. Одна треть позиций вакантна. Структура близко связана со структурой гематита α -Fe₂O₃, который сформирован чередующимися вдоль оси с слоями октаэдров из ионов Fe³⁺ и O²⁻. Ильменит FeTiO₃ включает два различных слоя октаэдров: A с катионами Fe²⁺ и B — с катионами Ti⁴⁺, полностью упорядоченными вдоль оси с. Каждый октаэдр FeO₆ и TiO₆ связан тремя ребрами с октаэдрами внутри слоя, гранью с октаэдром второго типа атомов соседнего слоя, а противоположной гранью — с вакантной октаэдрической позицией.

Титанаты со структурой ильменита $M TiO_3$ (M = Mn, Fe, Co, Ni) обладают полупроводниковыми характеристиками и весьма своеобразными магнитными (антиферромагнитными) свойствами, хотя в качестве магнетиков и не представляют значительного интереса в практическом плане из-за низких температур магнитного упорядочения (40–100 K). Эти соединения перспективны для

исследования влияния катионов переходных металлов на косвенные обменные взаимодействия, магнитную и кристаллическую структуру и электронные свойства [5].

Среди ильменитов выделяется ниобат лития LiNbO₃, который обладает сегнетоэлектрическими, оптически-

Рис. 1. Кристаллическая структура ильменита FeTiO₃ (ABO_3) (пространственная группа $R\overline{3}c$). Указан состав слоев: A - c катионами Fe²⁺, B - c катионами Ti⁴⁺, полностью упорядоченными вдоль оси c, V — вакансии.

ми, электро- и нелинейно-оптическими свойствами, что делает его перспективным для получения материалов для современной техники [6]. Кристаллическая структура LiNbO₃ при комнатной температуре отличается от структуры рассмотренных ильменитов MTiO₃ и относится к нецентросимметричной пространственной группе R3c.

Синтез соединений MTiO₃ (M = Mn, Fe, Co, Ni) со структурой ильменита легко осуществим при обычных условиях: из простых оксидов соответствующих металлов на воздухе или в инертной атмосфере. Особый интерес вызывает термобарическая обработка данных соединений, в результате которой они приобретают структуру типа LiNbO3 или перовскита [7]. В 2008 г. было теоретически предсказано [8], что фаза высокого давления FeTiO₃ (структурный тип LiNbO₃) должна обладать магнитоэлектрическими свойствами. Проведенные в [9] исследования подтвердили, что полученный при давлении 18 GPa и 1200°C FeTiO₃ со структурой типа LiNbO₃ является слабоферромагнитным с $T_N = 120 \, \text{K}$ и обладает спонтанной поляризацией при комнатной температуре (и ниже). Титанаты MnTiO₃ и MnSnO₃ после термобарической обработки, как было установлено в [7,10], также принимают полярную структуру и являются кандидатами в мультиферроики. В связи с этим в настоящее время в мире проводятся исследования в области синтеза новых сложных оксидов со структурой ильменита, содержащих магнитные катионы. Разрабатываются методы получения и исследуются тонкие пленки ильменитов на предмет их магнитных свойств, электрической поляризации и других физических характеристик. Повышенный интерес к материалам, сочетающим сегнетоэлектрическое и магнитное упорядочение, обусловлен перспективами их использования в наноэлектронике и спинтронике [11].

В 1883 г. в Швеции был открыт природный минерал меланостибит состава Mn₂FeSbO₆ со структурой ильменита (пр. гр. R3). Длительное время сведения о меланостибите были ограничены минералогическими и структурными исследованиями [12,13]. Синтетический аналог природного минерала состава Mn₂FeSbO₆ со структурой ильменита впервые был воспроизведен в работах [14,15]. Было установлено, что при твердофазном синтезе из оксидов в обычных условиях данное соединение не образуется. Продукты спекания оксидов Fe₂O₃, MnO и Sb₂O₃ на воздухе при 900-1300°C содержали двойные оксиды MnSb2O6, Mn2Sb2O7 и МпFe₂O₄. Образование ильменита Mn₂FeSbO₆ было зафиксировано только в результате термобарической обработки при 900-1000°С и 3 GPa согласно реакции $2Mn_2O_3 + Fe_2O_3 + Sb_2O_3 = 2Mn_2FeSbO_6.$

Наряду с соединением Mn_2FeSbO_6 в [14] были получены ильмениты с Ga и Al в позициях Fe. Было также показано, что при повышении давления в процессе синтеза до 5–6 GPa ильменит Mn_2FeSbO_6 превращается в моноклинный перовскит. Обе модификации Mn_2FeSbO_6

обладают спонтанной намагниченностью при комнатной температуре, что дало основание предположить их возможный ферромагнетизм. В работах [16,17] было впервые показано, что минерал меланостибит и его синтетический аналог Mn_2FeSbO_6 обладают ферримагнитными свойствами с $T_N = 269$ и 268 К соответственно.

В связи с этими результатами представляет интерес продолжить исследования ильменита Mn₂FeSbO₆ и его аналогов. Недавно [18] при 70 kbar и 1300°C получены соединения Mn₂FeNbO₆ и Mn₂FeTaO₆, которые были отнесены к группе полярных магнитных оксидов со структурой типа LiNbO₃. Полярная природа этих соединений установлена с помощью рентгеновской и электронной дифракции, измерения второй гармоники и теоретических расчетов. Соединения не обладают сегнетоэлектрическими свойствами и являются пироэлектриками при низких температурах. Магнитные свойства этих соединений определяются скошенными антиферромагнитными взаимодействиями, которые индуцируют появление слабого ферромагнетизма. С учетом данных о влиянии высокого давления и температуры на ильмениты ATiO₃ [7,9,10] представляет интерес получить нецентросимметричную модификацию (типа LiNbO₃) Mn₂FeSbO₆. Отметим, что при дополнительной обработке этого ильменита Mn₂FeSbO₆ при высоких температурах и давлении в работе [19] получен образец, содержащий смесь обычного ильменита ($R\overline{3}$) и полярной модификации с пространственной группой R3c.

Другая стратегия данных исследований связана с синтезом соединений общего состава $Mn_2BB'O_6$ с различными магнитными катионами в *B*- и *B'*-позициях (например, с новой комбинацией $B^{2+}B'^{6+}$, где в позициях *B'* могут быть Mo^{6+} , W^{6+} , Te^{6+} и другие катионы). Ряд новых соединений с использованием техники высоких давлений и высоких температур получен в работах [20] (Mn_2FeReO_6), [21] (Mn_2FeMoO_6) и [22] (Mn_2FeWO_6). Все эти соединения являются магнитодиэлектриками, но имеют структуры, отличные от структуры ильменита.

В работе [23] исследована возможность получения ильменита на основе Mn_2FeSbO_6 в обычных условиях. С этой целью изучено взаимодействие на воздухе в системе Mn-Fe-Ti-Sb-O по разрезу $Mn_2FeSbO_6-MnTiO_3$ и выделено новое соединение состава $Mn_3FeTiSbO_9$ со структурой ильменита.

В настоящей работе сообщается о синтезе наряду с $Mn_3FeTiSbO_9$ также твердого раствора (TP) состава $Mn_4FeTi_2SbO_{12}$ и магнитных свойствах этих новых ильменитов.

2. Эксперимент

 $Mn_3FeTiSbO_9$ и $Mn_4FeTi_2SbO_{12}$ были получены методом твердофазных реакций из оксидов Fe_2O_3 , TiO_2 , Mn_2O_3 и Sb_2O_3 , содержащих не менее 99.9% основного вещества. Исходные реагенты тщательно перемешивались, перетирались и прессовались под дав-

Рис. 2. Рентгенограммы Mn₃FeTiSbO₉ (a) и Mn₄FeTi₂SbO₁₂ (b) и результаты обработки по методу Ритвелда. Точки — данные эксперимента, сплошная кривая — вычисленный спектр. Внизу приведена разность между экспериментальными данными и вычисленной кривой. Вертикальные отметки — разрешенные индексы Миллера для ильменита (верхний ряд) и Mn₂Sb₂O₇ (нижний ряд).

лением 3000 kg/cm². Образцы помещались в алундовые тигли и подвергались спеканию на воздухе при 1150-1220°С в течение 24 h с промежуточным перетиранием после 12 h. После синтеза образцы охлаждались путем закаливания в воду. Продукты реакций анализировались рентгенографически на дифрактометре Shimadzu 7000 в СиК_а-излучении с Ni-фильтром в интервале $2\theta = 10 - 100^{\circ}$. Рентгенограммы полученных образцов обрабатывались по методу полнопрофильного анализа Ритвелда с помощью программы FULLPROF 2010. Критериями расшифровки служили факторы сходимости: брэгговский ($R_{\rm Br}$) и структурный (R_f). Состав продуктов устанавливался также по данным энергодисперсионных рентгеновских (EDX) спектров, измеренных с помощью EDX-детектора сканирующего электронного микроскопа (SEM) JSM5900L.

Магнитные измерения проводились на СКВИД-магнитометре MPMS-5-XL фирмы QUANTUM DESIGN. Измеряемый образец массой ~ 0.3-0.5 g в спеченном виде помещался в желатиновую капсулу. Температурный интервал измерений 5-400 К. Измерения были проведены при напряженности магнитного поля H = 5 и 0.5 kOe. Температурные зависимости намагниченности σ и восприимчивости χ определены для двух режимов проведения эксперимента: охлаждение при напряженности магнитного поля, равной нулю (ZFC), и в измеряемом магнитном поле (FC). С помощью измерений статического магнитного момента образца определялись намагниченность σ и магнитная восприимчивость $\chi = \sigma/H$, а с использованием метода измерения динамической магнитной восприимчивости — действительная χ' составляющая магнитной восприимчивости при амплитудном значении переменного магнитного поля до 4 Ое при частоте 80 Hz.

3. Результаты и их обсуждение

На рис. 2 представлены рентгенограммы Mn₃FeTiSbO₉ и Mn₄FeTi₂SbO₁₂, полученных путем закаливания образца от 1200°C в воду. Наряду с соединением со структурой ильменита в образцах зафиксировано присутствие Mn₂Sb₂O₇ [24,25]. На рис. 3 и в табл. 1 приведены результаты элементного анализа Mn₃FeTiSbO₉ и Mn₄FeTi₂SbO₁₂, полученные на основе EDX-спектроскопии. Приведенные данные свидетельствуют о том, что синтезированные соединения имеют химический состав, близкий к стехиометрическому. Некоторое уменьшение содержания сурьмы может быть связано с процессом испарения оксида этого элемента при высоких температурах. Методом EDX-спектроскопии в образцах было зафиксировано соединение Mn₂Sb₂O₇, а также незначительное количество двойного оксида состава Мп_{1.85}Fe_{2.15}O₄. Данная фаза с помощью рентгенографического анализа не была зафиксирована.

В табл. 2 приведены параметры кристаллической структуры данных TP вместе с параметрами известных ильменитов Mn_2FeSbO_6 , $MnTiO_3$ и FeTiO_3. Видно, что при увеличении содержания катионов Ti^{4+} в рассматри-

Таблица 1. Элементный состав (mass %) Mn₃FeTiSbO₉ и Mn₄FeTi₂SbO₁₂ по данным EDX-анализа

Атом	Mn ₃ FeTiSbO ₉		Mn ₄ FeTi ₂ SbO ₁₂		
	Теория	Эксперимент	Теория	Эксперимент	
Mn	30.85	30.94	32.08	32.73	
Fe	10.45	12.42	8.15	8.74	
Ti	8.96	9.21	13.98	14.66	
Sb	22.79	20.62	17.77	15.95	
0	26.95	26.81	28.02	27.92	

Рис. 3. Спектры EDX кислорода, Mn, Fe, Ti и Sb для $Mn_3FeTiSbO_9(a)$ и $Mn_4FeTi_2SbO_{12}(b)$.

ваемом ряду происходит уменьшение параметров *a*, *c* и объема *V* элементарной ячейки ильменита. Наблюдаемые изменения параметров гексагональной ячейки в данном ряду вполне согласуются с их химическим составом и радиусами катионов Mn^{2+} (0.83 Å), Fe^{2+} (0.78 Å), Fe^{3+} (0.645 Å), Ti^{4+} (0.605 Å) и Sb⁵⁺ (0.60 Å) [26]. Эти данные позволяют заключить, что катионы Ti^{4+} в TP занимают позиции в *B*-слоях ильменита вместе с катионами Fe^{3+} и Sb⁵⁺. Химический состав TP может быть выражен формулами $(Mn)_A(Fe_{0.33}Ti_{0.33}Sb_{0.33})_BO_3$ и $(Mn)_A(Fe_{0.25}Ti_{0.5}Sb_{0.25})_BO_3$.

Таблица 2. Параметры гексагональной структуры ильменитов (пространственная группа R3)

Параметры	Mn ₂ FeSbO ₆	Mn ₃ FeTiSbO ₉	Mn ₄ FeTi ₂ SbO ₁₂	MnTiO ₃	FeTiO ₃
a, Å	5.237(1)	5.1923(1)	5.1763(1)	5.1394	5.0890
c, Å	14.349(2)	14.3120(3)	14.3098(3)	14.2833	14.0228
c/a	2.740	2.756	2.7689	2.779	2.756
V, Å ³	340.8(1)	334.16(1)	332.050(1)	326.73	314.51

Магнитные свойства ильменитов M^{2+} TiO₃ (M — 3д-элементы) определяются преимущественно обменными взаимодействиями между парамагнитными катионами M^{2+} различных *A*-слоев через анион кислорода и немагнитный катион Ti⁴⁺ второго слоя (B) или между одноименными катионами M^{2+} в пределах одного слоя [5]. Оба взаимодействия достаточно слабые. При сравнении магнитных свойств ильменитов Mn₂FeSbO₆ и MnTiO₃ следует иметь в виду, что оба слоя $(A \ u \ B)$, чередующиеся вдоль оси с, в структуре первого соединения содержат *d*-элементы с магнитными катионами $(Mn^{2+}$ в слое A и Fe³⁺ в слое B), причем катионы Mn^{2+} и Fe^{3+} имеют одинаковые электронные конфигурации d^5 . В структуре MnTiO₃ В-слои образуют диамагнитные катионы Ti^{4+} (d^0). Магнитная структура MnTiO₃ характеризуется антиферромагнитными взаимодействиями между магнитными моментами катионов Mn²⁺ как в слоях, так и между слоями [1]. В Мп₂FeSbO₆, согласно [27], взаимодействия Mn²⁺-Mn²⁺ и Fe³⁺-Fe³⁺ в слоях ферромагнитны, в то время как взаимодействия между катионами Mn²⁺ и Fe³⁺ вдоль с-оси являются антиферромагнитными. Поскольку количество катионов Mn²⁺ в 2 раза больше числа Fe³⁺-катионов (половина слоя занята катионами Sb⁵⁺), ожидаемый результирующий ферримагнитный момент должен быть равен 5 µ_B/mol. По данным [27] намагниченность ильменита Mn₂FeSbO₆ при 10 K в поле 50 kOe при отсутствии насыщения соответствует 4.35 µ_В, что подтверждает ферримагнитную природу соединения.

Результаты измерений намагниченности σ Мп₃FeTiSbO₉ и Мп₄FeTi₂SbO₁₂ в магнитном поле 5 kOe и ас-восприимчивости χ' в интервале температур 5-400 К приведены на рис. 4, 5. Видно, что при охлаждении образцов от 400 К наблюдаются быстрый рост намагниченности до достижения максимальных значений и дальнейшее их снижение. Из зависимости $\sigma = f(H)$ (вставка *a* на рис. 4) следует, что при 5 К намагниченность Mn₃FeTiSbO₉ при 50 kOe достигает 0.88 µ_В на молекулу MnFe_{0.33}Ti_{0.33}Sb_{0.33}O₃ (27.61 emu/q). Для Mn₄FeTi₂SbO₁₂ максимальное значение σ значительно ниже. Обе зависимости $\sigma = f(H)$ имеют S-образный вид при отсутствии коэрцитивности.

Из вставки *b* на рис. 4 следует, что Mn₃FeTiSbO₉ при 290 К обладает ферромагнитными свойствами с остаточной намагниченностью 0.27 emu/g, что соответствует $0.026 \,\mu_{\rm B}$ на формулу. Поскольку T_N ильменита Mn₂FeSbO₆ составляет 268 К [17], а при разбавлении TP диамагнитным катионом Ti⁴⁺ она должна уменьшиться, остаточный ферромагнетизм при 290 К следует отнести к примесным фазам Mn₂Sb₂O₇ или Mn_{1.85}Fe_{2.15}O₄.

Согласно [28], χ для Mn₂Sb₂O₇ следует закону Кюри–Вейсса в области 50–300 К с эффективным магнитным моментом $\mu = 5.92 \,\mu_B$ и константой $\Theta = -48.9$ К. Значение μ точно соответствует μ_{theor} для катиона Mn²⁺ (S = 5/2), отрицательное значение Θ указывает на преобладание антиферромагнитных взаимодействий. Температура T_N установлена равной 13 К,

Рис. 4. Зависимости намагниченности σ в магнитном поле 5 kOe для Mn₃FeTiSbO₉ (*I*) и Mn₄FeTi₂SbO₁₂ (*2*) от температуры в интервале 5–400 K. На вставках — зависимости σ от напряженности магнитного поля при 5 K для Mn₃FeTiSbO₉ (*I*) и Mn₄FeTi₂SbO₁₂ (*2*) (вставка *a*) и при 290 K для Mn₃FeTiSbO₉ (вставка *b*).

Рис. 5. Зависимости ас-восприимчивости χ' от температуры для Mn₃FeTiSbO₉ (*1*) и Mn₄FeTi₂SbO₁₂ (*2*).

ниже 55 К на зависимости $\chi(T)$ присутствуют эффекты ближнего порядка. Учитывая высокий уровень магнитной восприимчивости Mn₃FeTiSbO₉, можно сделать вывод, что присутствие Mn₂Sb₂O₇ оказывает минимальное воздействие на магнитные характеристики TP. Поскольку вторая примесная фаза, Mn_{1.85}Fe_{2.15}O₄, по составу близка к ферримагнитной шпинели Mn₂FeO₄, имеющей $T_N = 412$ K [29], вполне вероятно, что спонтанный момент при 290 К отражает присутствие данного двойного оксида.

Если считать, что в Mn₃FeTiSbO₉ и Mn₄FeTi₂SbO₁₂ катионы Ti⁴⁺ занимают позиции *B*-слоя, то данные TP следует рассматривать как разупорядоченные ильмениты, в которых происходит чередование Mn²⁺-слоев со слоями более сложного состава Fe³⁺-Ti⁴⁺-Sb⁵⁺. Вследствие изменения состава ТР за счет замещения части Fe³⁺ и Sb^{5+} диамагнитным катионом Ti^{4+} происходит введение магнитных вакансий в слой В структуры ильменита, что приводит к разбавлению данной магнитной подсистемы. По сравнению с Mn₂FeSbO₆ разбавление *B*-слоев в TP $Mn_3FeTiSbO_9$ составляет 33%, а в $Mn_4FeTi_2SbO_{12}$ — 50%. Разбавленные магнитные подрешетки рассматриваются в рамках магнитной перколяционной теории [30]. В результате разбавления системы диамагнитным катионом или вакансией температура магнитного фазового перехода уменьшается и достигает нуля при достижении значения порога перколяции $X_C = N_V / N_M$, где N_M общее число узлов в решетке, N_V — число не занятых примесями узлов. При X > X_C объект может рассматриваться как упорядоченный перколяционный магнетик, в то время как при X < X_C магнитные свойства системы определяются кластерными образованиями с нескомпенсированными моментами. Таким образом, для объяснения наблюдаемых магнитных свойств ТР представляется целесообразным предположить, что в магнитном поле в слоях Fe³⁺-Ti⁴⁺-Sb⁵⁺ происходит образование участков-кластеров с ферромагнитно-упорядоченными катионами Fe³⁺. Наличие достаточного количества подобных областей может обусловить возникновение, как и в Mn₂FeSbO₆, межплоскостного антиферромагнитного упорядочения и результирующего спонтанного магнитного момента.

На рис. 5 представлены температурные зависимости действительной χ' части ас-восприимчивости ТР. На зависимостях наблюдаются перегибы с резким возрастанием χ' при ~ 350 K, интенсивный максимум при 154 К и низкотемпературная аномалия ниже 50 К для Mn₃FeTiSbO₉. Высокотемпературный переход обусловлен ферримагнитным упорядочением примесной фазы Мп_{1.85}Fe_{2.15}O₄, пик при 154 К для Mn₃FeTiSbO₉ – переходом данного ильменита в магнитоупорядоченное состояние, характеризующееся спонтанным магнитным моментом, перегиб при 34К — переходом системы в спин-стекольное состояние. Для Mn₄FeTi₂SbO₁₂ зависимость $\chi' = f(TC)$ менее информативна, что обусловлено более слабой магнитной природой этого ТР (низкой концентрацией магнитных катионов Fe³⁺). Однако присутствие ферромагнитной примесной фазы Mn_{1.85}Fe_{2.15}O₄ в этом образце также очевидно.

Температуры магнитных фазовых переходов в $Mn_3FeTiSbO_9$ были установлены на основе зависимости $d\chi'/dT = f(T)$ (рис. 6). На кривой наряду с ярко выраженными минимумами при 369 и 171 К наблюдаются два максимума при 138 и 32 К. Отметим, что минимумы рассматриваемой функции обычно относят к переходам типа парамагнетик—ферромагнетик или парамагнетик—ферримагнетик (в общем случае отражают переход из парамагнитного состояния в состояние со спонтанной намагниченностью). В то же время перегиб ниже 100 К, по-видимому, можно связать с магнитной фрустрацией и переходом образца в спинстекольное состояние.

Рис. 6. Зависимость $d\chi'/dT$ от температуры для Mn_3 FeTiSbO₉.

Рис. 7. Зависимость $\chi^{-1} = f(T)$ в магнитном поле 500 Ое для Mn₃FeTiSbO₉. На вставке — ZFC- и FC-кривые зависимостей $\chi = f(T)$ для Mn₃FeTiSbO₉ в интервале 5–100 К.

Таким образом, результаты измерений dc- и асвосприимчивости позволяют сделать вывод, что ильменит Mn₃FeTiSbO₉ является перколяционным ферримагнетиком с $T_N = 171$ К. Отметим, что ранее [23] точка данного магнитного перехода, установленная из зависимости $d\sigma/dT$ в магнитном поле 5kOe, соответствовала 180 К. Т_N примесной ферримагнитной фазы Мп_{2.15}Fe_{0.85}O₄ составляет 369 К. Выше этой температуры Mn₃FeTiSbO₉ и Mn₄FeTi₂SbO₁₂ обладают парамагнитными свойствами (рис. 7). На вставке к рис. 7 приведена зависимость $\chi = f(T)$ для Mn₃FeTiSbO₉ в магнитном поле 500 Ое в области температур 5-100 К, из которой следует наличие небольшого расхождения между ZFC- и FC-кривыми χ в диапазоне 5-50 К. Это свидетельствует о переходе системы в состояние с магнитной фрустрацией.

TP Mn₄FeTi₂SbO₁₂ в рамках предлагаемой модели может рассматриваться как магнетик с концентрацией магнитных кластеров ниже порога перколяции.

Авторы выражают благодарность И.В. Николаенко за проведение элементного EDX-анализа.

Список литературы

- [1] Y. Ishikawa, S.I. Akimoto. J. Phys. Soc. Jpn. 13, 1110 (1958).
- [2] N. Dharmaraj, H.C. Park, C.K. Kim, H.Y. Kim, D.R. Lee. Mater. Chem. Phys. 87, 5 2004.
- [3] K.P. Surendran, A. Wu, P.M. Vilarinho, V.M. Ferreira. J. Appl. Phys. 107, 114 112 2010.
- [4] D.-U Kim, M.-S. Gong. Sensors Actuators B 110, 321 (2005).
- [5] Ю.А. Изюмов, Р.П. Озеров. Магнитная нейтронография. М. Наука. 1966. 532 с.
- [6] Ю.Н. Веневцев, С.А. Федулов, З.И. Шапиро, В.П. Клюев. Титанат бария, Наука. М. 1973. С. 118.
- [7] J. Ko, C.T. Prewitt. Phys. Chem. Miner. 15, 355 (1988).
- [8] C.J. Fennie. Phys. Rev. Lett. 100. 167 203 (2008).
- [9] T. Varga, A. Kumar, E. Vlahos. Phys. Rev. Lett. 103, 047 601 (2009).
- [10] A. Aimi, T. Katsumata, D. Mori, D. Fu, M. Itoh, T. Kyômen, K. Hiraki, T. Takahashi, Y. Inaguma. Inorg. Chem. 50, 6392 2011.
- [11] R.K. Pandey, H. Stern, W.J. Geerts. Adv. Sci. Technol. 54, 216 2008.
- [12] P.B. Moore. Arkiv Miner Geol. 4, 449 (1967).
- [13] P.B. Moore. Amer. Mineralog. 53, 1104 (1968).
- [14] G.V. Bazuev, B.G. Golovkin, N.V. Lukin, N.I. Kadyrova, Yu.G. Zainulin. J. Solid State Chem. 124, 333 (1996).
- [15] Г.В. Базуев, Б.Г. Головкин, Н.И. Кадырова, Ю.Г. Зуйнулин. ДАН 353, 622 (1997).
- [16] R. Mathieu, S.A. Ivanov, G.V. Bazuev, M. Hudl, P. Lasor, I.V. Solovyev, P. Nordblad. Appl. Phys. Lett. 98, 202 505 (2011).
- [17] M. Hudl, R. Mathieu, P. Nordblad, S.A. Ivanov, G.V. Bazuev, P. Lazor. J. Magn. Magn. Mater. 331, 19 (2013).
- [18] M.-R. Li, D. Walker, M. Retuerto, T. Sarkar, J. Hadermann, P.W. Stephens, M. Croft, A. Ignatov, C.P. Grams, J. Hemberger, I. Nowik, P.S. Halasyamani, T.T. Tran, S. Mukherjee, T.S. Dasgupta, M. Greenblatt. Angew. Chem. Int. Ed. 52, 8406 (2013).
- [19] Г.В. Базуев, Ю.Г. Зайнулин. Тр. 18-го Междунар. междисциплинар. симп. "Порядок, беспорядок и свойства оксидов" (ОDPO-18). В. 18. Фонд науки и образования, Ростов н/Д (2015). Т. 1. С. 20.
- [20] M.-R. Li, M. Retuerto, Z. Deng, P.W. Stephens, M. Croft, Q. Huang, H. Wu, X. Deng, G. Kotliar, J. Sanchez-Benitez, J. Hadermann, D. Walker, M. Greenblatt. Angew. Chem. 127, 12 237 (2015).
- [21] M.-R. Li, M. Retuerto, D. Walker, T. Sarkar, P.W. Stephens, S. Mukherjee, T.S. Dasgupta, J.P. Hodges, M. Croft, C.P. Grams, J. Hemberger, J. Sánchez-Benítez, A. Huq, F.O. Saouma, J.I. Jang, M. Greenblatt. Angew. Chem. Int. Ed. 53, 10774 (2014).
- [22] M.-R. Li, M. Croft, P.W. Stephens, D. Vanderbilt, M. Retuerto, Z. Deng, C.P. Grams, J. Hemberger, J. Hadermann, W.-M. Li, C.-Q. Jin, F.O. Saouma, J.I. Jang, H. Akamatsu, V. Gopalan, D. Walker, M. Greenblatt. Adv. Mater. 27, 2177 (2015).

- [23] Г.В. Базуев, А.В. Королев, И.В. Николаенко, Б.Г. Головкин. ДАН 462, 546 (2015).
- [24] H.G. Scott. J. Solid. State Chem. 66, 171 (1987).
- [25] G.V. Bazuev, A.P. Tyutyunnik, B.G. Golovkin. Z. Anorg. Allg. Chem. 639, 2657 (2013).
- [26] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [27] R. Mathieu, S.A. Ivanov, I.V. Solovyev, G.V. Bazuev, P. Anil Kumar, P. Lazor. P. Nordblad. Phys. Rev. B 87, 014408 (2013).
- [28] J.N. Reimers, J.E. Greedan, C.V, Stager, M. Bjorgvinnsen. Phys. Rev. B 47, 5691 (1991).
- [29] A. Murasik, G. Roult. J. Phys. (France) 25, 522 (1964).
- [30] I.Y. Korenblit, E.F Shender, B.I. Shklovskii. Phys. Lett. A 46, 275 (1973).