07:15

Новый способ повышения термоэдс в легированных манганитах

© Л.И. Королева 1 , А.С. Морозов 1 , Э.С. Жакина 1 , И.К. Баташев 1 , А.М. Балбашов 2

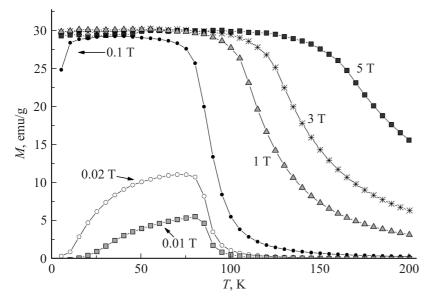
1 Московский государственный университет им. М.В. Ломоносова

E-mail: koroleva@phys.msu.ru

Поступило в Редакцию 4 февраля 2016 г.

Экспериментально изучены термоэдс, магнетотермоэдс, удельное электросопротивление, магнитосопротивление, намагниченность монокристаллических образцов системы $\mathrm{Sm}_{1-x}\mathrm{Sr}_x\mathrm{MnO}_3$ ($x=0.15,\ 0.2,\ 0.25,\ 0.3$). Известно, что эти составы состоят из ферромагнитных кластеров ферронного типа, расположенных в антиферромагнитной А-типа матрице. В области точки Кюри T_C обнаружены гигантские величины термоэдс и отрицательной магнетотермоэдс, достигавшие 94.5% в составе с x=0.3 в магнитном поле 1.323 Т. Это означает, что термоэдс вызвана в основном ферронами, так как при их разрушении под действием магнитного поля или нагревании выше T_C термоэдс резко падает. Отсюда следует, что термоэдс в легированном магнитном полупроводнике определяется концентрацией примеси и объемом образца.

В настоящее время практическое применение термоэлектричества для преобразования тепловой энергии в электрическую ограничено из-за малой эффективности термоэлектрических устройств, характеризующейся безразмерным коэффициентом ZT, который определяется соотношением:


$$ZT = \sigma S^2 T/k. \tag{1}$$

Здесь S — термоэдс, σ — удельная электрическая проводимость, k — коэффициент теплопроводности и T — температура. В настоящее время имеется огромное количество работ, посвященных повышению величины ZT, но, к сожалению, существенного прогресса пока не было достигнуто. Повышенная величина S, достигавшая сотен милливольт, наблюдалась в некоторых манганитах в районе температуры Кюри T_C [1–3], авторы которых объясняли ее образованием поляронов малого радиуса в районе T_C . Известно, что поляроны малого

 $^{^2}$ Московский энергетический институт

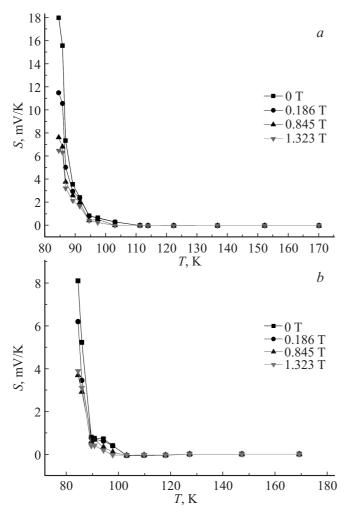
радиуса наблюдаются в немагнитных полупроводниках, и их появление только в районе температуры Кюри магнитно-полупроводниковых манганитов авторы работ [1-3] никак не объясняли. Как известно, интерес к магнитным полупроводникам вызван наблюдавшимися в них гигантскими магнитосопротивлением и объемной магнитострикцией в районе температуры Кюри [4-6]. В настоящее время большинство исследователей объясняют эти эффекты существованием в них особых магнитопримесных состояний — ферронов, теория которых разработана в работах [7-10]. Идея феррона заключается в том, что электрон донора (или дырка акцептора) из-за выигрыша в энергии s-d-обмена создает вокруг примеси ферромагнитную микрообласть. В ферронах кристаллическая решетка сжата [10]. В ферромагнитных полупроводниках ферроны существуют в районе T_C , где дальний ферромагнитный порядок частично или полностью разрушен, и при дальнейшем повышении температуры быстро разрушаются. В антиферромагнитных полупроводниках повышена электронная плотность около примесей, так что кристалл представляет собой антиферромагнитную матрицу, в которой симметрично располагаются ферромагнитные сферы коллективные ферроны, в которых повышена электронная плотность по сравнению с остальной частью кристалла.

В нашей работе изучены термоэдс S и магнетотермоэдс $\Delta S/S$ в системе $Sm_{1-x}Sr_xMnO_3$ ($x=0.15,\ 0.2,\ 0.25,\ 0.3$), представляющей собой легированный стронцием антиферромагнетик А-типа SmMnO₃. Монокристаллические однофазные образцы были выращены методом бестигельной зонной плавки. При измерении термоэдс и магнетотермоэдс на один конец образца, имеющего форму параллелепипеда, наматывалась печка из тонкой константановой проволоки, с помощью которой создавался градиент температуры, равный 5 К. К образцу подводились 3 термопары медь-константан, измеряющие температуру концов и середины образца. Температура образца регулировалась с помощью печки, изготовленной путем намотки константановой проволоки на внутреннюю поверхность вставки, помещенной в дьюар с жидким азотом, которая располагалась между полюсами электромагнита. Напряжение с концов образца измерялось с помощью аналогово-цифрового комплекса NI-9211, позволяющего измерять малые значения электрического напряжения с типовым значением относительной погрешности измерения 0.05% и входным сопротивлением 20 МΩ. Электросопротивление и магнитосопротивление измерялись четырехзондовым методом и намагниченность — магнетометром СКВИД. С помощью изучения

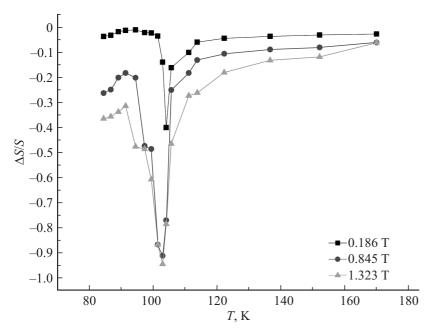
Рис. 1. Температурная зависимость намагниченности M(T) в разных магнитных полях состава с x=0.3.

данных нейтронной и электронной дифракций, а также магнитных свойств системы $\mathrm{Sm}_{1-x}\mathrm{Sr}_x\mathrm{MnO}_3$, предпринятого в работах [11–14], было установлено, что составах с $x\leqslant 0.33$ имеются ферромагнитные кластеры ферронного типа, расположенные в антиферромагнитной А-типа матрице.

На рис. 1 показана температурная зависимость намагниченности M(T) в разных магнитных полях состава с x=0.3. Видно, что в невысоких магнитных полях существует разница между намагниченностями FC и ZFC и переход от ферромагнитного к парамагнитному состоянию сильно размыт. Отсюда следует, что это магнитнонеоднородный образец. Температура Кюри этого образца $T_C=87\,\mathrm{K}$ определена как температура минимума на кривой dM(T)/dT, измеренной в слабом магнитном поле $10^{-2}\,\mathrm{T}$. Следует подчеркнуть, что понятие температуры Кюри здесь весьма условно: это температура Кюри ферромагнитных кластеров (ферронов). Подобные измерения намагниченности были сделаны на образцах с $x=0.15,\ 0.2,\ 0.25.$


Температура Кюри T_C , термоэдс S, магнетотермоэдс $\Delta S/S$, удельное электросопротивление ρ и магнитосопротивление $\Delta \rho/\rho$ в температуре Кюри в зависимости от концентрации x

х	T_C , K	S , mV/($K \cdot mm^3$)	$\Delta S/S$	ρ , $\Omega \cdot m$	$\Delta\! ho/ ho$
0.15	80	0.525	-0.54	1683	-0.7
0.2	90	0.575	-0.37	2083	-0.33
0.25	95	0.9	-0.64	2599	-0.51
0.3	87	0.21	-0.94	677	-0.76


Кривые M(T) очень похожи на наблюдавшиеся в составе с x=0.3. Температуры Кюри оказались почти такими же, как у состава с x=0.3, и совпадающими с температурами Кюри, определенными в работе [14].

На рис. 2, a показана температурная зависимость термоэдс S(T)в разных магнитных полях образца с x = 0.3, с геометрическими размерами $11 \times 2.5 \times 3$ mm. Из рисунка видно, что в районе $T_C = 87\,\mathrm{K}$ термоэдс достигает гигантской величины 18 mV/K и выше этой температуры быстро спадает. На рис. 3 показана температурная зависимость магнетотермоэдс $\{\Delta S/S\}(T)$ в разных магнитных полях этого образца. Видно, что магнетотермоэдс отрицательна и ее абсолютная величина достигает гигантской величины 94.5% в магнитном поле 1.323 Т вблизи T_C . Похожее поведение термоэдс и магнетотермоэдс наблюдалось и в составах с x = 0.15, 0.2, 0.25. Максимальные величины S и $|\Delta S/S|$, наблюдавшиеся в них вблизи T_C , представлены в таблице, из которой видно, что у всех изученных образцов с $x \leqslant 0.3$ наблюдаются их гигантские величины. У всех составов в районе T_C наблюдалось гигантское возрастание удельного электросопротивления ρ и абсолютной величины магнитосопротивления $\Delta \rho/\rho$, характерное для легированных магнитных полупроводников, которое большинство исследователей объясняют существованием примесных ферронов. Максимальные величины ρ и $\Delta \rho/\rho$ всех исследованных образцов представлены в таблице. При этом наблюдалось похожее поведение кривых $\rho(T)$ и S(T), а также $\Delta \rho/\rho(T)$ и $\Delta S/S\{T\}$, указывающее на то, что они вызваны одной и той же причиной — существованием ферронов.

Наличие гигантских термоэдс и отрицательной магнетотермоэдс, обнаруженной в перечисленных выше составах манганитов, означает,

Рис. 2. Температурная зависимость термоэдс S(T) в разных магнитных полях для образца с x=0.3 с геометрическими размерами $11\times 2.5\times 3\,\mathrm{mm}$ (a) и $5\times 2.5\times 3\,\mathrm{mm}$ (b), полученного после разлома образца, данные которого приведены на рис. 2,a.

Рис. 3. Температурная зависимость магнетотермоэдс $\{\Delta S/S\}(T)$ в разных магнитных полях образца с x=0.3.

что термоэдс в них вызвана главным образом ферронами, так как при термальном разрушении ферронов или их разрушении под действием магнитного поля термоэдс резко падает. На каждом ферроне от общего градиента температуры ΔT создается локальный градиент ΔT_1 , который, в свою очередь, образует на нем термоэдс S_1 . От каждой такой микрообласти происходит вклад $(S_1 - S_2)$ в термоэдс всего образца. Здесь S_2 — термоэдс антиферромагнитной матрицы в отсутствие феррона, т.е. вклад от ферронов влияет на эффективное значение S всего образца. Отсюда следует, что термоэдс в легированном магнитном полупроводнике определяется концентрацией примеси и объемом образца. Кроме того, следует заметить, что из-за закона сохранения энергии градиенты ΔT_1 в ферронных микрообластях создаются за счет поглощения тепла, поступающего в образец для создания на нем градиента ΔT . Значит, происходит уменьшение коэффициента теплопроводности всего

образца, так как значительная часть тепловой энергии, поступающей в образец, идет на создание градиентов ΔT_1 в ферронах. Таким образом, наличие примесных ферронов в магнитном полупроводнике приводит к резкому повышению термоэдс в нем и уменьшению коэффициента теплопроводности, что, согласно соотношению (1), приводит к увеличению коэффициента полезного действия. На рис. 2, в показана температурная зависимость термоэдс в разных магнитных полях образца x = 0.3 с размерами $5 \times 2.5 \times 3$ mm, полученного после разлома образца, данные которого приведены на рис. 2, а. Видно, что при уменьшении объема в 2.2 раза термоэдс также уменьшается в 2.2 раза с 18 до 8.1 mV/K. Это означает, что для сравнения величин термоэдс разных составов надо указывать для каждого состава величину термоэдс на единицу объема, т.е. указывать удельную термоэдс, величины которой для всех изученных составов приведены в таблице. Таким образом, величину термоэдс можно сильно увеличивать за счет объема образца. При этом известно, что в немагнитных полупроводниках термоэдс не зависит от объема образца. Таким образом, в легированных магнитных полупроводниках, к которым относятся манганиты, величина термоэдс может быть значительно повышена по сравнению с нелегированными за счет увеличения концентрации примеси и объема образца.

Таким образом, в легированных магнитных полупроводниках, к которым относятся манганиты, величина термоэдс может быть значительно повышена по сравнению с нелегированными за счет увеличения концентрации примеси и объема образца.

Список литературы

- [1] Hassen A., Magdal P. // J. Appl. Phys. 2007. V. 101. P. 113 917 (5 p).
- [2] Joy L.K., Samatham S.Sh., Thomas S., Ganesan V. Al-Narthi S., Liabig A., Ajbrechit M., Anantharaman M.B. // J. Appl. Phys. 2014. V. 116. P. 213 701 (8 p).
- [3] Sagar S., Ganesan V., Joy P.A., Thomas S., Liebig A., Albrecht M., Anantharaman M.R. // Europhys. Lett. 2010. V. 91. P. 12217 008 (4 p).
- [4] Абрамович А.И., Королева Л.И., Мичурин А.В. // ЖЭТФ. 2002. Т. 122. С. 1063–1073.
- [5] Королева Л.И. Магнитные полупроводники. М.: Изд-во Физического ф-та МГУ, 2003. С. 312.
- [6] Shiffer P., Ramirez A.P., Bao W., Cheong S.-W. // Phys. Rev. Lett. 1995. V. 75. P. 3336–3339.

- [7] Нагаев Э.Л. // ЖЭТФ. 1968. Т. 54. С. 228-233.
- [8] Nagaev E.L. // Phys. Rep. 2001. V. 346. P. 387–531.
- [9] Kasuya T., Yanase A. // Rev. Mod. Phys. 1968. V. 40. P. 684–687.
- [10] Dagotto E., Hotta T., Moreo A. // Phys. Rep. 2001. V. 344. P. 1.
- [11] Рунов В.В., Чернышов Д.Ю., Курбаков А.И., Рунова М.К., Трунов В.А., Окороков А.И. // ЖЭТФ. 2000. Т. 118. С. 1174–1187.
- [12] *Рунов В.В., Глаттли Х., Капица Г.В., Окороков А.И., Рунова М.К.* // Письма в ЖЭТФ. 1999. Т. 69. С. 323–328.
- [13] Chernyshov D.Yu., Kurbakov A.I., Trounov V.A. // Physica B. 2000. V. 276–278. P. 318–319.
- [14] Martin C., Maignan A., Hervieu M., Raveau B. // Phys. Rev. B. 1999. V. 60. P. 12191–12199.