Влияние высокого давления на кристаллическую структуру соединения Sr_{1-x}La_xCuO₂

© В.И. Бобровский**, В.П. Глазков, С.Е. Кичанов*, Д.П. Козленко*, Б.Н. Савенко*, В.А. Соменков

Российский научный центр "Курчатовский институт",

123182 Москва, Россия

* Объединенный институт ядерных исследований,

141980 Дубна, Московская обл., Россия

** Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

(Поступила в Редакцию 13 августа 2003 г. В окончательной редакции 8 января 2004 г.)

Методом нейтронной дифракции исследовано влияние высокого давления на тетрагональную структуру бесконечно-слоевого соединения $Sr_{1-x}La_xCuO_2$ (x = 0.07 и 0.13) и орторомбическую структуру SrCuO₂. Обнаружена сильная анизотропия сжатия бесконечно-слоевых соединений. Обсуждается механизм фазового перехода из орторомбической фазы в тетрагональную.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 00-02-17077 и 00-02-17370), Министерства промышленности, науки и технологий РФ (госконтракт № 40.012.1.1.1148 и 40.012.1.1.1166, договор № 10/02), гранта поддержки уникальных установок России и проекта INTAS N 99-00256.

Соединение SrCuO₂ при нормальных условиях имеет орторомбическую структуру (пространственная группа Cmcm) (рис. 1) и состоит из чередующихся медьдефицитных слоев (или так называемых двойных зигзагообразных Cu–O цепочек) и слоев (SrO)₂ [1]. При высоких давлениях $P \sim 5$ GPa и температурах $T \sim 1000$ K в этом соединении происходит фазовый переход из орторомбической "фазы низкого давления" в тетрагональную бесконечно-слоевую фазу — "фазу высокого давления" [2]. Механизм перехода из орторомбической фазы в тетрагональную практически не изучен. Остается открытым вопрос о том, какое внешнее воздействие (давление или температура) является ключевым для этого фазового перехода.

Бесконечно-слоевые соединения $Sr_{1-x}La_xCuO_2$, где R — редкоземельный элемент (La, Nd и т.д.) (рис. 2), обладают простой кристаллической структурой (пространственная группа Р4/тт) [3-5], не содержащей позиционных параметров атомов, и имеют температуру перехода в сверхпроводящее состояние $T_c \sim 20-110 \, {\rm K}$ [4,5]. Интерес к исследованиям бесконечно-слоевых соединений обусловлен тем, что параметры их тетрагональной ячейки а и с, которые связаны с Си-Си-взаимодействием внутри плоскости и между плоскостями соответственно, являются одним из основных критериев, определяющих величину температуры перехода в сверхпроводящее состояние Т_с для этих соединений [6]. Изменение внутрислоевого расстояния Cu-O наблюдается при замещении Sr²⁺ с ионным радиусом $r_{\rm eff} = 1.26$ Å ионами с меньшим радиусом, такими как La^{3+} ($r_{eff} = 1.16$ Å) или Nd^{3+} ($r_{eff} = 1.11$ Å) [6,7]. Исследования соединений $Sr_{1-x}La_xCuO_2$ (0.05 < x < 0.12) методом рентгеновской дифракции [6] показали, что при нормальных условиях параметры а и с тетрагональной ячейки уменьшаются

с ростом содержания лантана по линейному закону. Однако при x > 0.12 наблюдается сильное отклонение от линейного закона; это также характерно для соединений Sr_{1-x}La_xCuO₂ [7]. Таким образом, можно предположить существование критического уровня допирования x_c , при котором отношение параметров c/aперестает уменьшаться с ростом концентрации лантана или неодима. Давление может вызывать более сильные изменения параметров решетки, чем легирование. Однако влияние высокого давления на структуру и свойства бесконечно-слоевых сверхпроводников изучено недостаточно. В связи с этим цель настоящей работы заключалась в структурном исследовании орторомбического соединения $SrCuO_2$ и бесконечно-слоевого $Sr_{1-x}La_xCuO_2$ при концентрациях лантана x = 0.07 и 0.13 при высоких давлениях методом порошковой нейтронной дифракции.

Образцы Sr_{1-x}La_xCuO₂ синтезировались по оригинальной технологии [6] из прекурсоров SrCuO2 и LaCuO₂ с использованием процедуры предварительного магнитоимпульсного прессования заготовок из шихты, позволяющей достичь высокой (~95%) плотности, однородности и точности геометрических размеров заготовок. Окончательный синтез проводился в ИФВД РАН при температуре T = 1273 К и давлении P = 7 GPa. Нейтронографические эксперименты выполнялись на спектрометре ДН-12 [8], на импульсном высокопоточном реакторе ИБР-2 в Объединенном институте ядерных исследований. Поликристаллические образцы объемом около 2.5 mm³ помещались в камеру высокого давления с сапфировыми наковальнями [9]. Давление в камере определялось по сдвигу линий люминесценции рубина с точностью до 0.05 GPa. Время измерения одного спектра составляло в среднем около 20 h. Обработка экспериментальных данных осуществлялась с помощью програм-

Рис. 1. Орторомбическая структура SrCuO₂, содержащая медьдефицитные Cu–O-плоскости (двойную CuO-цепочку) и плоскости (SrO)₂.

Рис. 2. Тетрагональная структура бесконечно-слоевых соединений Sr_{1-x}La_xCuO₂ (R — редкоземельный элемент).

мы "MRIA" [10], основанной на стандартном методе Ритвельда [11]. При обработке полученных дифракционных спектров, измеренных при различных давлениях, для тетрагональной фазы уточнялись параметры *a* и *c*

Таблица 1. Структурные параметры для бесконечно-слоевых соединений $Sr_{1-x}La_xCuO_2$ при x = 0.07 и 0.13 и орторомбического $SrCuO_2$ при нормальном давлении

	$Sr_{0.93}La_{0.07}CuO_2$	$Sr_{0.87}La_{0.13}CuO_2$	SrCuO ₂
<i>a</i> , Å	3.939(5)	3.948(7)	3.573(4)
<i>b</i> , Å	3.939(5)	3.948(7)	16.316(6)
<i>c</i> , Å	3.417(6)	3.408(5)	3.910(2)
Sr	(1/2,1/2,1/2)	(1/2,1/2,1/2)	(0, y, 0)
Cu	(0,0,0)	(0,0,0)	y = 0.327(5) (0, y, 0) y = 0.058(6)
01	(1/2,0,0)	(1/2,0,0)	0, y, 0 y = 0.175(4)
02	-	_	(0, y, 0) y = 0.941(7)

элементарной ячейки, а для орторомбической фазы $SrCuO_2$ — параметры элементарной ячейки a, b и c и позиционные параметры y атомов Sr, Cu и O. Уточнение велось в рамках известных моделей (пространственная группа P4/mmm для бесконечно-слоевых соединений и Cmcm для $SrCuO_2$). Результаты уточнения представлены в табл. 1.

Рис. 3. Зависимость параметров орторомбической элементарной ячейки *a*, *b* и *c* SrCuO₂ от давления. Сплошные прямые — линейная аппроксимация методом наименыших квадратов. Ошибки эксперимента не превышают размеров символов.

На рис. З представлена зависимость параметров орторомбической элементарной ячейки $SrCuO_2$ от давления. Позиционные параметры атомов стронция, меди и кислорода слабо зависят от давления; их изменения не превосходят ошибки эксперимента, однако давление

Рис. 4. Зависимость параметров тетрагональной элементарной ячейки *a* и *c* для бесконечно-слоевых соединений $Sr_{1-x}La_xCuO_2$ при x = 0.07 (*1*) и 0.13 (*2*) от давления. Сплошные прямые — линейная аппроксимация методом наименыших квадратов. Ошибки эксперимента не превышают размеров символов.

оказывает сильное влияние на расстояние между медьдефицитными слоями в орторомбической структуре. Отношение расстояний Cu–Cu между и внутри слоев уменьшается с 0.9138(8) до 0.9012(6). Расчеты показывают, что при давлении 13.5 GPa должен происходить фазовый переход из орторомбической "фазы низкого давления" в тетрагональную бесконечно-слоевую фазу — "фазу высокого давления". Однако давление слабо влияет на позиционные параметры атомов и для осуществления этого фазового перехода необходимо воздействие высоких температур, а это указывает на независимость влияния давления и температуры на точку фазового перехода из орторомбической фазы в тетрагональную.

Таблица 2. Линейная сжимаемость и модуль всестороннего сжатия для бесконечно-слоевых соединений $Sr_{1-x}La_xCuO_2$ при x = 0.07 и 0.13 и орторомбического $SrCuO_2$

Параметр	Sr _{0.93} La _{0.07} CuO ₂	Sr _{0.87} La _{0.13} CuO ₂	SrCuO ₂
k_a , 10^{-3} GPa ⁻¹	2.10(3)	1.93(2)	1.03(4)
k_b , 10^{-3} GPa ⁻¹	2.10(3)	1.93(2)	5.22(9)
k_c , 10^{-3} GPa ⁻¹	4.08(5)	4.20(4)	1.81(5)
k_v , 10^{-3} GPa ⁻¹	8.28(4)	8.06(6)	8.00(7)
B, GPa	120(9)	124(11)	125(9)

Из рис. 4 видно, что параметры бесконечно-слоевых соединений при различных концентрациях лантана линейно изменяются с давлением в диапазоне до 5.8 GPa. Подобное поведение параметров ячейки свидетельствует об отсутствии "насыщения", которое наблюдалось при легировании [4,5]. С повышением давления происходит более заметное уменьшение параметра c элементарной ячейки по сравнению с параметром a, так что сжимаемость бесконечно-слоевых соединений носит анизотропный характер (рис. 5, 6 и табл. 2).

Таким образом, из полученных результатов следует, что бесконечно-слоевые структуры сжимаются анизотропно, причем анизотропия сжимаемости меньше, чем для других классов оксидных сверхпроводников, кристаллизующихся в структурах с позиционными параметрами, один из которых является наиболее податливым [12–16]. В бесконечно-слоевых структурах, не содержащих позиционных параметров, структурные изменения и, возможно, изменения электрических характеристик под давлением обусловлены только анизотропным сжатием элементарной ячейки.

Рис. 5. Зависимость отношения параметров c/a тетрагональной элементарной ячейки соединений $Sr_{1-x}La_xCuO_2$ при x = 0.07 (1) и 0.13 (2) от давления. Сплошные прямые — линейная аппроксимация методом наименьших квадратов.

Рис. 6. Зависимость объемов элементарной ячейки бесконечно-слоевых соединений $Sr_{1-x}La_xCuO_2$ при x = 0.07 (1) и 0.13 (2) от давления. Сплошные прямые — линейная аппроксимация методом наименьших квадратов. Экспериментальные ошибки не превышают размеров символов.

Список литературы

- [1] Y. Taguchi, T. Matsumoto, Y. Tokura. Phys. Rev. B **62**, 7015 (2000).
- [2] A. Podlesnyak, A. Mirmelstein, V. Bobrovskii, V. Voronin, A. Karkin, I. Zhdakhin, B, Goshchitskii, E. Midberg, V. Zubkov, T. D'yachkova, E. Khlbov, J.-Y. Genoud, S. Rosenkranz, F. Fauth, W. Henggeler, A. Furrer. Physica C 258, 159 (1996).
- [3] T. Siegrist, S.M. Zahurak, D.W. Murphy, R.S. Roth. Nature (London) 334, 231 (1988).
- [4] M. Takano, Y. Takeda, H. Okada, Z. Hiroi. Physica C 159, 231 (1988).
- [5] M. Takano, M. Azuma, Z. Hiroi, Y. Baindo, Y. Takeda. Physica C 176, 441 (1989).
- [6] N. Ikeda, Z. Hiroi, M. Azuma, M. Takano, Y. Bando, Y. Takeda. Physica C 210, 367 (1993).
- [7] A. Podlesnyak, A. Mirmelstein, V. Voronin, B. Goshchitskii, T. D'yachkova, H. Kadyrova, V. Zubkov, Y. Zainulin, V. Kochetkov, E. Khlybov, R. Rosenkranz, A. Furrer. Physica C 230, 311 (1994).
- [8] V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.P. Kozlenko, I.V. Naumov, B.N. Savenko, D.V. Sheptyakov, V.A. Somenkov, A.P. Bulkin, V.A. Kudryashev, V.A. Trounov. Physica B 265, 258 (1999).
- [9] В.П. Глазков, И.Н. Гончаренко. ФТВД 1, 181 (1991).
- [10] V.B. Zlokazov. Comput. Phys. Commun. 65, 415 (1995).
- [11] H.M. Rietveld. Appl. Crist. 2, 65 (1969).
- [12] V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.V. Sheptyakov, V.A. Somenkov, S.Sh. Shilshtein. High Press. Res. 14, 127 (1995).
- [13] V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.V. Sheptyakov, V.A. Somenkov, S.Sh. Shilshtein, E.V. Antipov. Physica C 275, 87 (1997).
- [14] V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.V. Sheptyakov, V.A. Somenkov, S.Sh. Shilshtein, E.V. Antipov. Physica B 234–237, 940 (1997).
- [15] С.Ш. Шильштейн. ФТТ 40, 1980 (1998).
- [16] V.P. Glazkov, B.N. Savenko, V.A. Somenkov, D.V. Sheptyakov, S.Sh. Shilstein. High Press. Res. 17, 201 (2000).