06,03 Магнитоемкостный эффект в Gd_x Mn_{1-x}S

© С.С. Аплеснин^{1,2}, М.Н. Ситников¹

 ¹ Сибирский государственный аэрокосмический университет им. М.Ф. Решетнева, Красноярск, Россия
² Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
E-mail: apl@iph.krasn.ru

(Поступила в Редакцию 15 октября 2015 г.)

В твердых растворах $Gd_x Mn_{1-x}S$ ($x \le 0.2$) проведены измерения емкости и тангенса угла диэлектрических потерь на частоте 10 kHz без магнитного поля и в магнитном поле 8 kOe в интервале температур 90–450 K. Обнаружены рост диэлектрической проницаемости и максимум диэлектрических потерь в области низких температур. Найдено смещение температуры максимума мнимой части диэлектрической проницаемости в сторону высоких температур с ростом концентрации. Для двух составов обнаружен магнитоемкостный эффект. Диэлектрические потери описываются в модели Дебая с "замерзанием" дипольных моментов и в модели орбитально-зарядового упорядочения.

Работа выполнена при финансовой поддержке РФФИ (проект № 15-42-04099 р_сибирь_а) и государственного задания № 114090470016.

Материалы, в которых проявляется взаимосвязь магнитных и электрических свойств [1,2], магнитоэлектрики и мультиферроики, представляют интерес как с фундаментальной, так и с прикладной точки зрения. Особое внимание привлекают материалы, обнаруживающие магнитоэлектрические свойства в области комнатных и более высоких температур в связи с практическим применением в микроэлектронике для записи и хранения информации. К изученным материалам такого рода относится феррит висмута BiFeO₃ [3,4]. Эффект гигантской магнитоемкости наблюдался в LuFe2O4 при комнатной температуре и объяснялся флуктуацией заряда с разной величиной спина в ионах Fe²⁺ и Fe³⁺ [5] в результате снятия вырождения между двумя типами зарядового порядка внешним магнитным полем. Линейный магнитоэлектрический эффект [6] может возникнуть в результате зависимости орбитальных магнитных моментов от полярных искажений, индуцированных под действием электрического поля — так называемый "ионноорбитальный вклад в магнитоэлектрический отклик [7].

Орбитальное вырождение в сульфиде марганца MnS может возникнуть при электронном допировании в результате замещения двухвалентного иона марганца трехвалентным ионом гадолиния. Сульфид гадолиния GdS является металлом и имеет такую же кристаллическую и магнитную структуру, как в полупроводнике MnS. Из-за сильных электронных корреляций в MnS возможно образование орбитального упорядочения. В твердых растворах $Gd_x Mn_{1-x}S$ найдено магнитосопротивление в широкой области температур и обнаружена зависимость магнитосопротивления от тока и электрического поля [8].

Однако проводимость при постоянном токе и диэлектрическая проницаемость в некоторых случаях независимы, и аномалии одной из этих величин не обязательно должны привести к аномалиям другой. При приближении к переходу металл-диэлектрик со стороны диэлектрической фазы уменьшение электросопротивления сопровождается ростом диэлектрической проницаемости, что наблюдалось в некоторых легированных полупроводниках [9]. Диэлектрическая проницаемость, обусловленная электронами, вносит вклад в полную диэлектрическую проницаемость через взаимодействие с ионами, которые смещаются и приводят к увеличению поляризуемости [10].

В электрически неоднородных системах эффект Максвелла–Вагнера [11] и контактные эффекты могут привести к гигантским значениям диэлектрической проницаемости и диэлектрической релаксации в отсутствие дипольной релаксации [12]. Эффект Максвелла–Вагнера также может индуцировать магнитоемкость в отсутствие взаимодействия между магнитной и электрической подсистемами при условии существования магнитосопротивления в материале [13]. Такие эффекты ясно демонстрируют, что наличия магнитоемкости недостаточно для отнесения этих соединений к мультиферроикам. С другой стороны, магнитоемкость без магнитоэлектрической связи может быть более практичной для технологических приложений, так как не требуется существования дальнего магнитного порядка.

Цель настоящей работы — выяснить механизм магнитоэлектрической связи в орбитально вырожденных электронных состояниях и установить связь между магнитосопротивлением и магнитоемкостью в твердых растворах Gd_xMn_{1-x}S.

Синтез твердых растворов $Gd_xMn_{1-x}S$ и их паспортизация подробно описаны ранее в работе [14]. Образцы однофазны и имеют кристаллическую структуру типа NaCl. Температура магнитного фазового перехода в $Gd_xMn_{1-x}S$ монотонно уменьшается с ростом концентрации от 150 до 120 К (при x = 0.2). В твердом растворе $Gd_xMn_{1-x}S$ для составов с x = 0.1, 0.15

Рис. 1. Действительная (a) и мнимая (b) части диэлектрической проницаемости $Gd_{0.04}Mn_{0.96}S$ на частоте 10 kHz в зависимости от температуры.

и 0.2 найдено магнитосопротивление при температурах, в несколько раз превышающих температуру перехода в магнитоупорядоченное состояние. Для всех составов обнаружен полупроводниковый тип проводимости с небольшим минимумом в области высоких температур. Рост сопротивления в магнитном поле связан с уменьшением подвижности носителей тока и обусловлен орбитальным упорядочением электронов с образованием электрической поляризации.

Магнитоемкостный эффект $\delta \varepsilon_H = (\varepsilon(H, T) - \varepsilon(0, T))/$ $\varepsilon(0, T)$ определяется в результате исследования комплексной диэлектрической проницаемости. Спектральные и температурные зависимости диэлектрических констант можно использовать для обнаружения дипольного электрического момента и определения его характеристик, даже когда речь идет о локальном дипольном моменте в малых кластерах без наличия дальнего порядка. Диэлектрические свойства отражают также информацию о зарядовом транспорте и процессах зарядового упорядочения. Отклик диэлектрических свойств на воздействие магнитного поля дает возможность установить основные механизмы, определяющие поведение диэлектрических и электрических транспортных свойств.

Емкость и тангенс угла диэлектрических потерь tg δ измерены на анализаторе компонентов AM-3028 в интервале температур 90–450 К без магнитного поля и

Физика твердого тела, 2016, том 58, вып. 6

в магнитном поле H = 8 kOe. Магнитное поле прикладывалось параллельно пластинам плоского конденсатора. На рис. 1 изображены температурные зависимости действительной $\operatorname{Re} \varepsilon$ и мнимой $\operatorname{Im} \varepsilon = \operatorname{tg} \delta \operatorname{Re} \varepsilon$ частей диэлектрической проницаемости образца Gd_{0.04}Mn_{0.96}S. Нагрев образца вызывает резкий рост диэлектрических потерь, мнимая часть диэлектрической проницаемости возрастает в 3 раза, а действительная часть увеличивается на 5% при T = 102 К. С ростом температуры диэлектрическая проницаемость плавно растет и резко падает при T = 172 К. Изменения диэлектрической проницаемости Gd_{0.04}Mn_{0.96}S в пределах погрешности измерения, составляющей 1%, в магнитном поле не обнаружено. Резкое изменение диэлектрической проницаемости связано со структурными деформациями решетки, проявляющимися в температурной зависимости коэффициента теплового расширения решетки при *T* = 165 K и в аномалиях температурной зависимости параметра решетки в виде излома при этой температуре в сульфиде марганца [15].

С ростом концентрации гадолиния скачки на температурной зависимости диэлектрической проницаемости

Рис. 2. *а*) Действительная часть диэлектрической проницаемости твердого раствора Gd_{0.1}Mn_{0.9}S, измеренной на частоте 10 kHz без поля (*1*) и в магнитном поле H = 8 kOe (*2*); аппроксимирующая функция (*2*) с энергией активации $\Delta E = 0.069$ eV, $T_c = 440$ K (*3*) и с энергией активации $\Delta E = 0.086$ eV, $T_c = 460$ K (*4*). *b*) Относительное изменение диэлектрической проницаемости в поле 8 kOe в зависимости от температуры.

Puc. 3. *a*) Мнимая часть диэлектрической проницаемости твердого раствора $Gd_{0.1}Mn_{0.9}S$, измеренной на частоте 10 kHz без поля (1) и в магнитном поле H = 8 kOe (2), в зависимости от температуры. 3 — аппроксимирующая функция (3) с энергией активации $\Delta E = 0.069$ eV, $T_c = 440$ K. *b*) Проводимость, вычисленная с помощью соотношения $\sigma^{Im} = \varepsilon_0([Im(\varepsilon(\omega))\omega]/4\pi$ без поля (1) и в магнитном поле (2) в зависимости от температуры. На вставке — относительное изменение проводимости в магнитном поле в зависимости от температуры.

исчезают. Действительная часть Re ε имеет точку перегиба при T = 140 K для состава Gd_{0.1}Mn_{0.9}S, что видно из рис. 2 При дальнейшем нагревании Re ε нелинейно растет, так же как и в магнитном поле H = 8 kOe ниже температуры 357 K. Выше этой температуры диэлектрическая проницаемость уменьшается в магнитном поле. Относительное изменение диэлектрической проницаемости $\delta\varepsilon_H = (\varepsilon(H, T) - \varepsilon(0, T))/\varepsilon(0, T)$ в магнитном поле в зависимости от температуры представлено на рис. 2, b. Магнитоемкость $\delta\varepsilon_H$ достигает максимума 8% при T = 200 K.

Мнимая часть диэлектрической проницаемости для состава $Gd_{0.1}Mn_{0.9}S$ обнаруживает максимум при T = 140 K (рис. 3, *a*), который исчезает в магнитном поле. Проводимость σ^{Im} и связанное с ней сопротивление, найденное из соотношения $\rho = 4\pi/\varepsilon_0[Im(\varepsilon(\omega))\omega]$, представлены на рис. 3, *b*. Мнимая часть диэлектрической проницаемости уменьшается в магнитном поле, кроме области температур 180–240 K (рис. 3, *a*), а магнитосопротивление при постоянном токе увеличивается с ростом температуры. Проводимость $\sigma^{Im}(T)$ не описывается в рамках модели Мотта с переменной длиной прыжка, и ее величина на пять порядков больше

проводимости $\sigma_{\rm st}$, измеренной при постоянном токе (рис. 4). Высокое значение $\sigma^{\rm Im}(T)$ связано с большим вкладом в мнимую часть проницаемости поляризации ионов решетки в результате локализации электронов в потенциальных ямах.

Разделив все носители заряда на две группы: связанные и свободные заряды, мы можем записать диэлектрическую проницаемость среды как сумму диэлектрической проницаемости решетки и вклада свободных носителей. Вне полос поглощения мнимой частью диэлектрической проницаемости связанных зарядов (решетки) обычно пренебрегают. Ансамбль носителей заряда рассматривался как сумма не взаимодействующих между собой частиц. В полупроводниках при электронном допировании электроны делокализованы в некоторой области, и с ростом температуры радиус делокализации растет. Функциональную зависимость представим в виде корреляционного радиуса $\xi = A/(1 - T_c/T)$, где T_c температура зарядового упорядочения электронов на t_{2g}-орбиталях. Локализованные электроны индуцируют локальные смещения ионов и приводят к локальной поляризации. Диэлектрическая динамическая восприимчивость такой системы описывается в модели Дебая.

Рис. 4. *а*) Проводимость, вычисленная из соотношения $\sigma^{Im} = \varepsilon_0 [Im(\varepsilon(\omega))\omega]/4\pi$ (*I*) и измеренная при постоянном токе σ_{st} (*2*) без магнитного поля для состава с x = 0.1, в зависимости от температуры. *b*) Проводимость твердого раствора Gd_{0.2}Mn_{0.8}S, найденная из соотношения $\sigma^{Im} = \varepsilon_0 [Im(\varepsilon(\omega))\omega]/4\pi$ (*1*,2) и измеренная при постоянном токе σ_{st} (*3*) без магнитного поля (*1*,*3*) и в магнитном поле H = 8 kOe (*2*), в зависимости от температуры.

С понижением температуры при T_g в результате взаимодействия между диполями через решетку локальные диполи "замерзают". Время релаксации диполей описывается функцией Аррениуса $\tau_g = \tau_0 \exp(\Delta E/kT)$, где ΔE энергия активации. Диэлектрическую восприимчивость можно записать в виде

$$\operatorname{Re} \chi/N = \chi_{L0} + \chi_0/(1 + (\omega\tau_g)^2) + \chi_0/(1 + (\omega\tau_c)^2) + B/(1 - T_c/T), \qquad (1a)$$
$$\operatorname{Im}(\chi)/N = \chi_0 \omega\tau_g/(1 + (\omega\tau_g)^2) + \chi_0 \omega\tau_c/(1 + (\omega\tau_c)^2).$$
(1b)

Здесь χ_{L0} — температурно-независимый вклад в восприимчивость, χ_0 — статическая восприимчивость диполей, B — константа, τ_g — время релаксации диполей при температуре замерзания, τ_c — время релаксации электрических зарядов при переходе в орбитально-зарядовое упорядочение, $\tau_c = A/\xi^z = A/(1 - T_c/T)^{zv}$, где z — динамический индекс, v — индекс радиуса корреляции (v = 1). Вкладом свободных носителей заряда пренебрегаем, так как величина проводимости σ^{Im} на несколько порядков больше проводимости при постоянном токе. Диэлектрическая проницаемость $\varepsilon = 1 + \chi$ для состава $Gd_{0.1}Mn_{0.9}S$ хорошо описывается функцией

Re
$$\varepsilon = A/(1+B\exp(2\Delta E/T)) + C/[1+(D/(1-T/T_c)^2)^2] + G/(1-T/T_c) + \varepsilon_0$$
 (2)

с параметрами $\Delta E = 0.069 \text{ eV}$, $T_c = 440 \text{ K}$, z = 2. В магнитном поле температура орбитального упорядочения возрастает до $T_c = 460 \text{ K}$. Мнимая часть диэлектрической проницаемости качественно описывается функцией, подобной (1b):

Im
$$\varepsilon = A_1 \exp(\Delta E/T) / (1 + B \exp(2\Delta E/T))$$

+ $(C_1 / (1 - T/T_c)^2) / [1 + (D/(1 - T/T_c)^2)^2]$ (3)

с теми же константами, что и в (2), за исключением констант A_1 и C_1 в числителе.

Когда концентрация ионов гадолиния превышает концентрацию протекания $x_c = 0.16$, сопротивление меняется в пределах одного порядка и имеет минимум при T = 325 K в интервале температур 100 < T < 500 K в твердом растворе $Gd_x Mn_{1-x}S$. В магнитном поле сопротивление также возрастает, и минимум на температурной зависимости смещается в сторону высоких температур до $T = 380 \, \text{K}$. Температурная зависимость магнитосопротивления меняет знак с положительного на отрицательный при T = 320 K, и величина магнитосопротивления стремится к нулю при температуре 475 К. Для состава с x = 0.2 проводимость при постоянном токе и проводимость, вычисленная из мнимой диэлектрической проницаемости $\sigma = \varepsilon_0 [\operatorname{Im}(\varepsilon(\omega))\omega]/4\pi$, качественно различаются (рис. 4, b). В этом твердом растворе существует два канала проводимости: по ионам гадолиния и на интерфейсе ионов Mn-Gd. Поэтому к выражению (1) следует добавить электронный вклад в восприимчивость.

Независимо от типа (электроны или дырки) свободные носители заряда уменьшают действительную часть диэлектрической проницаемости. Это уменьшение тем значительнее, чем больше концентрация и меньше эффективная масса носителей заряда. Уменьшение диэлектрической проницаемости свободными носителями заряда ассоциируют с их индуктивным вкладом в результат взаимодействия переменного поля с веществом.

Для состава Gd_{0.2}Mn_{0.8}S диэлектрическая проницаемость обусловлена локализованными электронами в подрешетке ионов марганца и электронами проводимости в гадолиниевой подсистеме. Проводимость при постоянном токе меняется по величине в 3 раза (рис. 4, *b*), а мнимая часть диэлектрической проницаемости — на порядок в интервале температур 100–400 K (рис. 5, *a*). Температурная зависимость Im($\varepsilon(\omega)$) имеет два максимума: при T = 157 и 442 K. В магнитном поле H = 8 kOe низкотемпературный максимум сдвигается в сторону высоких температур до T = 170 K, диэлектрические потери уменьшаются в магнитном поле, кроме температурных областей 194–279 и в 417–451 K (рис. 5, *a*).

С.С. Аплеснин, М.Н. Ситников

Рис. 5. *а*) Зависимость от температуры мнимой части диэлектрической проницаемости твердого раствора $Gd_{0.2}Mn_{0.8}S$, измеренная на частоте 10 kHz без поля (*I*) и в магнитном поле 8 kOe (*2*), и аппроксимирующая функция (формула (4)) с энергией активации $\Delta E = 0.078$ eV без поля (*3*) и $\Delta E = 0.091$ eV в магнитном поле 8 kOe (*4*). *b*) Относительное изменение мнимой части диэлектрической проницаемости в магнитном поле в зависимости от температуры. Значения параметров те же, что на части *a*.

Низкотемпературный максимум опишем в модели локализованных электронов (1) с замерзанием дипольных моментов с энергией активации $\Delta E = 0.078$ eV без магнитного поля и с $\Delta E = 0.091$ eV в магнитном поле. Аппроксимирующая функция

Im
$$\varepsilon = A_1 \exp(\Delta E/T) / (1 + B \exp(2\Delta E/T))$$
 (4)

хорошо описывает экспериментальные данные на рис. 5, *а* в интервале температур 100–250 К.

Этот максимум может быть связан либо с переориентацией электрических диполей, либо с переносом заряда между неэквивалентными позициями в кристаллической решетке материала, что в некотором смысле эквивалентно переориентации электрических диполей. Рост магнитосопротивления в Gd_{0.2}Mn_{0.8}S [8] в магнитном поле опровергает версию, связанную с переносом заряда. Уменьшение диэлектрических потерь в магнитном поле связано с перераспределением электронной плотности по t_{2g} -орбиталям, например между d_{zx} и d_{zy} , что эквивалентно повороту электрического диполя. Частичное упорядочение диполей приводит к росту поляризации. Положение аномалии диэлектрической проницаемости обусловлено характерным временем релаксации рассматриваемой подсистемы.

Действительная часть диэлектрической проницаемости представлена на рис. 6. В интервале температур 130-210 К наблюдается резкий рост диэлектрической

Рис. 6. *а*) Действительная часть диэлектрической проницаемости твердого раствора $Gd_{0.2}Mn_{0.8}S$, измеренной на частоте 10 kHz без поля (*I*) и в магнитном поле H = 8 kOe (*2*), в зависимости от температуры, а также аппроксимирующая функция Re $\varepsilon = A/(1 + B \exp(2\Delta E/T)) + \varepsilon_0$ с энергией активации $\Delta E = 0.078$ eV для диэлектрической проницаемости без поля (*3*) и с энергией активации $\Delta E = 0.091$ eV для диэлектрической проницаемости в магнитном поле (*4*). *b*) Магнитоемкость в магнитном поле 8 kOe в зависимости от температуры.

проницаемости. В магнитном поле H = 8 kOe Re $(\varepsilon(\omega))$ возрастает, и относительное изменение проницаемости $\delta \varepsilon_H = (\varepsilon(H, T) - \varepsilon(0, T))/\varepsilon(0, T)$ достигает максимума 6% при T = 184 K. Резкое уменьшение проницаемости с понижением температуры также описывается в модели замерзания дипольных моментов с энергией активации $\Delta E = 0.078 - 0.091$ eV.

Таким образом, для состава Gd_{0.04}Mn_{0.96}S найдено резкое (скачкообразное) уменьшение диэлектрической проницаемости при низких температурах, связанное со структурным искажением решетки. С ростом концентрации ионов гадолиния низкотемпературный максимум мнимой части диэлектрической проницаемости растет и смещается в область высоких температур, так же как и в магнитном поле. Уменьшение диэлектрических потерь в магнитном поле вызвано перераспределением локализованных электронов на t2g-орбиталях и смещением энергии максимума электронной плотности относительно химического потенциала, что приводит к росту энергии активации. Эти результаты хорошо описываются в модели Дебая с замерзанием дипольных моментов. Рост диэлектрической проницаемости в области выше комнатной температуры вызван ростом радиуса делокализации электронов и исчезновением орбитально-зарядового упорядочения. Обнаружено качественное различие температурного поведения магнитоемкости и магнитосопротивления, что объясняется локлизованными и делокализованными электронами.

Список литературы

- M. Fiebig, T. Löttermoser, D. Fröhlich, A.V. Goltsev, R.V. Pisarev. Nature 419, 818 (2002).
- [2] А.П. Пятаков, А.К. Звездин. УФН 182, 593 (2012).
- [3] Г.А. Смоленский, И.Е. Чупис. УФН 137, 415 (1982).
- [4] С.С. Аплеснин, В.В. Кретинин, А.М. Панасевич, К.И. Янушкевич. ЖЭТФ 148, 485 (2015).
- [5] N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Nature 436, 1136 (2005).
- [6] A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy, N.A. Spaldin. Phys. Rev. Lett. 109, 19 (2012).
- [7] J.P. Rivera, H. Schmid. Ferroelectrics 161, 91 (1994).
- [8] С.С. Аплеснин, М.Н. Ситников. Письма в ЖЭТФ 100, 104 (2014).
- [9] C. Aebischer, D. Baeriswyl, R.M. Noack. Phys. Rev. Lett. 86, 468 (2001).
- [10] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.A. Krug von Nidda, V. Tsurkan, A. Loidl. Nature 434, 364 (2005).
- [11] M.M. Parish, P.B. Littlewood. Phys. Rev. Lett. 101, 16, 166 602 (2008).
- [12] P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl. Phys. Rev. B 66, 052105 (2002).
- [13] G. Catalan. Appl. Phys. Lett. 88, 102 902 (2006).
- [14] С.С. Аплеснин, Л.И. Рябинкина, О.Б. Романова, В.В. Соколов, А.Ю. Пичугин, А.И. Галяс, О.Ф. Демиденко, Г.И. Маковецкий, К.И. Янушкевич. ФТТ 51, 661 (2009).
- [15] С.С. Аплеснин. Магнитные и электрические свойства сильнокоррелированных магнитных полупроводников с четырехспиновым взаимодействием и с орбитальным упорядочением. Физматлит, М. (2013). 172 с.