Скорость захвата электронов в зависимости от глубины квантовой ямы в полупроводниковых лазерах

© З.Н. Соколова+, К.В. Бахвалов+, А.В. Лютецкий+, Н.А. Пихтин+, И.С. Тарасов+, Л.В. Асрян*

 ⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия
 * Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, USA

E-mail: zina.sokolova@mail.ioffe.ru

(Получена 3 ноября 2015 г. Принята к печати 13 ноября 2015 г.)

Методом MOC-гидридной эпитаксии выращены три лазерные структуры с одиночной напряженной квантовой ямой из InGaAs и волноводной областью из GaAs или Al_{0.1}Ga_{0.9}As. В этих структурах, имеющих различную глубину квантовой ямы, были измерены плотность порогового тока и внутренняя дифференциальная квантовая эффективность. С использованием экспериментальных значений этих величин была вычислена скорость захвата электронов в квантовую яму в каждой из трех структур. Получено, что скорость захвата в глубокие ямы существенно меньше, чем в мелкие.

1. Введение

В полупроводниковых лазерных двойных гетероструктурах с квантовыми ямами (КЯ) (рис. 1) имеет место непрямая инжекция носителей заряда в КЯ. Носители заряда сначала инжектируются из эмиттеров (cladding layers) в объемную волноводную область (область оптического ограничения — optical confinement layer, OCL) (рис. 1). Далее они захватываются из этой области в КЯ. Захват носителей происходит с конечной скоростью [1,2]. Величина скорости захвата сильно сказывается на характеристиках полупроводниковых лазеров; в частности, уменьшение скорости захвата может привести к существенному снижению выходной оптической мощности лазера [3].

В цикле теоретических работ [3-7] мы исследовали влияние захвата носителей заряда на характеристики гетеролазеров. Основным параметром в этих работах являлась скорость захвата (capture velocity) $v_{capt,0}$ носителей заряда в пустую КЯ. Скорость захвата является характеристикой КЯ и зависит от эффективной глубины КЯ, т. е. от энергии активации носителей заряда из КЯ в волноводную область. Таким образом, скорость захвата зависит как от ширины КЯ, так и от материалов КЯ и волноводной области.

В работе [8] нами был предложен метод определения скорости захвата электронов в одиночную КЯ с использованием экспериментальных лазерных характеристик и теоретических расчетов. Этот метод основывается на следующем:

— измерение плотности порогового тока j_{th} и внутренней дифференциальной квантовой эффективности на пороге генерации $\eta_{int,th}$ лазера;

— использование теоретической модели работы [5].

В настоящей работе с помощью этого метода исследована зависимость скорости захвата электронов от эффективной глубины КЯ в экспериментальных лазерных структурах.

2. Экспериментальные характеристики лазерных структур

Были исследованы три однотипные лазерные структуры, в которых активная область состояла из одиночной напряженной КЯ из твердого раствора InGaAs разного состава (табл. 1). Все три структуры содержали расширенную волноводную область — шириной 1.7 мкм. В одной из структур материалом волноводной области являлся GaAs, в двух других — твердый раствор Al_{0.1}Ga_{0.9}As (табл. 1). Схематически зонная энергетическая диаграмма экспериментальных структур приведена на рис. 2.

Структуры были выращены методом МОС-гидридной эпитаксии (газофазной эпитаксии из металлоорганиче-

Рис. 1. Схематическое изображение лазера с квантоворазмерной активной областью.

Номер структуры	Состав волноводной области	Состав КЯ	Толщина КЯ, Å	λ, мкм	$j_{\rm th}, {\rm A/cm}^2$	$\eta_{ ext{int, th}}, \%$
1	GaAs	In _{0.309} Ga _{0.691} As	75	1.063	117	93
2	$Al_{0.1}Ga_{0.9}As$	In _{0.327} Ga _{0.673} As	60	1.053	120	91
3	Al _{0.1} Ga _{0.9} As	$In_{0.302}Ga_{0.698}As$	90	1.066	101	93.5

Таблица 1. Технологические и измеренные параметры лазерных структур

Таблица 2. Рассчитанные параметры лазерных структур

Номер структуры	ΔE_c , мэ ${ m B}$	$\varepsilon_{n1},$ мэВ	$\Delta E_c - \varepsilon_{n1},$ мэВ	$B_{2\rm D} \cdot 10^{-4}, {\rm cm}^2/{\rm c}$	$B_{\rm 3D} \cdot 10^{-10}, {\rm cm}^3/{\rm c}$
1	182.3	47	135.3	2.45	2.04
2	256.5	69.1	187.4	2.49	3.03
3	242.5	40	202.5	2.47	3.03

ских соеденинений) [9]. Затем были проведены стандартные постростовые операции [10] для изготовления из них лазеров мезаполосковой конструкции. Все по-

Рис. 2. Зонная энергетическая диаграмма экспериментальной лазерной структуры.

Рис. 3. Спектр генерации лазера.

лученные лазеры имели ширину полоска 100 мкм и одинаковую длину резонатора Фабри-Перо 2.5 мм.

Для всех трех лазеров были измерены спектры излучения вблизи порога генерации (рис. 3) и определена длина волны λ , соответствующая максимуму спектра (табл. 1). Затем были измерены ватт-амперные характеристики этих лазеров в непрерывном режиме, из которых были определены плотность порогового тока j_{th} (табл. 1) и по известной методике [11] внутренняя дифференциальная квантовая эффективность на пороге генерации $\eta_{\text{int,th}}$ (табл. 1). Экспериментальные значения j_{th} и $\eta_{\text{int,th}}$ были далее использованы для расчета скоростей захвата электронов в КЯ трех структур.

3. Расчет скорости захвата электронов в квантовую яму

Экспериментальные значения толщины КЯ и длины волны максимума спектра λ были использованы для определения состава напряженного твердого раствора InGaAs в активной области лазеров (табл. 1). Расчеты проводились с помощью модели, изложенной в [12]. С использованием этой модели также были определены эффективные массы электронов в напряженных твердых растворах, а также разрыв края зоны проводимости ΔE_c на гетерогранице напряженная КЯ-волноводная область (табл. 2). Пользуясь этими величинами, мы рассчитали энергию ε_{n1} края нижней подзоны размерного квантования, отсчитанную от дна зоны проводимости, и эффективную глубину КЯ $\Delta E_c - \varepsilon_{n1}$ (табл. 2).

В работе [8] скорость захвата электронов в одиночную КЯ определялась из системы уравнений для двух величин — плотности порогового тока j_{th} и внутренней дифференциальной квантовой эффективности на пороге генерации $\eta_{int, th}$ — при использовании экспериментальных значений этих величин (табл. 1). Покажем, что все величины, входящие в эту систему, могут быть выражены через две неизвестные — концентрацию электронов

в КЯ на пороге генерации n^{QW} и скорость захвата электронов в пустую одиночную КЯ $v_{\text{capt. 0}}$.

Одно из уравнений системы — это уравнение для плотности порогового тока,

$$j_{\rm th} = eB_{\rm 2D} (n^{\rm QW})^2 + ebB_{\rm 3D} (n_{\rm th}^{\rm OCL})^2.$$
 (1)

Первое слагаемое в (1) — плотность тока спонтанной излучательной рекомбинации в квантовой яме на пороге генерации, второе слагаемое — плотность тока спонтанной излучательной рекомбинации в волноводной области (в OCL) на пороге генерации. Формула (1) содержит следующие величины: e — заряд электрона, b — ширина волноводной области, равная во всех наших экспериментальных структурах 1.7 мкм, $n^{\rm QW}$ и $n_{\rm th}^{\rm OCL}$ — концентрации электронов в КЯ и в волноводной области на пороге генерации, B_{2D} и B_{3D} — коэффициенты спонтанной излучательной рекомбинации в двумерной КЯ и в трехмерной волноводной области, вычисленные по формулам работ [13,14]. Значения B_{2D} и B_{3D} приведены в табл. 2.

Концентрация электронов в волноводной области на пороге генерации может быть выражена через концентрацию электронов в КЯ n^{QW} и через скорость захвата $v_{\text{capt, 0}}$ следующим образом [5]:

$$n_{\rm th}^{\rm OCL} = n_1 \frac{n^{\rm QW}}{N_c^{\rm 2D}} + \frac{1}{v_{\rm capt, 0}} \exp\left(\frac{n^{\rm QW}}{N_c^{\rm 2D}}\right) B_{\rm 2D} (n^{\rm QW})^2.$$
(2)

Величина n_1 в (2) экспоненциально зависит от эффективной глубины КЯ,

$$n_1 = N_c^{\rm 3D} \exp\left(-\frac{\Delta E_c - \varepsilon_{n1}}{T}\right). \tag{3}$$

Температура T в (3) измеряется в единицах энергии. Объемная эффективная плотность состояний в зоне проводимости в волноводной области N_c^{3D} и двумерная эффективная плотность состояний в зоне проводимости КЯ N_c^{2D} даются следующими выражениями:

$$N_c^{\rm 3D} = 2 \left(\frac{m_c^{\rm OCL}T}{2\pi\hbar^2}\right)^{3/2},\tag{4}$$

$$N_c^{\rm 2D} = \frac{m_c^{\rm QW} T}{\pi \hbar^2},\tag{5}$$

где m_c^{OCL} и m_c^{OW} — эффективные массы электронов в волноводной области и КЯ.

Другое уравнение системы — это уравнение для внутренней дифференциальной квантовой эффективности на пороге генерации [5],

$$\eta_{\rm int, th} = \frac{1}{1 + 2 \left[e b B_{\rm 3D} \left(n_{\rm th}^{\rm OCL} \right)^2 / j_{\rm capt, th} \right]}.$$
 (6)

Рис. 4. Скорость захвата электронов в зависимости от эффективной глубины КЯ.

Рис. 5. Концентрация электронов в КЯ на пороге генерации в зависимости от эффективной глубины КЯ.

В выражение (6) входит плотность тока захвата носителей из волноводной области в квантовую яму на пороге генерации [2,3],

$$j_{\text{capt, th}} = e \upsilon_{\text{capt, 0}} \exp\left(-\frac{n^{\text{QW}}}{N_c^{\text{2D}}}\right) n_{\text{th}}^{\text{OCL}}.$$
 (7)

Из (6) и (7) видно, что величина $\eta_{\text{int, th}}$ зависит от тех же двух неизвестных величин n^{QW} и $v_{\text{capt, 0}}$, что и j_{th} .

Таким образом, при известных из эксперимента значениях j_{th} и $\eta_{int, th}$ система уравнений (1) и (6) содержит две неизвестные величины n^{QW} и $v_{capt, 0}$. Эта система решалась численно для каждой из трех экспериментальных лазерных структур при использовании значений j_{th} и $\eta_{int, th}$ из табл. 1. Вычисленные значения скоростей захвата электронов и концентрации электронов в КЯ представлены на рис. 4 и 5. Во всех трех экспериментальных структурах, в независимости от эффективной глубины КЯ, пороговые концентрации электронов в КЯ различаются незначительно. Однако скорость захвата электронов в глубокие КЯ существенно меньше, чем в неглубокие ямы. Использование твердого раствора Al_{0.1}Ga_{0.9}As в качестве материала волноводной области вместо GaAs привело к увеличению эффективной глубины КЯ на 50–65 мэВ; при этом скорости захвата уменьшились в 3.1–3.6 раза.

4. Заключение

Исследована зависимость скорости захвата электронов в квантовую яму от ее эффективной глубины в трех экспериментальных лазерных структурах. Структуры были выращены методом МОС-гидридной эпитаксии и содержали по одной КЯ различной глубины. В этих структурах были измерены плотность порогового тока и внутренняя дифференциальная квантовая эффективность. Используя экспериментальные значения этих величин и теоретическую модель [5], мы вычислили скорость захвата электронов в квантовую яму в каждой из трех структур. Показано, что скорость захвата существенно уменьшается с увеличением глубины ямы.

Работа выполнена в соответствии с Государственной программой ФТИ им. А.Ф. Иоффе. Л.В. Асрян благодарит Исследовательский офис армии США (U.S. Army Research Office, грант № W911NF-13-1-0445) за поддержку данной работы.

Список литературы

- L.V. Asryan, S. Luryi, R.A. Suris. Appl. Phys. Lett., 81, 2154 (2002).
- [2] L.V. Asryan, S. Luryi, R.A. Suris. IEEE J. Quant. Electron., 39, 404 (2003).
- [3] З.Н. Соколова, И.С. Тарасов, Л.В. Асрян. ФТП, 45, 1553 (2011).
- [4] З.Н. Соколова, И.С. Тарасов, Л.В. Асрян. ФТП, 46, 1067 (2012).
- [5] L.V. Asryan, Z.N. Sokolova. J. Appl. Phys., 115, 023 107 (2014).
- [6] З.Н. Соколова, И.С. Тарасов, Л.В. Асрян. Квант. электрон., 44, 801 (2014).
- [7] З.Н. Соколова, Н.А. Пихтин, И.С. Тарасов, Л.В. Асрян. ФТП, 49, 1553 (2015).
- [8] Z.N. Sokolova, K.V. Bakhvalov, A.V. Lyutetskiy, N.A. Pikhtin, I.S. Tarasov, L.V. Asryan. Electron. Lett., 51, 780 (2015).
- [9] П.В. Булаев, В.А. Капитонов, А.В. Лютецкий, А.А. Мармалюк, Д.Б. Никитин, Д.Н. Николаев, А.А. Падалица, Н.А. Пихтин, А.Д. Бондарев, И.Д. Залевский, И.С. Тарасов. ФТП, 36 (9), 1144 (2002).
- [10] А.Ю. Лешко, А.В. Лютецкий, Н.А. Пихтин, С.О. Слипченко, З.Н. Соколова, Н.В. Фетисова, Е.Г. Голикова, Ю.А. Рябоштан, И.С. Тарасов. ФТП, 36, 1393 (2002)
- [11] С.О. Слипченко, Д.А. Винокуров, Н.А. Пихтин, З.Н. Соколова, А.Л. Станкевич, И.С. Тарасов, Ж.И. Алфёров. ФТП, 38 (12), 1477 (2004).
- [12] M.P.C.M. Krijn. Semicond. Sci. Technol., 6 (1), 27 (1991).

- [13] Л.В. Асрян. Квант. электрон., 35, 1117 (2005).
- [14] L.V. Asryan, R.A. Suris. Semicond. Sci. Technol., 11, 554 (1996).

Редактор Л.В. Шаронова

Electron capture velocity versus quantum well depth in semiconductor lasers

Z.N. Sokolova⁺, *K.V.* Bakhvalov⁺, *A.V.* Lyutetskiy⁺, *N.A.* Pikhtin⁺, *I.S.* Tarasov⁺, *L.V.* Asryan^{*}

⁺ loffe Institute,
194021 St. Petersburg, Russia
* Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061, USA

Abstract Three laser structures, each based on a single strained InGaAs quantum well and having a GaAs or $Al_{0.1}Ga_{0.9}As$ waveguide region were grown by means of MOCVD epitaxy. In these structures, each containing a quantum well of its own depth, the threshold current density and internal differential quantum efficiency were measured. Using experimental values of these parameters, the velocity of electron capture into a quantum well in each of these structures was calculated. It was obtained that the capture velocity into deep quantum wells is significantly lower than into shallow ones.