Влияние квантовых точек селенида кадмия на проводимость и фотопроводимость нанокристаллического оксида индия

© А.С. Ильин^{*+}•, Н.П. Фантина^{*}, М.Н. Мартышов^{*+}, П.А. Форш^{*+}, А.С. Чижов[■], М.Н. Румянцева[■], А.М. Гаськов[■], П.К. Кашкаров^{*+}•

* Московский государственный университет им. М.В. Ломоносова (физический факультет),

119991 Москва, Россия

+ Национальный исследовательский центр "Курчатовский институт",

123182 Москва, Россия

Московский физико-технический институт,

141700 Долгопрудный, Московская область, Россия

Московский государственный университет им. М.В. Ломоносова (химический университет),

119991 Москва, Россия

E-mail: as.ilin@physics.msu.ru

(Получена 29 октября 2015 г. Принята к печати 13 ноября 2015 г.)

Исследовано влияние квантовых точек селенида кадмия на электрические и фотоэлектрические свойства нанокристаллического оксида индия с размером нанокристаллов от 7 до 40 нм. Методами импедансной спектроскопии показано, что добавление квантовых точек оказывает значительное влияние на сопротивление границ между кристаллами In_2O_3 . Обнаружено изменение характера спектральной фотопроводимости оксида индия при добавлении квантовых точек CdSe, а также установлено, как это изменение зависит от размеров нанокристаллов In_2O_3 . Предложена энергетическая зонная диаграмма, объясняющая наблюдаемое изменение спектральной зависимости фотопроводимости In_2O_3 при добавлении квантовых точек CdSe.

1. Введение

Нанокристаллический оксид индия (In_2O_3) благодаря своей большой удельной поверхности может служить чувствительным слоем газовых сенсоров резистивного типа. Например, In_2O_3 чувствителен к присутствию в атмосфере таких газов, как CO, NO, NO₂, O₃ и др. [1].

В настоящий момент газовые сенсоры на основе оксидов металлов, как правило, работают в условиях повышенных температур (около 400°C), что ведет к значительному энергопотреблению [2,3]. В связи с этим исследования в области создания чувствительных слоев низкотемпературных газовых сенсоров являются актуальными. Одним из направлений в данной области является изучение влияния освещения на свойства нанокристаллического In2O3 и определение возможности детектирования газов при комнатной температуре посредством замены нагрева на освещение In₂O₃ [4,5]. Однако In₂O₃ является широкозонным полупроводником [6] и практически прозрачен в видимой области спектра [7]. Поэтому использование в качестве подсветки света видимой области спектра является затруднительным. Известно, что для повышения фоточувствительности можно использовать различные фотосенсибилизаторы. Удобным материалом в качестве фотосенсибилизатора являются коллоидные полупроводниковые нанокристаллы или квантовые точки (КТ). На настоящий момент хорошо отработан синтез квантовых точек CdSe с характерными размерами порядка 2-10 нм, спектр фотолюминесценции которых лежит в видимом диапазоне. С другой стороны, остается неясным, как влияет добавление КТ CdSe на электрические и фотоэлектрические свойства нанокристаллического In₂O₃, тогда как в литературе уже изучалась возможность фотосенсибилизации с помощью коллоидных квантовых точек CdSe других оксидов металлов, таких как ZnO, SnO₂ и TiO₂ [8–10]. Ответу на данный вопрос и посвящены представленные далее исследования. Стоит также отметить, что электрические и фотоэлектрические свойства нанокристаллического оксида индия сильно зависят от размера нанокристаллов [11,12]. Поэтому в представленной работе проведены исследования влияния КТ CdSe на свойства In₂O₃ с различным размером нанокристаллов.

2. Методика измерений

Исследуемые образцы нанокристаллического оксида индия были изготовлены золь-гель методом. Подробнее о методе и структуре образцов написано в статье [13]. Изучались 2 набора образцов нанокристаллического оксида индия, в один из которых были добавлены квантовые точки селенида кадмия. Размер КТ СdSe составлял 2–3 нм. Каждый из наборов включал по три образца нанокристаллического In_2O_3 с разным размером нанокристаллов (7–8, 17, 40 нм). В табл. 1 приведены обозначения образцов и некоторые их структурные параметры.

Для проведения электрических и фотоэлектрических измерений на поверхность образцов напылялись золотые контакты. Измерения проводились в области температур 270-470 К. Для исследования электрофизических свойств нанокристаллического In_2O_3 методом импедансной спектроскопии использовался анализатор импеданса HP 4192A. В случае исследования спектральных зависимостей фотопроводимости применялась установ-

Образец	Размер нанокристаллов, нм	Наличие квантовых точек	
Образец 1	7-8	Нет	
Образец 2	17	«	
Образец 3	40	«	
Образец 1'	7-8	CdSe	
Образец 2'	17	«	
Образец 3'	40	«	

Таблица 1. Обозначения и структура образцов

620

Таблица 2. Параметры эквивалентной схемы замещения для всех образцов

	Образец 1	Образец 1'	Образец 2	Образец 2'	Образец <i>3</i>	Образец 3'
<i>R</i> ₁ , кОм	0.58	0.1	0.15	0.08	0.46	0.26
R_2 , кОм	322.1	19.0	20.8	9.7	0.6	2.2
$C_2, п\Phi$	6.2	5.3	4.8	4.1	4.1	34.6

ка, включающая в себя ксеноновую лампу ДКСЛ-1000 и решеточный монохроматор МДР-12. Интенсивность падающего на образец света составляла 5 мВт/см². Величина фотопроводимости ($\sigma_{\rm ph}$) определялась как разность проводимостей образца при освещении и темновой проводимости (σ).

3. Экспериментальные результаты и их обсуждение

Температурные зависимости темновой проводимости образцов нанокристаллического оксида индия с КТ CdSe и без них представлены на рис. 1. Видно, что добавление КТ CdSe по-разному влияет на проводимость образцов нанокристаллического In₂O₃ с различным средним раз-

Рис. 1. Температурные зависимости проводимости образцов оксида индия с различными размерами нанокристаллов.

мером нанокристаллов. Проводимость нанокристаллического оксида индия с наименьшим из исследуемых размером нанокристаллов (7–8 нм) значительно возрастает при добавлении КТ CdSe. В то же время для образцов нанокристаллического оксида индия с большим средним размером нанокристаллов изменения проводимости не столь существенны, кроме того, темновая проводимость образца с наибольшим из исследованных средним размером нанокристаллов даже несколько уменьшается при добавлении КТ CdSe.

Для выяснения причин наблюдаемых изменений были исследованы частотные зависимости проводимости образцов. На рис. 2 представлены годографы (зависимости мнимой части импеданаса от действительной) для образцов 1 и 1'. Аналогичные годографы были получены и для других образцов. Представленные годографы можно описать эквивалентной схемой замещения, показанной на рис. 2, а. Она состоит из параллельной RC-цепи с добавочным (последовательно включенным с ней) сопротивлением. Обычно для гетерогенных систем считают [14], что сопротивление R₁ — это сопротивление объема нанокристалла, а R₂, C₂ — сопротивление и емкость границы между нанокристаллами. Аппроксимации полученных для образцов 1 и 1' годографов показаны на рис. 2. Значения параметров эквивалентной схемы (R₁, R2, C2) для всех исследованных образцов приведены в табл. 2.

Импеданс представленной эквивалентной схемы определяется формулой

$$Z = R_1 + \left(\frac{1}{R_2} + i\omega C_2\right)^{-1}$$

= $R_1 + \frac{R_2}{1 + (\omega C_2 R_2)^2} - i \frac{\omega C_2 R_2^2}{1 + (\omega C_2 R_2)^2}$

Следовательно, удельная проводимость есть

$$\sigma(\omega) = \frac{l}{S} Re(Y) = \frac{l}{S} \frac{\left(1 + \frac{R_1}{R_2}\right) + R_1 \omega^2 C_2^2}{\left(1 + \frac{R_1}{R_2}\right)^2 + \omega^2 C_2^2 R_1^2},$$
 (1)

где l — толщина образцов, S — площадь контактов. Из формулы (1) видно, что при $R_2 \gg R_1$ можно выделить три характерных участка зависимости проводимости от частоты $\sigma(\omega)$:

1)
$$\sigma(\omega) = \frac{l}{S} \frac{1}{R_2}$$
 при $\omega(R_1 R_2)^{0.5} C_2 \ll 1;$ (2)

2)
$$\sigma(\omega) = \frac{l}{S} \omega^2 R_1 C_2^2$$
 при $\omega(R_1 R_2)^{0.5} C_2 \gg 1$ и $\omega R_1 C_2 \ll 1;$
(3)

3)
$$\sigma(\omega) = \frac{l}{S} \frac{1}{R_1}$$
 при $\omega R_1 C_2 \gg 1.$ (4)

На рис. З представлены зависимости проводимости исследованных образцов от частоты переменного сигнала.

Рис. 2. Годографы импеданса: *а* — образец 1, *b* — образец 1'. Линиями показаны аппроксимации экспериментальных данных. На вставке представлена эквивалентная схема замещения.

Рис. 3. Зависимость проводимости от частоты на переменном токе.

Рис. 4. Спектральная зависимость фотопроводимости исследованных образцов нанокристаллического оксида индия.

Физика и техника полупроводников, 2016, том 50, вып. 5

Из графиков видно, что на частотах меньше 1 МГц проводимость практически не зависит от частоты переменного сигнала. При более высоких частотах зависимость проводимости от частоты близка к квадратичной. Таким образом, в данном диапазоне частот экспериментальные зависимости проводимости согласуются с участками 1 и 2 теоретической кривой (формулы (2) и (3)). Для наблюдения участка 3, описываемого формулой (4), по-видимому, требуются бо́льшие частоты, которые невозможно было достичь на используемом импедансанализаторе (максимально достижимая частота 13 МГц). Следует отметить, что похожие зависимости проводимости от частоты наблюдаются и в наноструктурированном (пористом) кремнии [15,16]. Можно предположить, что вид частотных зависимостей проводимости определяется только нанокристаллической структурой, причем добавление КТ CdSe не меняет механизма переноса носителей заряда, а только приводит к количественным изменениям сопротивления.

Помимо этого, важно отметить, что влияние добавления КТ селенида кадмия на проводимость In_2O_3 при переменном токе, так же как и в случае проводимости на постоянном сигнале, зависит от размера нанокристаллов образцов. Так, для образца 1 наблюдается значительный рост проводимости при добавлении КТ CdSe. В свою очередь при добавлении квантовых точек проводимость образца 2 изменяется меньше, а в случае образца 3 добавление КТ селенида кадмия в структуру ведет даже к уменьшению проводимости.

Как следует из эквивалентной схемы, проводимость на постоянном токе и при малых частотах переменного сигнала определяется главным образом сопротивлением R_2 , т. е. сопротивлением межкристаллитных перемычек. С одной стороны, включение квантовых точек селенида кадмия в структуру нанокристаллического In_2O_3 приводит к созданию дополнительных поверхностных состояний, на которые захватываются носители заряда, вследствие чего снижается концентрация носителей за-

622

Рис. 5. Зонная диаграмма гетероперехода $In_2O_3/CdSe$. E_0 — уровень вакуума, E_c — дно зоны проврдимости, E_v — потолок валентной зоны.

ряда, что ведет к уменьшению проводимости. С другой стороны, квантовые точки CdSe могут замыкать "разрывы" между нанокристаллами (т. е. служить перемычками между нанокристаллами), тем самым уменьшая сопротивления R_2 , что приводит к увеличению проводимости. Конкуренцией этих двух процессов и может объясняться наблюдаемый немонотонный характер изменения проводимости In_2O_3 при добавлении квантовых точек CdSe.

В случае образцов с наименьшим размером нанокристаллов, когда удельная поверхность наибольшая и, следовательно, имеется большое количество "разрывов" между нанокристаллами, второй процесс преобладает над первым, в результате проводимость образцов при добавлении квантовых точек селенида кадмия увеличивается. С ростом размера нанокристаллов "разрывов" становится все меньше, и процесс захвата носителей на возникшие в результате добавления квантовых точек поверхностные состояния начинает преобладать, что приводит к уменьшению проводимости.

Для создания сенсора, работающего в условиях дополнительной подсветки при комнатной температуре, важно иметь представление о фотоэлектрических свойствах материала, служащего чувствительным слоем сенсора.

На рис. 4 представлены спектральные характеристики фотопроводимости всех исследованных в работе образцов нанокристаллического оксида индия. Все образцы, за исключением образца I', имеют максимум в спектре фотопроводимости при энергии фотонов 3.2 эВ. Можно предположить, что в данной области энергий наблюдается межзонное поглощение в нанокристаллическом In_2O_3 . При большей энергии фотонов наблюдается спад фотопроводимости. Поскольку фотоны с энергией больше ширины запрещенной зоны преимущественно поглощаются вблизи поверхности, наблюдаемый спад фотопроводимости можно объяснить малыми временами жизни неравновесных носителей заряда в приповерхностном слое полупроводника за счет сильной поверхностной рекомбинации. Важно отметить, что добавление квантовых точек CdSe приводит к увеличению фотопроводимости всех образцов в видимой области спектра (рис. 4).

Согласно литературным данным [17,18], значения сродства к электронам для CdSe и In_2O_3 составляют 3.9 и 3.7 эВ соответственно. Ширина запрещенной зоны CdSe равна 2.2 эВ, а In_2O_3 — 3.6 эВ. Исходя из этих значений, можно построить следующую зонную диаграмму гетероперехода $In_2O_3/CdSe$ (рис. 5).

При освещении In₂O₃/CdSe зеленым светом, часть электронов из валентной зоны CdSe переходит в зону проводимости. В зоне проводимости на границе In₂O₃ и CdSe существует потенциальный барьер величиной 0.2 эВ. Но, как видно из приведенной зонной диаграммы, большинство возбужденных в CdSe электронов имеют достаточную энергию для его преодоления. Следует отметить, что энергетическая зонная диаграмма гетероперехода показана без учета квантового размерного эффекта в CdSe. Учет этого эффекта приведет к возникновению уровня размерного квантования, который будет лежать выше, чем дно зоны проводимости CdSe, поэтому возбужденным электронам будет еще проще преодолевать имеющийся барьер. Электроны, преодолевшие барьер, переходят в In_2O_3 , что приводит к увеличению фотопроводимости образца. Поскольку у образца с наименьшим размером нанокристаллов площадь удельной поверхности наибольшая, количество внедренных КТ CdSe в нем максимально. Большое количество КТ CdSe может привести к тому, что вклад в фотопроводимость возбужденных в CdSe электронов может стать определяющим, что и наблюдается на образце l', в котором максимум фотопроводимости достигается в области 2.2-2.3 эВ. Важно заметить, что описанный выше механизм повышения фоточувствительности In₂O₃ в "зеленой" области спектра посредством добавления КТ CdSe основан на переносе заряда (электронов). Однако не исключен также механизм фотосенсибилизации In2O3 путем передачи энергии от КТ CdSe матрице In₂O₃ и возбуждению электронов с локальных уровней в запрещенной зоне In₂O₃. [19]

Тем самым добавление CdSe в нанокристаллический In_2O_3 приводит к увеличению фотопроводимости в видимой области спектра, что может быть использовано при создании сенсоров на основе In_2O_3 , работающих при комнатной температуре в условиях дополнительной подсветки.

4. Заключение

В результате экспериментов были исследованы электрические и фотоэлектрические характеристики нано-

кристаллического оксида индия и изучено изменение этих характеристик при добавлении КТ CdSe.

В частности, проанализированы частотные зависимости проводимости образцов In_2O_3 . Установлено, что влияние КТ селенида кадмия на проводимость нанокристаллического In_2O_3 сильно зависит от размера нанокристаллов. Предложена эквивалентная схема замещения для аппроксимации годографов импеданса образцов оксида индия и дано качественное объяснение наблюдаемому изменению проводимости нанокристаллического In_2O_3 при добавлении КТ CdSe.

Установлено также, что добавление квантовых точек CdSe заметно увеличивает фотопроводимость нанокристаллического In_2O_3 в "зеленой" области спектра. Предложены энергетическая зонная диаграмма, объясняющая наблюдаемый рост фотопроводимости, и возможные механизмы фотосенсибилизации In_2O_3 квантовыми точками CdSe.

Работа выполнена при финансовой поддержке грантов Фонда содействия развитию малых форм предприятий в научно-технической сфере (УМНИК 0020176) и Российского фонда фундаментальных исследований (РФФИ 15-03-03026).

Список литературы

- G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta. Crit. Rev. Solid State Mater. Sci., 29, 3 (2004).
- [2] A. Ayeshamariam, M Bououdina, C. Sanjeeviraja. Mater. Sci. Semicond. Process., 16, 686 (2013).
- [3] G. Korotcenkov. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 139, 1 (2007).
- [4] А.С. Ильин, Н.П. Фантина, М.Н. Мартышов, П.А. Форш, А.С. Воронцов, М.Н. Румянцева, А.М. Гаськов, П.К. Кашкаров. Письма в ЖТФ, 41, 97 (2015).
- [5] D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou. Appl. Phys. A., 77, 163 (2003).
- [6] P. Erhart, A. Klein, R. Egdell, K. Albe. Phys. Rev. B., 75, 153 205 (2007).
- [7] O. Bierwagen. Semicond. Sci. Technol., 30, 024001 (2015).
- [8] B. Carlson, K. Leschkies, E.S. Aydil, X.-Y.Y. Zhu. J. Phys. Chem. C., 112, 8419 (2008).
- [9] V. Chakrapani, K. Tvrdy, P.V. Kamat. J. Am. Chem. Soc., 132, 1228 (2010).
- [10] C. Nasr, P.V. Kamat, S. Hotchandani. J. Electroanal. Chem., 420, 201 (1997).
- [11] Е.А. Форш, А.В. Марикуца, М.Н. Мартышов, П.А. Форш, М.Н. Румянцева, А.М. Гаськов, П.К. Кашкаров. Рос. нанотехнологии, 7 (4), 164 (2012).
- [12] Xiaoqing Wang, Maofeng Zhang, Jinyun Liu, Tao Luo, Yitai Qian. Sensors Actuators, B, 137, 103 (2009).
- [13] E.A. Forsh, A.V. Marikutsa, M.N. Martyshov, P.A. Forsh, M.N. Rumyantseva, A.M. Gaskov, P.K. Kashkarov. Thin Sol. Films, 558, 320 (2014).
- [14] Evgenij Barsoukov, J. Ross Macdonald. Impedance Spectroscopy Theory, Experiment, and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey, 2005).
- [15] П.А. Форш, М.Н. Мартышов, В.Ю. Тимошенко, П.К. Кашкаров. ФТП, 40, 476 (2006).

- [16] P.A. Forsh, L.A. Osminkina, V.Yu. Timoshenko, P.K. Kashkarov. Semiconductors, 38, 603 (2004).
- [17] Kevin Tvrdy, P.A. Frantsuzov, Prashant V. Kamat. PNAS, 108 (1), 29 (2011).
- [18] A. Klein. Appl. Phys. Lett., 77, 2009 (2000).
- [19] И.А. Акимов, Ю.А. Черкасов, М.И. Черкашин. Сенсибилизированный фотоэффект (М., Наука, 1980).

Редактор Г.А. Оганесян

Influence of quantum dots CdSe on conductivity and photoconductivity of nanocrystalline indium oxide

A. I'lin*+•, N. Fantina*, M. Martyshov*+, P. Forsh*+,

A. Chizhov [■], M. Rumyantseva[■], A. Gaskov [■], P. Kashkarova^{*+•}

- * Lomonosov Moscow State University,
- 19991 Moscow, Russia
- ⁺ National Research Centre "Kurchatov Institute",
- 123182 Moscow, Russia
- Moscow Institute of Physics and Technology,
- 141700 Moscow Region, Dolgoprudny, Russia

Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract The influence of quantum dots CdSe on the electrical and photoelectrical properties of indium oxide samples with nanocrystalline sizes from 7 nm to 40 nm is researched. It is shown with methods of impedance spectroscopy that an addition of quantum dots influence a lot the resistance of nanocrystalline borders in indium oxide. The change of spectral photoconductivity as a result of quantum dots addition is found. The band diagram explaining the growth of photoconductivity is suggested.