13,01

Осаждение текстурированных пленок NiFe(200) и NiFe(111) на подложки Si/SiO₂ магнетронным распылением на постоянном токе

© А.С. Джумалиев^{1,2}, Ю.В. Никулин^{1,2}, Ю.А. Филимонов¹⁻³

¹ Саратовский филиал Института радиотехники и электроники им. В.А. Котельникова РАН,

Саратов, Россия

² Саратовский государственный университет им. Н.Г. Чернышевского,

Саратов, Россия

³ Саратовский государственный технический университет им. Ю.А. Гагарина,

Саратов, Россия

E-mail: dzhas@yandex.ru

(Поступила в Редакцию 27 октября 2015 г.)

Исследовано влияние температуры $T_{\rm sub}$ и напряжения смещения $U_{\rm bias}$ подложки на текстуру пленок NiFe с толщиной $d \sim 30-340$ nm, полученных магнетронным распылением на постоянном токе на подложках Si(111)/SiO₂ при давлении рабочего газа $P \sim 0.2$ Pa. Показано, что пленки, выращенные при комнатной температуре подложки, имеют текстуру (111), которая улучшается при отрицательном напряжении смещения. Осаждение пленок на заземленную ($U_{\rm bias} \sim 0$) подложку, нагретую до температуры $T_{\rm sub} \sim 440-640$ K, приводит к формированию текстурированных пленок NiFe(200).

Работа выполнена при финансовой поддержке РФФИ (гранты № 13-07-01023, 14-07-31107, 14-07-00549).

1. Введение

Пленки NiFe используются в различных областях микро- и наноэлектроники благодаря их высокой антикоррозийной стойкости [1], низким величинам коэрцитивности [2] и магнитострикции [3], высокой магнитной проницаемости [2] и наименьшим среди ферромагнитных металлических пленок потерям на СВЧ [4]. Пленки NiFe обладают высоким анизотропным магнитосопротивлением, а многослойные структуры на их основе характеризуются гигантским магнитосопротивлением и поэтому часто используются в различных устройствах хранения информации, устройствах записи и считывания информации, датчиках магнитного поля, вращения и т.д. [5-7]. Кроме того, длина пробега спиновых волн в пермаллоевых пленках может достигать десятков и даже сотен микрометров, что позволяет на их основе создавать устройства обработки информации, базирующиеся на принципах магноники [8]. При этом было показано [9], что использование хорошо ориентированных пленок (монокристаллических или текстурированных поликристаллических) позволяет значительно улучшать параметры устройств. По этой причине разработке методов получения ориентированных пленок NiFe на различных подложках уделяется значительное внимание [10–14].

Наиболее распространенный подход к получению монокристаллических и текстурированных пленок пермаллоя основан на использовании ориентирующих монокристаллических подложек [10–12], которые в случае большого рассогласования параметров решетки с пермаллоем покрываются буферными согласующими слоями. Так, в работе [10] методом молекулярно-лучевой эпитаксии были получены пленки NiFe(100)/MgO(100) и NiFe(110)/MgO(110). Для выращивания хорошо текстурированных пленок NiFe(111) и NiFe(100) на подложках Si(111) и Si(100) соответственно в работах [11,12], использовались буферные ориентирующие слои Ag и Cu, которые улучшали согласование пленок пермаллоя и подложек кремния. При осаждении на неориентирующие подложки, например из окисленного кремния [13] или стеклянные [14], пленки пермаллоя имеют поликристаллическую структуру с текстурой NiFe(111), которая отвечает плоскости с наименьшей энергией для материалов с гранецентрированной кубической решеткой. Отжиг пленок после напыления [13,14] или имплантация ионами галлия [14] улучшали кристалличность NiFe(111). При этом о формировании на неориентирующих подложках поликристаллических пленок пермаллоя с текстурой (100) ранее не сообщалось. В настоящей работе показана возможность получения текстурированных пленок NiFe(100) и NiFe(111) на подложке Si/SiO₂ магнетронным распылением на постоянном токе.

2. Эксперимент

Осаждение пленок пермаллоя проводилось в установке ВУП-5М с базовым давлением $6 \cdot 10^{-4}$ Ра. В качестве рабочего газа использовался аргон марки ОЧ (99.998%). Для распыления использовалась мишень Ni₂₀Fe₈₀ (99.95%). Подложка располагалась на расстоянии ~ 75 nm. Дополнительное магнитное поле в районе подложки во время напыления не прикладывалось. В качестве подложки использовались пластины монокристаллического Si(111) с термически окисленным слоем SiO₂ толщиной 300 nm. Перед напылением подложки подвергались ультразвуковой очистке в ацетоне при $T \sim 315$ K. Непосредственно перед напылением прово-

дился отжиг подложек при температуре 600-650 K в течение 30 min при давлении $6 \cdot 10^{-4}$ Pa.

Осаждение пленок проводилось при подаче на магнетрон мощности ~ 60 W при давлении рабочего газа (аргона) $P \sim 0.2$ Ра. При расстоянии между мишенью и подложкой $\sim 75\,\mathrm{mm}$ и выборе давления $P\sim 0.2\,\mathrm{Pa}$ обеспечивался режим пролета атомов распыляемого вещества, близкий к бесстолкновительному, что увеличивает миграционную способность адатомов распыляемого вещества на подложке [15-17]. В результате адатомы распыляемого вещества приобретают достаточную подвижность, и изменением напряжения смещения $-250 \le U_{\rm bias} \le 250\,{
m V}$ или температуры подложки $350 \le T_{sub} \le 650 \, \text{K}$ можно управлять формированием текстуры пленки [17]. Далее приведены результаты исследования текстуры и микроструктуры четырех серий пленок пермаллоя. В первой и второй сериях исследовалось влияние напряжения смещения на кристаллографические и микроструктурные свойства пленок NiFe. При этом серия 1 отвечала пленкам с фиксированной толщиной $d \sim 240-250$ nm, полученным при изменении напряжения смещения в пределах $-250 \le U_{\text{bias}} \le 250 \,\text{V}$ при температуре подложки $T_{\rm sub}\sim 350\,{\rm K}.$ Пленки серии 2 получены при $U_{
m bias} \sim -100\,{
m V}$ и $T_{
m sub} \sim 350\,{
m K}$ и исследованы с целью получения зависимости параметров решетки NiFe(111) от толщины, которая менялась в диапазоне $30 \le d \le 300$ nm. Серии 3 и 4 были получены при напылении на нагретую подложку в отсутствие напряжения смещения. При этом серия 3 отвечала пленкам с фиксированной толщиной $d \sim 240-250$ nm, полученным в диапазоне температур положки $350 \le T_{sub} \le 640 \,\mathrm{K}$, а пленки серии 4, толщина которых менялась в диапазоне $30 \le d \le 300 \,\mathrm{min}$, были выращены при $T_{\mathrm{sub}} \sim 570 \,\mathrm{K}$. Все исследуемые пленки не покрывались защитным слоем.

Толщина *d* выращенных пленок определялась с помощью профилометра Dektak 150. Для изучения кристаллической структуры пленок использовался метод рентгеновской дифракции (дифрактометр ДРОН-4, Cu- K_{α} -излучение), а также база данных PCPDFWIN Международного центра по дифракционным данным. Величина межплоскостного расстояния $a_{[hkl]}$ вдоль кристаллографической оси [hkl] определялась по формуле Брэгга–Вульфа $2a_{[hkl]} \sin \Theta = n\lambda$, где Θ — угол падения рентгеновского излучения, отсчитываемый от плоскости пленки, $\lambda = 0.1542$ nm и n = 1. Поверхность пленок изучалась с помощью сканирующего зондового микроскопа Solver P47 (HT-MДТ) в режиме полуконтактной атомносиловой микроскопи.

3. Результаты и обсуждение

На рис. 1 представлены дифрактограммы пленок серии 1, осажденных при отрицательном (a) и положительном (b) напряжениях смещения. Видно, что осажденные пленки имеют поликристаллическую структуру в области положительных U_{bias} (рис. 1, b). В области

Рис. 1. Дифрактограммы пленок толщиной $d \sim 240-250$ nm ($T_{sub} \sim 350$ K), осажденных при различных напряжениях смещения (серия 1). $a - U_{bias} = 0$ (1), -50 (2), -150 (3) и -250 V (4); $b - U_{bias} = 0$ (1), 50 (2), 150 (3) и 300 V (4).

отрицательных U_{bias} происходит формирование текстуры (111), которая улучшается с ростом отрицательного напряжения смещения (рис. 1, *a*).

Полученные результаты не противоречат известным моделям формирования текстуры [18,19]. Согласно этим моделям, на начальном этапе осаждения образуются зародыши из трех атомов. Атомы, располагаясь в вершинах треугольников с разными сторонами, с двумя равными сторонами или в углах равностороннего треугольника, формируют зародыши, различающиеся степенью связи между атомами. Наиболее устойчивыми являются зародыши из трех атомов с равным расстоянием между атомами, в которых на каждый атом приходится две одинаковые связи. Подача отрицательного напряжения смещения U_{bias} на подложку приводит к бомбардировке зарождающейся пленки ионами аргона. В этих условиях "выживают" зародыши с наиболее сильными связями между атомами. Такими являются прежде всего заро

дыши из трех атомов с равным расстоянием между атомами, из которых впоследствии и формируется плоскость (111).

Вместе с тем при $U_{\text{bias}} < 0$ ионная бомбардировка оказывает деструктивное влияние на микроструктуру пленки, и в частности способствует увеличению шероховатости поверхности пленки. На рис. 2, *а* показаны зависимости среднеквадратичной шероховатости гms и скорости роста пленок v от величины и полярности приложенного напряжения смещения. Видно, что увеличение отрицательного напряжения смещения приводит к росту rms от 0.6 до 1.95 nm и снижению скорости роста пленки от 20 до 10 nm/min в результате ее рераспыления ионами аргона.

Особенностью пленок серии 1 является уменьшенное межплоскостное расстояние $a_{(111)}$ относительно его табличного значения (2.046 nm), приведенного в базе данных PCPDFWIN, карточка N 38-419 (рис. 2, *b*), что свидетельствует о наличии деформаций растяжения в плоскости пленки. В области положительных U_{bias} растяжение пленки увеличивается незначительно, при этом параметр $a_{(111)}$ уменьшается от 2.035 до 2.032 nm. Пленки, выращенные при $U_{\text{bias}} < 0$, оказываются менее

Рис. 2. Зависимости от напряжения смещения U_{bias} среднеквадратичной шероховатости rms и скорости роста пленок v (*a*), а также величины межплоскостного расстояния $a_{(111)}$ и ширины дифракционной линии FWHM (*b*) для пленок толщиной $d \sim 240-250$ nm, $T_{\text{sub}} \sim 350$ K (серия 1).

Рис. 3. Зависимости межплоскостного расстояния $a_{(111)}$ и ширины дифракционной линии FWHM от толщины пленок NiFe(111), выращенных при $U_{\text{bias}} \sim -100$ V и $T_{\text{sub}} \sim 350$ K (серия 2).

напряженными, при этом происходит увеличение значений параметра $a_{(111)}$ от 2.035 до 2.042 nm.

Следует отметить, что ширина дифракционной линии FWHM резко уменьшается от 1.03 до 0.78° при изменении U_{bias} от -50 до -250 V (рис. 2, b), что при малой величине деформаций можно связать с увеличением размера кристаллитов в пленке [20]. В области положительных Ubias размер кристаллитов в пленке меньше, чем в области отрицательных Ubias. Характер поведения кривой FWHM в области положительных Ubias повторяет изменение кривой $a_{(111)}$, что позволяет связать ее изменение с деформацией в пленке без изменения размера кристаллитов. На рис. 3 показаны зависимости межплоскостного расстояния и ширины дифракционной линии от толщины пленок NiFe(111), выращенных при $U_{\rm bias} \sim -100 \,{\rm V}$ и $T_{\rm sub} \sim 350 \,{\rm K}$ (серия 2). Особенностью полученных пленок NiFe(111) является сильная зависимость параметров постоянной решетки а(111) и ширины линии FWHM от толщины d. По мере уменьшения толщины пленок параметр $a_{(111)}$ растет и для пленок NiFe(111) толщиной d < 220 nm начинает превышает значение $a_{(111)} = 2.046$ nm, отвечающее табличному значению базы данных PCPDFWIN. При этом меняется характер деформации решетки в плоскости пленки с растяжением на сжатие. Одновременно с ростом значений постоянной решетки $a_{(111)}$ наблюдается рост ширины линии дифракционного максимума (111), что можно связать как с нарастанием деформацией в пленке, так и с уменьшением размера кристаллитов.

Известно [19], что осаждение пленок на нагретую подложку увеличивает миграционную способность атомов, что может приводить к формированию текстуры (200). На рис. 4, *а* приведены дифрактограммы пленок, выращенных на нагретой подложке (серия 3). Видно, что при температуре подложки $T_{\rm sub} > 440$ К пленки имеют текстуру (200), при этом повышение температуры до 640 К улучшает текстуру пленок. В выращенных пленках наблюдаются деформации растяжения (рис. 4, b), величина которых растет с увеличением температуры подложки. Уменьшение величины FWHM от 1.901 до 0.628° с ростом температуры подложки

Рис. 4. *а*) Дифрактограммы пленок толщиной $d \sim 240-250$ nm, выращенных при $U_{\text{bias}} = 0.$ T_{sub} , K: 1 - 80, 2 - 440, 3 - 570, 4 - 640 (серия 3). *b*) Зависимости межплоскостного расстояния и ширины дифракционной линии FWHM от T_{sub} (серия 3).

Рис. 5. Параметры $a_{(200)}$ и FWHM для пленок NiFe(200) толщиной от 33 до 340, nm, выращенных при $U_{\text{bias}} = 0$ и $T_{\text{sub}} \sim 570 \text{ K}$ (серия 4).

от 350 до 440 К указывает на увеличение размера зерен в пленке [20]. Дальнейшее увеличение температуры подложки до 640 К приводит к незначительному уменьшению величины FWHM и соответственно незначительному росту размера кристаллитов. Полученный результат совпадает с результатами работы [21], в которой увеличение размеров кристаллитов NiFe с ростом температуры подложки наблюдалось с помощью просвечивающего электронного микроскопа. Особенностью полученных пленок NiFe(200) по сравнению с пленками NiFe(111) является менее выраженная зависимость параметра межплоскостного расстояния а (200) от толщины пленки. В качестве примера на рис. 5 приведены зависимости параметров $a_{(200)}$ и FWHM для пленок толщиной от 33 до 340 nm, выращенных при $U_{\rm bias}=0$ и $T_{
m sub}\sim 570\,{
m K}$ (серия 4). Видно, что значения параметра *а* (200) претерпевают изменения в пределах 5% и не превышают при этом значения $a_{(200)}$, указанного на карточке N 38-419. Значения FWHM в выбранном диапазоне толщин пленок NiFe(200) меняются в пределах 7-10%, что, с одной стороны, согласуется с поведением зависимости $a_{(200)}$ (d), а с другой — указывает на постоянство размеров кристаллитов в исследованных пленках.

4. Заключение

Показана возможность получения пленок NiFe с текстурой (200) и (111) на подложках Si(111)/SiO₂ магнетронным распылением на постоянном токе без осаждения дополнительного ориентирующего подслоя. Подача отрицательного напряжения смещения до -250 V на подложку во время напыления приводит к росту хорошо текстурированных пленок NiFe(111). При этом изменение U_{bias} от -100 до -250 V ведет к увеличению шероховатости пленок и снижению скорости их роста. Осаждение на нагретую до температуры от 440 до 640 K подложку приводит к получению текстурированных пленок NiFe(200). Пленки NiFe с текстурой (111) характеризуются увеличенным межплоскостным расстоянием $a_{(111)}$, в то время как для пленок с текстурой (200) характерно уменьшение величины $a_{(200)}$.

Список литературы

- [1] Electrochemical nanotechnologies / Eds T. Ōsaka, M. Datta, Y. Shacham-Diamand. Springer (2009). 279 p.
- [2] Б.Г. Лившиц, В.С. Крапошин, Я.Л. Линецкий. Физические свойства металлов и сплавов. Металлургия, М. (1980). 318 с.
- [3] E. Klokholm, J.A. Aboaf. J. Appl. Phys. 52, 2474 (1981).
- [4] V.V. Kruglyak, S.O. Demokritov, D. Grundler. J. Phys. D 43, 264 001 (2010).
- [5] T.L. Hylton, K.R. Coffey, M.A. Parker, J.K. Howard. Science 261, 1021 (1993).
- [6] G.A. Prinz. Science 282, 1660 (1998).

- [7] L. Haifeng. M. Jidong, Y. Guanghua, L. Shibin, Z. Hongchen, Z. Femgwu. Chin. Sci. Bull. 48, 1087 (2003).
- [8] K. Yamanoi, S. Yakata. T. Kimura, T. Manago. Jpn. J. Appl. Phys. 52, 083 001 (2013).
- [9] H. Funaki, S. Okamoto, O. Kitakami, Y. Shimada. Jpn. J. Appl. Phys. 33, L1304 (1994).
- [10] J.C.A. Huang, T.E. Wang, C.C. Yu, Y.M. Hu, P.B. Lee, M.S. Yang. J. Cryst. Growth 171, 442 (1997).
- [11] H. Gong, M. Rao, D.E. Laughlin, D.N. Lambeth. J. Appl. Phys. 85, 5750 (1999).
- [12] I. Hashim, H.A. Atwater. J. Appl. Phys. 75, 6516 (1994).
- [13] O.D. Roshchupkina, T. Strache, J. McCord, A. Mucklich, C. Nahtz, J. Grenzer. Acta Mater. 74, 278 (2014).
- [14] Y.-Y. Chen, C.-W. Chen, T.-H. Wu. Appl. Surf. Sci. 351, 946 (2015).
- [15] А.С. Джумалиев, Ю.В. Никулин, Ю.А. Филимонов. Наноинженерия 2, 24 (2013).
- [16] А.С. Джумалиев, Ю.В. Никулин, Ю.А. Филимонов. Письма в ЖТФ **39**, *21*, 10 (2013).
- [17] Ю.В. Никулин. Автореф. канд. дис. Саратов. филиал Ин-та радиотехники и электроники РАН, Саратов (2014). 21 с.
- [18] Y.C. Feng, D.E. Laughlin, D.N. Lambeth. J. Appl. Phys. 76, 7311 (1994).
- [19] Z. Li, H. Xu, S. Gong. J. Phys. Chem. B 108, 15165 (2004).
- [20] Л.М. Ковба, В.К. Трунов. Рентгенофазовый анализ. Изд-во МГУ, М. (1976). 183 с.
- [21] G. Nahrwold, J.M. Scholtyssek, S. Motl-Ziegler, O. Albrecht, U. Merkt, G. Meier. J. Appl. Phys. 108, 013 907 (2010).