Особенности диагностики метаморфных наногетероструктур InAIAs/InGaAs/InAIAs методом высокоразрешающей рентгеновской дифрактометрии в режиме *ω*-сканирования

© И.С. Васильевский⁺, С.С. Пушкарев^{+*}, М.М. Грехов⁺, А.Н. Виниченко⁺, Д.В. Лаврухин^{*}, О.С. Коленцова⁺

⁺ Национальный исследовательский ядерный университет "МИФИ",

115409 Москва, Россия

Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук,

117105 Москва, Россия

E-mail: s_s_e_r_p@mail.ru

(Получена 29 сентября 2015 г. Принята к печати 7 октября 2015 г.)

Работа посвящена поиску новых возможностей характеризации особенностей кристаллической структуры с помощью высокоразрешающей рентгеновской дифрактометрии. Особое внимание уделяется режиму сканирования поперек вектора дифракции (ω -сканирование), поскольку исследователи обычно уделяют этому режиму мало внимания и его возможности остаются не полностью выявленными. Для кристаллографических направлений [011] и [011] сопоставлены полуширина ω -пика и средний угол наклона профиля поверхности образца. Также исследуются диагностические возможности картографирования рассеяния рентгеновского излучения. Объектами исследования являются полупроводниковые наногетероструктуры с квантовой ямой InAlAs/InGaAs/InAlAs и с метаморфным буфером In_xAl_{1-x}As, выращенные методом молекулярно-лучевой эпитаксии на подложках InP и GaAs. Наногетероструктуры подобного типа используются при изготовлении микроволновых транзисторов и монолитных интегральных схем. Для более полной характеризации объектов были использованы эффект Холла, атомно-силовая микроскопия, низкотемпературная спектроскопия фотолюминесценции при 79 K.

1. Введение

Высокоразрешающая рентгеновская дифрактометрия является высокоточным и высокоэффективным методом анализа тонкопленочных эпитаксиальных структур, в частности гетероструктур для транзисторов с высокой подвижностью электронов (high electron mobility transistor, HEMT). Данный метод включает в себя несколько режимов. Кривые дифракционного отражения (КДО), измеренные в режиме $\theta/2\theta$ -сканирования (*ω* — угол между отражающей плоскостью и падающим пучком, 20 — угол между падающим и отраженным рентгеновскими пучками; углы ω и 2 θ в данном режиме изменяются взаимосвязанно: $\omega = \theta$), позволяют определить параметры кристаллической решетки в различных направлениях по угловым положениям пиков на КДО. Кривые дифракционного отражения, снятые в режиме ω -сканирования (ω изменяется, $2\theta = 2\theta_{\rm B} = {\rm const}$, $\theta_{\rm B}$ — брэгговский угол для конкретного эпитаксиального слоя), несут в себе информацию о мозаичности слоя [1]. Карты рассеяния рентгеновского излучения на образце (в угловых координатах либо в обратном пространстве) не только сочетают в себе достоинства кривых дифракционного отражения в режимах $\theta/2\theta$ и *ω*-сканирования, но и несут принципиально новую информацию о кристаллической структуре образца, в частности о разориентации эпитаксиальных слоев друг относительно друга [2].

Если произошла пластическая релаксация напряженного эпитаксиальнго слоя (эпислоя) и в нем образова-

лись дислокации, пик от эпислоя на $\theta/2\theta$ - и ω -кривых уширяется по сравнению с пиком от идеального кристалла [3]. Измеряя ширину на половине высоты (полуширину) пика на КДО, можно оценить дефектность кристаллической структуры [4–6]. Однако такой анализ имеет свои особенности для $\theta/2\theta$ - и ω -кривых. Во-первых, в случае многослойной гетероструктуры пики от слоев с разными параметрами решетки на $\theta/2\theta$ -кривой могут перекрываться, что затрудняет анализ формы конкретного пика, в то время как на ω -кривой обычно присутствует только один пик [7]. Во-вторых, уширение пика на $\theta/2\theta$ -кривой обусловливается не только наличием дислокаций в материале, но также и уменьшением толщины слоя, поскольку, согласно формуле Селякова–Шеррера, уменьшается область когерентного рассеяния [8].

Анализ дефектности кристаллической структуры имеет большое значение для метаморфных наногетероструктур, содержащих метаморфный буфер (МБ), насыщенный дислокациями, причем дислокации могут проникать и за пределы МБ в активную область [9], ухудшая характеристики электронного транспорта. Кроме дислокаций, образующихся вследствие пластической релаксации напряженного МБ, метаморфные наногетероструктуры обладают также характерным волнообразным поперечно-полосатым рельефом поверхности, образующимся вследствие упругой релаксации МБ и повторяющим волнообразный изгиб внутренних слоев наногетероструктуры [10,11]. В частности, изгиб внутренних слоев метаморфной наногетероструктуры, транслирующийся на поверхность, наблюдался с помощью просвечивающей

Слой Защитный слой <i>i</i> -In _y Ga _{1-y} As Барьер <i>i</i> -In _x Al _{1-x} As	Состав сло	Толщина слоя, нм		
CION	Первая серия	Вторая серия	Толщина Первая серия 6 96 12 14 140 19 1350 78 42	Вторая серия
Защитный слой <i>i</i> -In _y Ga _{1-y} As Барьер <i>i</i> -In _x Al _{1-x} As	y = 0.90 $x = 0.81$	y = 0.33 $x = 0.33$	6 96	6 15
Легирующий δ-слой	Si		-	-
Спейсер <i>i</i> -In _x Al _{1-x} As	x = 0.81	x = 0.33	12	5
KЯ i -In _y Ga _{1-y} As	y = 0.90	y = 0.33	14	18
Псевдоподложечный слой <i>i</i> -In _x Al _{1-x} As	x = 0.81	x = 0.33	140	65
Инверсная ступень i -In _x Al _{1-x} As	$x = 0.83 \rightarrow 0.81$ линейно	$x = 0.38 \rightarrow 0.33$ линейно	19	8
ME i -In _x Al _{1-x} As	$x = 0.55 \rightarrow 0.83$ линейно	$x = 0.15 \rightarrow 0.38$ линейно	1350	1150
Сверхрешетка	${i-In_{0.53}Ga_{0.47}As/i-In_{0.52}Al_{0.48}As} \times 6$	$\{i-AlAs/i-GaAs\}\times7$	78	22
Буфер	<i>i</i> -In _{0.52} Al _{0.48} As	<i>i-</i> GaAs	42	40
Подложка	(100) InP	(100) GaAs	-	-

Таблица 1. Наногетероструктуры первой серии (образец 155) и второй серии (образцы 141, 229, 253)

электронной микроскопии в работе [12]. Такой рельеф затрудняет дальнейшие технологические процессы при изготовлении НЕМТ [13]. Для измерения шероховатости поверхности наногетероструктур используется атомносиловая микроскопия (АСМ).

Также для анализа эпитаксиальных гетероструктур используется спектроскопия фотолюминесценции (ФЛ), которая характеризует в том числе и дефектность кристаллической структуры [6,9,14]. Все вышеуказанные методы могут быть неразрушающими при наличии оборудования, позволяющего подвергнуть анализу пластину целиком, без разрезания на части. Поэтому они могут быть использованы для экспресс-анализа и отбраковки эпитаксиальных гетероструктур на производстве.

Цель данной работы — исследовать особенности метода высокоразрешающей рентгеновской дифрактометрии в режиме ω -сканирования при анализе эпитаксиальных метаморфных HEMT-гетероструктур с наноразмерной квантовой ямой InAlAs/InGaAs/InAlAs. Для достижения поставленной цели решались следующие задачи: исследовалась зависимость полуширины ω -пика от толщины метаморфного буфера; измерялся средний угол наклона профиля рельефа поверхности, причем предполагалось, что он совпадает со средним углом наклона волнообразно изогнутых внутренних слоев наногетероструктуры; измерялась полуширина ω -пика от толстого псевдоподложечного слоя, выращенного поверх МБ, при падении рентгеновского пучка в двух

Рис. 1. Возможное влияние волнообразного изгиба кристаллической структуры на уширение ω -пика. Для случаев 1, 2, 3 здесь $\omega_1 < \omega_2 < \omega_3$, $\theta_B = \text{const.}$

взаимно перпендикулярных направлениях [011] и [011]. Проверялась возможность того, что уширение ω-пика обусловлено волнообразным изгибом внутренних слоев, связанным с рельефом поверхности (рис. 1), и поэтому позволяет судить о рельефе поверхности только на основании данных рентгеновской дифрактометрии.

2. Образцы и методы исследования

Полупроводниковые гетероструктуры с квантовой ямой InAlAs/InGaAs/InAlAs и с метаморфным буфером изменяющегося состава $In_x Al_{1-x} As$ (далее — образцы) были выращены в ИФЯЭ НИЯУ МИФИ методом молекулярно-лучевой эпитаксии на установке RIBER Compact 21. Использовались подложки InP (образцы первой серии) и GaAs (образцы второй серии) компаний Wafer Technology с кристаллографической ориентацией (100) и Ахt с кристаллографической ориентацией (100), разориентированные на 2° в направлении [011]. Последовательность и параметры слоев в образцах представлены в табл. 1.

Профиль состава (содержания индия x) в МБ In_xAl_{1-x}As был технологически задан линейным, сверхрешетка была введена в гетероструктуру для подавления прорастания дислокаций в активную область. МБ завершался инверсной ступенью с линейно понижающимся х для предотвращения проникновения упругих напряжений в активную область. Далее выращивался толстый псевдоподложечный слой In_xAl_{1-x}As, который служил подложкой для последующих активных слоев квантовой ямы (КЯ) In_vGa_{1-v}As, спейсерного слоя $In_x Al_{1-x} As$, δ -слоя легирующей примеси Si, барьерного слоя In_xAl_{1-x}As и нелегированного защитного слоя In_vGa_{1-v}As. Образцы на подложках InP имели псевдоморфно-напряженную КЯ, параметр решетки которой превышал параметр решетки барьерных слоев, а образцы на подложках GaAs — ненапряженную КЯ, согласованную по параметру решетки с ограничивающими ее

Номер образца	Подложка	Температура роста МБ, °С	Температура роста активной области, °С	Отношение потоков элементов V/III при росте МБ и псевдоподложечного слоя	Отношение потоков элементов V/III при росте активной области	
109	GaAs	410	460	35.5	21.5	
141	GaAs	410	480	29.3	13.0	
229	GaAs	415	470	22.6	23.9	
253	GaAs	410	470	34.5	26.0	
155	InP	410	450	12.5	20.2	
164	InP	400	450	9.4	13.0	
166	InP	400	450	10.9	12.7	

Таблица 2. Технологические условия эпитаксиального роста метаморфных наногетероструктур

барьерными слоями. В качестве донорной примеси использовался кремний, концентрация атомов Si для гетероструктур на подложках InP составляла $1.5 \cdot 10^{12}$ см⁻², для гетероструктур на подложках GaAs — $4 \cdot 10^{12}$ см⁻².

Образец 164 из первой серии на подложке InP представлял собой схожую с приведенной в табл. 1 гетероструктуру, однако активная область имела состав In_{0.84}Al_{0.16}As/InAs/In_{0.84}Al_{0.16}As (x = 0.84, y = 1.00), а КЯ имела толщину 11 нм.

Образец 166 из первой серии на подложке InP представлял собой схожую с приведенной в табл. 1 гетероструктуру, однако вместо МБ был выращен толстый (1.35 мкм) релаксированный слой In_{0.75}Al_{0.25}As.

Образец 109 из второй серии на подложке GaAs представлял собой схожую с приведенной в табл. 1 гетероструктуру, однако содержание In (x) в МБ изменялось линейно от 0.15 до 0.64; инверсная ступень имела перепад состава, соответствующий $x = 0.64 \rightarrow 0.62$, а все активные слои имели состав с x = 0.62.

Кроме отмеченных конструктивных особенностей, образцы различались также технологическими условиями выращивания (данные приведены в табл. 2).

При росте образца 229 использовался молекулярный мышьяк As₂ + As₄, при этом крекинговый источник мышьяка нагревался до 800°С. Соотношение концентраций тетрамеров As₄ и димеров As₂ составляло 2:1, как было оценено по соотношению интенсивности пиков As4 и As₂ в спектре, полученном на квадрупольном массспектрометре. При помощи данного образца исследовалось влияние использования димеров мышьяка на структурные свойства и морфологию поверхности экспериментальных гетероструктур. Согласно некоторым литературным данным, использование димеров мышьяка As₂ вместо тетрамеров As₄ приводит к улучшению кристаллического качества, что выражается в уменьшении шероховатости поверхности и в появлении более узких и интенсивных пиков на дифрактограмме [15]. При выращивании всех остальных образцов использовались тетрамеры мышьяка As₄.

Электрофизические параметры (концентрация и подвижность электронов) определялись с помощью эффекта Холла методом Ван дер Пау. КДО и карты рассеяния рентгеновского излучения были измерены на рентгеновском дифрактометре Ultima IV (Rigaku). ACM-измерения проводились на микроскопе Solver Next.

Спектры ФЛ были измерены в диапазоне энергий фотонов $\hbar\omega = 0.6-1.8$ эВ. Сигнал ФЛ регистрировался неохлаждаемым InGaAs-фотодиодом Нататаtsu G8372-01 и охлаждаемым фотоэлектронным умножителем ФЭУ-62. Для накачки использовался He–Neлазер ЛГН-215 с длиной волны излучения 6328 Å ($\hbar\omega = 1.96$ эВ) и средней плотностью мощности излучения на поверхности образца 250 Вт/см². Измеряемый образец находился в оптическом криостате при температуре 79 К. Интенсивность излучения лазера, контролируемая с помощью фотодиода ФД-24К, изменялась со временем из-за климатических факторов, поэтому для корректного сравнения образцов интенсивность их фотолюминесценции была нормирована на интенсивность излучения накачки.

3. Результаты и обсуждение

На основании измеренных карт рассеяния рентгеновского излучения (рис. 2) были построены зависимости полуширины пика на ω -сечении карты ($\Delta \omega$) от нормального параметра решетки $c = 2\lambda / \sin \theta$, представленные на рис. 3. Поскольку содержание индия в МБ монотонно увеличивается от подножия к вершине МБ, увеличение нормального параметра решетки соответствует увеличению толщины МБ. Из рис. 3, а видно, что дефектность МБ на подложках InP в направлении роста резко возрастает, а потом несколько уменьшается. Из рис. 3, b видно, что дефектность МБ на подложках GaAs максимальна у подложки и уменьшается с толщиной МБ. Это объясняется тем, что метаморфные буферы на подложках GaAs гораздо сильнее рассогласованы с подложками, чем те, которые выращены на подложках InP (относительное рассогласование $(a - a_{sub})/a_{sub}$ составляет 0.003 и 0.010 соответственно). Существует модель частично релаксированного МБ [16], согласно которой толстая нижняя часть МБ насыщена дефектами, а более тонкая верхняя часть упруго напряжена и бездефектна. Полученные результаты не полностью совпадают с моделью даже

Таблица 3. Состав, средний угол наклона профиля D_a , среднеквадратичная шероховатость R_q и полуширина ω -пика $\Delta \omega$ от псевдоподложечного слоя образцов второй серии

Номер		$D_a,$	град $(D_z)_1/(D_z)_2$		<i>R</i> нм	$\Delta \omega$, град		$(\Delta \omega)_1/(\Delta \omega)_2$
образца	50	1	2	$(D_{u})_{1}^{(D_{u})_{2}}$	1 <i>q</i> , 114	1	2	$(\Delta \omega)_1/(\Delta \omega)_2$
109	0.62	0.0128	0.0095	1.35	2.5	0.626	0.367	1.71
141	0.33	0.0638	0.0163	3.92	9.3	0.414	0.308	1.34
229	0.33	0.0396	0.0064	6.19	3.5	0.333	0.256	1.30
253	0.32	0.0132	0.0044	3.00	3.8	0.305	0.286	1.07

Примечание. Индексы 1 и 2 относятся к кристаллографическим направлениям [001] и [001].

Рис. 2. Карты рассеяния рентгеновских лучей в угловых координатах $(2\theta, \omega)$ от образцов 164 (a), 229 (b). Отмечены рефлексы от подложки (S), метаморфного буфера (MB), псевдоподложечного слоя (PL), квантовой ямы (QW), отражение (400).

качественно. Заметим, что результаты, схожие с приведенными на рис. 3, *a*, получены в работе [2].

Также из рис. З можно заметить, что полуширина ω -пика от тонкого активного слоя InGaAs (в том случае, когда он рассогласован по параметру решетки с окружающими его барьерными слоями InAlAs и выделяется при картографировании в отдельный рефлекс) примерно такая же, как и для вершины МБ и псевдоподложечного слоя, в то время как вдоль оси 2θ пик от InGaAs сильно уширился из-за малой толщины этого слоя. Следовательно, экспериментально подтверждено, что толщина слоя не оказывает влияния на форму ω -пика от него.

Дальнейшие исследования проводились только для образцов второй серии.

При АСМ-исследовании морфологии поверхности образцов обнаружен характерный волнообразный рельеф, ориентированный в общем случае в двух взаимно перпендикулярных направлениях [011] и [011] (рис. 4). Такой рельеф появляется в результате упругой релаксации МБ. Измерен средний угол наклона профиля рельефа [17] $D_a = (1/L) \int_{0}^{L} |dz/dx| dx$ в направлениях [011] и [011] (табл. 3).

Проведено *w*-сканирование находящегося над метаморфным буфером псевдоподложечного слоя при падении рентгеновского пучка вдоль двух взаимно перпендикулярных направлений [011] и [011] и измерена полуширина *w*-пика в этих двух случаях (табл. 3).

Путем сравнения D_a и $\Delta \omega$ показано, что волнообразный изгиб кристаллической структуры эпитаксиальных

Рис. 3. Зависимости полуширины пика на ω -сечении карты от нормального параметра решетки *с*: *а* — образцы на подложках InP; *b* — образцы на подложках GaAs. Стрелками показано положение псевдоподложечного слоя. QW — квантовая яма, MB — метаморфный буфер.

Физика и техника полупроводников, 2016, том 50, вып. 4

Номер	$\mu_e, { m cm}^2/({ m B}\cdot{ m c})$		$n_S, \ 10^{12} \mathrm{cm}^{-2}$		I _{QW} ,	Давление паров	Тип молекул
образца	300 K	77 K	300 K	77 K	отн. ед.	мышьяка, 10 ⁻⁶ Торр	мышьяка
141	4500	7910	1.32	1.28	3000	7	As ₄
229	-	-	-	_	45	8	$As_2 + As_4$
253	8390	27000	2.45	2.42	53000	16.5	As ₄

Таблица 4. Электрофизические параметры, пиковая интенсивность ФЛ от КЯ для образцов второй серии

Рис. 4. АСМ-изображения поверхности образцов второй серии 109, 141, 229, 253.

слоев, который наследуется рельефом поверхности, не является основной причиной уширения ω -скана, так как $D_a \ll \Delta \omega$ и соотношение D_a вдоль двух направлений не коррелирует с соотношением $\Delta \omega$ вдоль двух направлений (табл. 3). Единственная закономерность, которую можно увидеть из представленных данных, заключается в том, что для каждого отдельного образца направлению с бо́льшим значением D_a соответствует бо́льшее значение $\Delta \omega$. Основная причина уширения ω -пика, предположительно, заключается в неравномерном распределении дислокаций в направлениях [011] и [011].

Также показано, что величина $\Delta \omega$, а также анизотропность $\Delta \omega$, увеличиваются с ростом перепада состава метаморфного буфера (образцы 141, 229, 253 — с одной стороны и образец 109 — с другой стороны). Это может быть объяснено возникновением большего количества дислокаций при релаксации метаморфного буфера с бо́льшим перепадом состава. Такое наблюдение совпадает с результатами других авторов [18]. Также с помощью эффекта Холла были измерены двумерная концентрация n_S и подвижность электронов проводимости μ_e в КЯ образцов (табл. 4).

В спектре ФЛ (рис. 5) при $\hbar \omega \approx 1.00 - 1.05$ эВ наблюдается двухкомпонентный пик от КЯ, который свидетельствует о наличии двух уровней размерного квантования в КЯ. Показано, что пиковая интенсивность ФЛ от КЯ I_{OW} хорошо коррелирует с подвижностью электронов μ_e (табл. 4). В то же время не наблюдается корреляции между $\Delta \omega$, с одной стороны, и I_{OW} и μ_e , с другой. В частности, для непроводящего образца 229 отсутствует пик от КЯ в спектре ФЛ, в то время как на его поверхности наблюдается правильный волнообразный полосатый рельеф, свидетельствующий о доброкачественной релаксации метаморфного буфера, а $\Delta \omega$ для этого образца мало отличается от $\Delta \omega$ для других образцов такого же состава (141, 253). Так как величина $\Delta \omega$ в основном характеризует плотность дислокаций, образовавшихся при релаксации метаморфного буфера, а величина I_{OW} — плотность точечных дефектов, ответственных за безызлучательную рекомбинацию, можно сделать следующий вывод: электрофизические характеристики метаморфных гетероструктур в первую очередь определяются точечными дефектами кристаллической структуры, возникающими из-за наличия загрязняющих примесей в камере роста и недостаточного потока мышьяка во время роста, а дислокации оказывают меньшее влияние на электрофизические характеристики мета-

Рис. 5. Спектры фотолюминесценции (PL) от КЯ образцов 253, 141, 229.

Рис. 6. Спектры фотолюминесценции (PL) от МБ образцов 253, 141, 229.

морфных гетероструктур. Если сравнивать образцы 141 и 229 (см. табл. 4), то на первый взгляд поток мышьяка при их росте был примерно одинаковым и нет причины говорить о недостатке мышьяка в образце 229. Однако для этого образца мышьяк был представлен в основном димерами As_2 , а датчик потока мышьяка гораздо более чувствителен к димерам As_2 , чем к тетраметрам As_4 . Поэтому поток мышьяка при росте образца 229 был значительно слабее, чем при росте образца 141.

Похожая ситуация складывается с ФЛ от МБ: излучение также максимально для образца с наибольшей подвижностью, в то время как МБ непроводящего образца 229 дает крайне слабый сигнал ФЛ (рис. 6). Заметим, что чувствительность ФЭУ не позволяет зарегистрировать излучение, обусловленное переходом электронов через запрещенную зону псевдоподложечного слоя $In_{0.33}Al_{0.67}As$ ($E_g = 2.05$ эВ). Поэтому пики, наблюдаемые в диапазоне энергий фотонов 1.3-1.9 эВ, скорее всего, связаны с энергетическими уровнями дислокаций внутри запрещенной зоны МБ ($E_g = 2.05-2.60$ зВ). О подобных дислокационных уровнях сообщается в работе [9].

4. Заключение

Показано, что распределение дислокаций по толщине в МБ (оцененное посредством измерения полуширины ω -скана) зависит от того, насколько рассогласовано с подложкой начало МБ. Кроме того, полученные данные показывают неполноту модели частично релаксированного МБ и свидетельствуют о том, что образование дислокаций в конкретной области эпислоя происходит преимущественно во время роста этой области, а не при росте вышележащих областей, как предполагается в модели. Установлено, что средний угол наклона профиля поверхности не коррелирует с полушириной *ω*-пика от псевдоподложечного слоя. Следовательно, волнообразный изгиб верхних слоев метаморфной наногетероструктуры вносит гораздо меньший вклад в уширение *ω*-пика по сравнению с вкладом от дислокаций.

Показано, что анизотропность распределения дислокаций по направлениям [011] и [011] увеличивается при увеличении перепада состава в МБ.

Показано, что из-за анизотропности распределения дислокаций в образцах для характеризации и сравнения дефектности образцов недостаточно измерения одной КДО; необходимо измерение двух КДО в направлениях [011] и [01 $\overline{1}$], поскольку полуширина ω -пика даже от одного образца при сканировании в этих двух направлениях значительно различается.

Показано, что толщина эпитаксиального слоя не оказывает влияния на полуширину его пика на КДО в режиме ω -сканирования (сканирование поперек вектора дифракции), в то время как пик на КДО в режиме $\theta/2\theta$ -сканирования (сканирование вдоль вектора дифракции) от тонкого слоя уширяется.

Установлено, что электрофизические параметры наногетероструктуры (в частности подвижность электронов) в большей степени определяются плотностью точечных дефектов, а не плотностью дислокаций. По этой причине спектроскопия ФЛ (в особенности измерение интенсивности переходов в КЯ) является более эффективным методом неразрушающей экспресс-диагностики метаморфных наногетероструктур по сравнению с высокоразрешающей рентгеновской дифрактометрией.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (соглашение о предоставлении субсидии № 14.607.21.0087, уникальный идентификатор проекта RFMEFI60714X0087) и поддержана Фондом поддержки образования и науки имени чл.-корр. РАН В.Г. Мокерова.

Список литературы

- [1] Р.Н. Кютт. Актуальные вопросы современного естествознания, 5, 43 (2007).
- [2] D. Lee, M.S. Park, Z. Tang, H. Luo, R. Beresford, C.R. Wie. J. Appl. Phys., 101, 063 523 (2007).
- [3] V.M. Kaganer, R. Köhler, M. Schmidbauer, R. Opitz. Physical Rev. B, 55 (3), 1793. (1997).
- [4] Ю.Б. Болховитянов, О.П. Пчеляков. УФН, 178 (5), 459 (2008).
- [5] В.Т. Бублик, Л.В. Кожитов, Т.Т. Кондратенко. Завод. лаб. Диагностика материалов, 74 (12), 30 (2008).
- [6] А.Е. Жуков, А.Ю. Егоров, В.М. Устинов, А.Ф. Цацульников, М.В. Максимов, Н.Н. Фалеев, П.С. Копьев. ФТП, 31 (1), 19 (1997).
- [7] K. Yuan, K. Radhakrishnan, H.Q. Zheng, Q.D. Zhuang, G.I. Ing. Thin Sol. Films, **391**, 36 (2001).
- [8] M.A.G. Halliwell, M.H. Lyons, M.J. Hill. J. Cryst. Growth, 68, 523 (1984).

Физика и техника полупроводников, 2016, том 50, вып. 4

- [9] B.M. Arora, K.S. Chandrasekaran, M.R. Gokhale, Geeta Nair, G. Venugopal Rao, G. Amarendra, B. Viswanathan. J. Appl. Phys., 87, 8444 (2000).
- [10] L.E. Shilkrot, D.J. Srolovitz, J. Tersoff. Appl. Phys. Lett., 77, 304 (2000).
- [11] G.B. Galiev, R.A. Khabibullin, D.S. Ponomarev, P.P. Maltsev. Nanotechnologies in Russia, 10 (7–8), 593 (2015).
- [12] G.B. Galiev, I.S. Vasil'evskii, S.S. Pushkarev, E.A. Klimov, R.M. Imamov, P.A.Buffat, B. Dwir, E.I. Suvorova. J. Cryst. Growth, 366, 55 (2013).
- [13] Д.В. Лаврухин, А.Э. Ячменев, Р.Р. Галиев, Р.А. Хабибуллин, Д.С. Пономарев, Ю.В. Федоров, П.П. Мальцев. ФТП, 48 (1), 73 (2014).
- [14] M.J. Joyce, M. Gal, J. Tann. J. Appl. Phys., 65, 1377 (1989).
- [15] K.S. Joo, S.H. Chun, J.Y. Lim, J.D. Song, J.Y. Chang. Physica E, 40, 2874 (2008).
- [16] F. Capotondi, G. Biasiol, D. Ercolani, V. Grillo, E. Carlino, F. Romanato, L. Sorba. Thin Sol. Films, 484, 400 (2005).
- [17] ГОСТ 25142-82. Шероховатость поверхности. Термины и определения.
- [18] G. Salviati, C. Ferrari, L. Lazzarini, L. Nasi, A.V. Drigo, M. Berti, D. De Salvador, M. Natali, M. Mazzer. Appl. Surf. Sci., 188, 36 (2002).

Редактор Л.В. Шаронова

Features of metamorphic nanoheterostructures InAIAs/InGaAs/InAIAs analysis by mean of high-resolution *X*-ray diffraction in ω -scanning mode

I.S. Vasil evskii+, S.S. Pushkarev+*, M.M. Grekhov+, A.N. Vinichenko+, D.V. Lavrukhin*, O.S. Kolentsova+

⁺ National Research Nuclear University "MEPhl", 115409 Moscow, Russia
* Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, 117105 Moscow, Russia

Abstract In the present work new characterization abilities of high-resolution *X*-ray diffractometry are discussed. Scanning in direction perpendicular to diffraction vector (ω -scanning mode) is under particular consideration because it has received little attention from previous researches and its abilities are still incompletely revealed. Full width at half maximum of peak on ω -scan (rocking curve) was compared with mean surface profile slope at [011] and [011] directions. Also the diagnostic abilities of *X*-ray dissipation mapping were examined. The objects of investigation are the semiconductor nanoheterostructures containing quantum well InAlAs/InGaAs/InAlAs and metamorphic buffer In_xAl_{1-x}As grown by molecular-beam epitaxy on (100) InP and GaAs substrates. Nanoheterostructures owing such design are used as the material in microwave transistors manufacturing.