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Externally applied electric field and effective radius effects are investigated on the lowest excited-state shallow-

donor binding energy in (In,Ga)N-GaN parabolic wire within the framework of single band effective-mass

approximation. The calculations are performed using the finite-difference method within the quasi-one-dimensional

effective potential model. Our results reveal that: (i) the probability density is the largest on a circularity whose

radius is the effective radius, (ii) the lowest excited-state binding energy is the largest for impurity located on this

circularity while it starts to decrease when the impurity is away from the circularity and (iii) the binding energy is

strongly-dependent on the complex interplay of spatial confinement, coulomb interaction and applied electric field.

1. Introduction

In the recent years, a great attention has been devoted

to the study and engineering of high quality devices of

very low-dimensional systems (LDS) such as quantum well

(QW), quantum well wire (QWW), quantum dot (QD)
and quantum ring (QR). External perturbation such electric

field, magnetic field, hydrostatic pressure and temperature

on the physics of LDS constitutes a subject of considerable

interest from both theoretical and experimentally, due to

their importance in the development of new semiconductor

devices and applications. Therefore, the study of the

impurity states in semiconductor is imperative as the

incorporation of impurities can dramatically change the

performance of optoelectronic devices. The application of

an externally electric field in particularly along the growth

direction of the heterostructure gives rise to a polarization

of the carrier distribution with a consequent energy shift of

the quantum states. Such effects may induce considerable

changes in the energy spectrum of the carriers which

could be used to control and modulate the output of

optoelectronic devices. There are many works related to

theoretical investigation of the electric field effects on the

electronic states and optical properties [1–12].

Using variational approach, the investigation of electric

field effect on non-hydrogenic binding energy in cylindrical

and square GaAs wire is reported in Refs. [13,14]. It is

found that the binding energy diminishes as a function of

electric field strength in particularly for large wire. For

cylinder InGaN-GaN wire and based on the plane-wave

basis in the framework of effective-mass envelope-function

theory, the ground-state binding energy is calculated under

electric field effect [15]. It is reported that the shallow-

donor binding energy is highly dependent external electric

field. It is also shown that the applied electric field

enhances the Stark-shift. Recently, for the same wire-

shape, we have examined this effect on the ground-

state shallow donor binding energy [4] using the finite-

difference method.We have obtained that the binding energy

(Stark−Shift) decreases (increases) as a function of electric

field. Our attention is to expand this study to the excited-

states in (In,Ga)N-GaN LDS.

In the present paper, based on the finite-difference

method within the quasi-one dimensional effective potential

model and within the approximation of single band effec-

tivemass, externally applied electric field and effective radius

effects are investigated on the binding energy of lowest-

excited state (2S) of confined donor in (In,Ga)N parabolic

quantum well wire (PQWW).

2. Theoretical formalism

Let us to consider hydrogenic shallow-donor impurity

located at (x i , y i) in the lateral area of WZ InνGa1−νN-GaN

PQWW. Within the effective-mass approximation and with-

out impurity, the Hamiltonian of an electron under uniform

electric field perpendicular to z -axis can be given by the

following expression

H0 = − ~
2

2m∗
1+

1

2
m∗ω2

0(x
2 + y2) + |e|F(x cos θ + y sin θ)

(1)

e and m∗ are the electron charge and the electron effective-

mass respectively, ω0 is the harmonic oscillator frequency

and F > 0 is the electric field.

Based on the effective units, effective Bohr radius (EBR)
a∗ = ε0~

2/m∗e2 for the length, effective electron Rydberg

R∗ = e2/2ε0a∗ for the energy and effective field electric

F∗ = e/ε∗a∗2 for electric field, the effective Hamiltonian

becomes
a

H0 = −∇2 +
r2

r4e
. (2)

In Eq. (2), re is the oscillator length while r is the

distance between electron and the z -axis in the presence
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of externally electric field:

re =

√

~

m∗ω0

, (3)

r =

√

(

x + r4eF2 cos2(θ)
)2

+
(

y + ry
e F2 sin2(θ)

)2
. (4)

It is clear that for a given finite parabolic potential ω0,

re can be controlled by the In-fraction inside the wire. It is

interesting to note that the lateral confinement effect scales

as 1/r4e . The greater the re is, the weaker is the lateral

confinement. Thus, re is considered as the effective radius

(ER) of the wire cross section which describes the lateral

confinement.

The lowest-excited energy and the corresponding wave-

function are obtained by the exact solution of the

Schrödinger equation (
a

H0ψ
ex
0 = Eex

0 ψ
ex
0 ). They are obtained

respectively as:

ψex
0 (r, θ) =

r√
πre

e
exp

(

− r2

2r2e

)

exp(iθ), (5)

Eex
0 =

4

r2e
− r4eF2. (6)

In the presence of impurity, the exact solution of the

problem is impossible. Then, we have used the same

method as that adopted for the ground-state in Refs. [4,16]
and for the lowest excited-state [17] in which an analytical

1D formula for the effective interaction potential between

confined carriers is proposed. Then, we can replace the

Coulomb interaction potential with the effective potential

energy V ex
eff(z ). Within this formalism, the Hamiltonian can

be separated in cylindrical coordinates and can be given as

H̄ Imp
F =

a

Hx ,y +
a

Hz , (7)

a

Hx ,y , y is equal to effective Hamiltonian (
a

H0) while
a

Hz is

given as
a

Hz = − ∂2

∂z 2
−V ex

eff(z ). (8)

The effective potential energy V ex
eff(z ) is given as:

V ex
eff (z ) = 2

+∞
∫

0

(

1− u2r2e
4

)

× J0

(

u
√

(

r4e F2 sin2(θ) − y i
)2

+
(

r4eF2 cos2(θ) − x i
)2

)

× exp

(

− r2e
4

u2 − u|z |
)

du. (9)

J0 is the zeroth-order Bessel function.

Then, the lowest-excited state shallow-donor binding

energy is obtained as follows

Eb = Eex
0 − E Imp

F = −Ez . (10)
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Figure 1. a, b — the lowest-excited state probability density in

lateral cross section without electric field effect for two effective

radii.

3. Results and discussion

It is well known that electron-impurity correlation is

the main factor which affects the binding energy. To get

a good picture of its dependency, the electron lateral

probability density (LPD) without the presence of the

impurity is presented under externally electric field and

effective radius effects. For In0.2Ga0.8N, the effective units

used in this paper are a∗ = 2.80 nm, R∗ = 26.65meV and

F∗ = 18MV ·m−1.

In Fig. 1, a, b we present the lowest-excited state LPD in

(x , y)-plane without the impurity in the PQWW and without

externally applied electric field. It is shown that the LPD is

the smallest at the axis center of wire. The LPD increases

as the distance from the center increases. For the distance

equal to re , the LPD is maximum and then decreases as
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Figure 2. The lowest-excited state probability density in lateral

cross section for two values of the applied electric field.

the distance increases. It appears also that the maximum of

the LPD diminishes as the effective radius increases. The

dependency of LPD versus externally electric field is shown

in Fig. 2. It is found that for θ = π/4, the maximum of

LPD moves along the diagonal-axis of the lateral area, i. e.,

the LPD moves in the opposite sense of the applied electric

field. It is also shown that the maximum of LPD decreases

when the electric field increases.

Fig. 3 depicts the combined effect of electric field and

effective radius on the lowest-excited state shallow-donor

binding energy versus the impurity position along x -axis.
The same results are obtained for the impurity situated along

y -axis (not shown here). When the electric field is not

applied, we can see that as the effective radius increases,

the binding energy decreases especially for the impurity

located close to the center-axis. For the impurity located

away from the center axis, the effective radius effect is less

sensitive. It appears also that the binding energy is the

largest for the impurity located at x i = ±re . This result

is in good agreement with that presented on Fig. 2, i. e.,

the distance between electron and the impurity located at

x i = ±re is the shortest and then the binding energy is

the largest. For |x i | < re , the binding energy increases

as a function of |x i | to reach its maximum at |x i | = re

and then decreases for |x i | > re . When the electric field

is applied along the positive (negative) x -axis direction,

the typical symmetric behavior is broken and the binding

energy diminishes for all effective radii. It is also shown

that the maxima of the binding energy moves to negative

(positive) x -axis direction. This result can be explained by

the displacement of the LPD along the opposite sense of the

electric field direction. We note also that such displacement

is governed by the strength of electric field, its direction

and the effective radius. For a given electric field, the more

the re increases the more the displacement to the opposite

sense is marked. According to Fig. 3, two confinement

regimes are obtained. For moderate confinement regime

(re ≥ 1), the binding energy presents two maxima situated

at x i = ±re while for strong confinement regime (re < 1)
one peak is depicted. It appears also that the electric

field effect is not the same for all effective radii but

depends strongly on the confinement regime, i. e., the

maxima displacement and the decreasing of the binding

energy become less sensitive to electric field effect for strong

confinement.

It is interesting to mention that the results reported

in the literature corresponding to electric field effect on

different LDS-shapes are in good agreement with those

presented above. For example, it is obtained in Refs. [18,19]
that the ground-state binding energy decreases under ex-

ternal electric field effect in GaAs SQD surrounded by

(Ga,Al)As matrix for different confinement especially for

the moderate confinement regime (Fig. 2 [18]) while this

effect is less sensitive for strong confinement (Fig. 2 [19]).
Incidentally, Pan et al. [20] have reported the impurity

states in GaAs-(Al, Ga)As cylindrical QD in the presence

of electric field. As a general feature, they have shown that

the interplay of the spatial confinement and electric field

confinement on the electron and the shallow-donor in the

QD leads to complex behavior of the binding energy, i. e.,

the electric field effect depends strongly of the positions of

the impurity and the CQD dimension.
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Figure 3. The lowest-excited state shallow-donor binding energy

as a function of the impurity’s position located along x -axis in

In0.2Ga0.8N PQWW. The combined effect of effective radius and

electric field is reported.
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4. Conclusion

Using the finite-difference method within the quasi-

one-dimensional effective potential model and within the

effective-mass approximation, we have investigated the

effective radius, impurity’s position and electric field effects

on the lowest-excited state binding energy. Important

changes of the binding energy have observed. It is obtained

that:

— The binding energy is the largest for impurity located

on the circularity corresponding to the maximum of LPD.

— The binding energy drops as the impurity is away

from this circularity.

— The binding energy is dependent on the complex

interplay of spatial confinement, Coulomb interaction (po-
sition of the impurity) and applied electric field effect.
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