Статистическая механика катионного упорядочения и динамика решетки твердого раствора PbZr_xTi_{1-x}O₃

© В.И. Зиненко, С.Н. Софронова

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: zvi@iph.krasn.ru

(Поступила в Редакцию 28 августа 2003 г.)

Записан эффективный гамильтониан катионного упорядочения (Zr–Ti) в твердом растворе PbZr_xTi_{1-x}O₃. Параметры эффективного гамильтониана вычислены в рамках неэмпирического расчета в модели ионного кристалла с учетом деформации, дипольной и квадрупольной поляризуемости ионов. Методом Монте-Карло исследованы термодинамические свойства катионного упорядочения. Вычисленные температуры фазовых переходов (180 и 250 К для концентраций x = 1/3 и 1/2 соответственно) существенно ниже температуры плавления данного соединения. При таких температурах кинетика упорядочения "заморожена" и реального фазового перехода в упорядоченную фазу не происходит, что и наблюдается экспериментально. В рамках той же модели ионного кристалла вычислены высокочастотная диэлектрическая проницаемость, динамические заряды Борна и спектр колебаний решетки для полностью разупорядоченной и некоторых упорядоченных фаза. Получено, что в спектре колебаний решетки как в полностью неупорядоченной, так и в упорядоченных фазах имеются мягкие моды колебаний, в том числе и сегнетоэлектрические.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 03-02-16076, МАС № 03-02-06911), а также программы Президиума РАН (№ 9).

1. Введение

Твердый раствор титаната свинца и цирконата свинца РbZr_xTi_{1-x}O₃ (PZT) привлекает внимание исследователей в течение многих десятилетий; изучению его физических свойств посвящено большое число экспериментальных и теоретических работ. РZT имеет сложную фазовую диаграмму и обладает рядом интересных свойств как с фундаментальной, так и с прикладной точки зрения (в частности, высокими значениями пьезоэлектрических констант).

При высоких температурах PZT имеет структуру перовскита, а с понижением температуры в зависимости от композиционного отношения Zr/Ti это соединение испытывает структурные фазовые переходы в ромбоэдрическую, орторомбическую или моноклинную фазу с сегнетоэлектрическим и антисегнетоэлектрическим упорядочением (см., например, работу [1] и ссылки в ней). Фазовых переходов, связанных с упорядочением четырехвалентных катионов циркония и титана, ни при каких концентрациях и ни при каких температурах в эксперименте не наблюдалось, однако имеются экспериментальные указания [2] на существование в изучаемых образцах малых областей с упорядоченным расположением ионов титана и циркония в узлах кристаллической решетки. Наличие таких упорядоченных областей, по-видимому, оказывает существенное влияние на неустойчивость решетки по отношению к сегнетоэлектрическим, антисегнетоэлектрическим и ротационным искажениям [3]. Свойства твердых растворов, в частности энергии разных структур [4], некоторые частоты колебаний решетки в искаженных фазах [3], эффективные заряды Борна в неупорядоченной и упорядоченных

фазах [5–8], исследовались с помощью *ab initio* расчетов методом функционала плотности в разных подходах. Авторы этих работ не обсуждают фазовые переходы, связанные с упорядочением ионов титана и циркония по узлам кристаллической решетки, а лишь отмечают, что энергии такого упорядочения малы из-за одинаковой валентности разупорядоченных в структуре перовскита ионов.

В настоящей работе мы в рамках неэмпирического расчета в модели ионного кристалла с учетом деформации, дипольной и квадрупольной поляризуемости ионов исследуем фазовые переходы, связанные с упорядочением ионов титана и циркония, и вычисляем полный спектр частот колебаний для неупорядоченной фазы, частоты колебаний при q = 0 в упорядоченных фазах, эффективные заряды Борна и высокочастотную диэлектрическую проницаемость.

В разделе 2 вводится эффективный гамильтониан, описывающий фазовый переход типа порядок-беспорядок в модельной системе двухкомпонентного сплава (Zr/Ti). Параметры эффективного гамильтониана, в котором учитываются взаимодействия в пределах трех координационных сфер, определены из расчета полной энергии кристалла в разных упорядоченных фазах. При определенных значениях параметров эффективного гамильтониана методом Монте-Карло исследованы термодинамические свойства системы, а именно: значения температур фазовых переходов, зависимости теплоемкости, параметров дальнего и ближнего порядка от температуры.

В разделе 3 в приближении виртуального кристалла для различных значений состава Zr/Ti вычислены диэлектрическая проницаемость, эффективные заряды

1253

(3)

Борна и полный спектр колебаний кристаллической решетки кубической фазы неупорядоченного кристалла при различных концентрациях x. Такой же расчет проведен для некоторых упорядоченных фаз PbZr_xTi_{1-x}O₃ при x = 1/3 и 1/2, однако здесь для краткости приведены значения частот колебаний только для центра зоны Бриллюэна.

И наконец, в Заключении суммированы результаты работы.

2. Статистическая механика *В*-катионного упорядочения

Для описания фазового перехода в твердом растворе $PbZr_{x}Ti_{1-x}O_{3}$, обусловленного упорядочением *B*-катиона, воспользуемся методом эффективного гамильтониана, в котором учитываются только степени свободы, связанные с позиционным беспорядком атомов титана и циркония в узлах кристаллической решетки (в пространственной группе O_h^1 позиция b). В этом случае задача об упорядочении В-катиона в твердом растворе АВ'В"О3 эквивалентна задаче об упорядочении в двухкомпонентном сплаве и можно использовать модель, в основе которой лежит предположение о том, что атомы раствора размещаются по узлам некоторой жесткой кристаллической решетки [9]. При этом конфигурационная энергия раствора представляется в виде суммы всех парных потенциалов межатомного взаимодействия. В этой модели гамильтониан системы может быть представлен в виде

$$H = \frac{1}{2} \sum_{k,j} \left[v_{B'B'}(\mathbf{r}_{k}, \mathbf{r}_{j}) n_{k}^{B'} n_{j}^{B'} + v_{B''B''}(\mathbf{r}_{k}, \mathbf{r}_{j}) n_{k}^{B''} n_{j}^{B''} + 2v_{B'B''}(\mathbf{r}_{k}, \mathbf{r}_{j}) n_{k}^{B'} n_{j}^{B''} \right] - \sum_{j} \left[n_{j}^{B'} \mu_{B'}(\mathbf{r}_{j}) + n_{j}^{B''} \mu_{B''}(\mathbf{r}_{j}) \right] + H_{0}, \qquad (1)$$

где $v_{B'B'}$, $v_{B''B''}$ и $v_{B'B''}$ — соответственно потенциалы парного взаимодействия атомов сорта B', атомов сорта B'', атомов сорта B' и B'', находящихся в узлах решетки \mathbf{r}_k , \mathbf{r}_j ; $\mu_{B'}$ и $\mu_{B''}$ — химические потенциалы катионов B' и B''. Величины $n_j^{B'}$, $n_j^{B''}$ — случайные функции, определенные следующим образом: если *j*-й узел занят атомом B', то $n_j^{B'} = 1$, $n_j^{B''} = 0$; если *j*-й узел занят атомом B'', то $n_j^{B'} = 0$, $n_j^{B''} = 1$. Величины $n_j^{B'}$, $n_j^{B''}$ связаны между собой соотношением $n_j^{B'} + n_j^{B''} = 1$. Используя эту связь, уравнение (1) можно переписать в виде [9]

$$H = \frac{1}{2} \sum_{k,j} v(\mathbf{r}_k, \mathbf{r}_j) n_k^{B'} n_j^{B''} - \mu \sum_j n_j^{B'} + H_0, \qquad (2)$$

где

$$v(\mathbf{r}_k,\mathbf{r}_j) = v_{B'B'}(\mathbf{r}_k,\mathbf{r}_j) + v_{B''B''}(\mathbf{r}_k,\mathbf{r}_j) - 2v_{B'B''}(\mathbf{r}_k,\mathbf{r}_j)$$

$$\boldsymbol{\mu} = \boldsymbol{\mu}_{B'}(\mathbf{r}_j) - \boldsymbol{\mu}_{B''}(\mathbf{r}_j) + \sum_{i,k} (\boldsymbol{\upsilon}_{B'B'}(\mathbf{r}_k, \mathbf{r}_j) - \boldsymbol{\upsilon}_{B''B''}(\mathbf{r}_k, \mathbf{r}_j))$$

— химический потенциал системы.

Эффективные константы взаимодействия вычисляются в рамках неэмпирического расчета полной энергии кристалла в модели Гордона–Кима с учетом дипольной и квадрупольной поляризуемости ионов [10,11]. Выражение для энергии имеет вид

 $E = E_s + E_p + E_q + E_{pq} + E_{self},$

где

$$\begin{split} E_{s} &= -\frac{1}{2} \sum_{i,j=1}^{N_{a}} Z_{i} C_{ij}^{(0)} Z_{j} + \sum_{i,j=1}^{N_{a}} \Phi_{ij}^{(00)} (V_{i}, V_{j}, |\mathbf{R}_{i} - \mathbf{R}_{j}|), \quad (4) \\ E_{p} &= \frac{1}{2} \sum_{i,j=1}^{N_{a}} \sum_{\alpha,\beta=1}^{3} P_{i}^{\alpha} \left(\frac{\delta_{ij}}{-\alpha_{i}^{p}(V_{i})} \right. \\ &+ \Phi_{ij,\alpha\beta}^{(11)} (V_{i}, V_{j}, |\mathbf{R}_{i} - \mathbf{R}_{j}|) - C_{ij,\alpha\beta}^{(2)} \right) P_{j}^{\beta} \\ &+ \sum_{i,j=1}^{N_{a}} \sum_{\alpha=1}^{3} P_{i}^{\alpha} \left(\Phi_{ij,\alpha}^{(10)} (V_{i}, V_{j}, |\mathbf{R}_{i} - \mathbf{R}_{j}|) - C_{ij,\alpha}^{(1)} Z_{j} \right), \quad (5) \\ E_{qp} &= \frac{1}{2} \sum_{i,j=1}^{N_{a}} \sum_{\alpha,\beta,\gamma,\delta=1}^{3} q_{i}^{\alpha\beta} \left[\frac{\delta_{ij}}{\alpha_{i}^{q}(V_{i})} \right. \\ &- \frac{1}{36} \left(\Phi_{ij,\alpha\beta\gamma\delta}^{(22)} (V_{i}, V_{j}, |\mathbf{R}_{i} - \mathbf{R}_{j}|) - C_{ij,\alpha\beta\gamma\delta}^{(4)} \right) \right] q_{j}^{\gamma\delta} \\ &- \frac{1}{6} \sum_{i,j=1}^{N_{a}} \sum_{\alpha,\beta=1}^{3} q_{i}^{\alpha\beta} \left(\Phi_{ij,\alpha\beta}^{(20)} (V_{i}, V_{j}|\mathbf{R}_{i} - \mathbf{R}_{j}|) - C_{ij,\alpha\beta}^{(2)} Z_{j} \right), \end{split}$$

Здесь E_s — энергия взаимодействия сферически-симметричных ионов, E_p , E_q , E_{pq} — энергии взаимодействия дипольных и квадрупольных моментов, $E_{\text{self}} = \sum_{i=1}^{N_a} E_i^{\text{ion}}$ — собственная энергия ионов, $C_{ij}^{(n)} = \nabla^n \frac{1}{|\mathbf{R}_i - \mathbf{R}_j|}$ — дальнодействующая часть взаимодействий, вычисляемая методом Эвальда, $\Phi_{ij,\alpha\beta\gamma}^{(mn)}(V_i, V_j, |\mathbf{R}_i - \mathbf{R}_j|)$ — короткодействующая часть взаимодействия, $P_i^{\alpha}(q_i^{\alpha\beta})$ — дипольные (квадрупольные) моменты ионов, которые находятся из условия минимума полной энергии кристалла [11].

Конфигурация ${IJKL} {MNOP}B' = +1, B'' = -1$	Параметры	Вычисленные знач собственной	нения энергии без учета энергии ионов, eV	Выражения для энергии через эффективные константы v _i							
	решетки $(a_0 = 3.95 \text{ Å})$	Без релаксации	С релаксацией								
$\{-1 \ 1 \ -1 \ 1\}$ $\{1 \ -1 \ 1 \ -1\}$ B'B'' вдоль [111]	$a=b=c=2a_0$	-158.128282	-158.253272	$6v_1 + 8v_3 - \mu/2 + E_0$							
$ \{ -1 \ 1 \ -1 \ -1 \} \\ \{ 1 \ 1 \ 1 \ -1 \} $	$a=b=c=2a_0$	-158.074271	-158.180158	$3v_1 + 6v_2 + 8v_3 - \mu/2 + E_0$							
$\{1 \ 1 \ 1 \ 1 \}$ $\{-1 \ -1 \ -1 \ -1 \}$ B'B'' вдоль [100]	$\begin{aligned} a &= b = a_0, \\ c &= 2a_0 \end{aligned}$	-158.056270	-158.227649	$2v_1 + 8v_2 + 8v_3 - \mu/2 + E_0$							
$\{1 -1 1 -1\}$ $\{1 -1 1 -1\}$ B'B'' вдоль [110]	$a = b = \sqrt{2}a_0,$ $c = a_0$	-158.091386	-158.210677	$4v_1 + 8v_2 - \mu/2 + E_0$							
$ \{ -1 \ -1 \ -1 \ 1 \} \\ \{ 1 \ 1 \ 1 \ -1 \} $	$a=b=c=2a_0$	-158.091829	-158.203578	$4v_1 + 6v_2 + 4v_3 - \mu/2 + E_0$							
$ \begin{array}{l} \{1 \ -1 \ -1 \ -1 \} \\ \{1 \ 1 \ 1 \ -1 \} \end{array} $	$a=b=c=2a_0$	-158.073826	-158.160574	$3v_1 + 8v_2 + 4v_3 - \mu/2 + E_0$							
$ \begin{array}{l} \{1 \ 1 \ 1 \ 1 \ 1 \\ \{1 \ 1 \ 1 \ 1 \ \} + \\ \{-1 \ -1 \ -1 \ -1 \ -1 \\ \{-1 \ -1 \ -1 \ -1 \ -1 \ \} \end{array} $	$a = b = a_0$ $c = 4a_0$	-158.012134	-158.900837	$v_1 + 4v_2 + 4v_3 - \mu/2 + E_0$							
1/2PZO + 1/2PTO		-15	58.157773								
	x = 1/3										
<i>В'В"</i> вдоль [100]	$\begin{aligned} a &= b = a_0, \\ c &= 3a_0 \end{aligned}$	-159.074277	-159.210991	$(4v_1 + 16v_2 + 16v_3 - 2\mu)/3 + E_0$							
<i>В'В''</i> вдоль [111]	$a = b = \sqrt{2}a_0,$ $c = \sqrt{3}a_0$	-159.133164	-159.259862	$4v_1 + 4v_2 + 4v_3 - 2\mu/3 + E_0$							
1/3PZO + 2/3PTO		-15	59.229638								

Таблица 1. Энергии различных упорядоченных структур $PbZr_xTi_{1-x}O_3$

Для определения энергии кристалла в неупорядоченной фазе используется приближение виртуального кристалла. В рамках этого приближения короткодействующая часть парных взаимодействий виртуального иона $\langle B \rangle$ с остальными ионами (i) имеет вид

$$\Phi_{iB}^{ll'} = x \Phi_{iB'}^{ll'} + (1-x) \Phi_{iB''}^{ll'}.$$
(8)

Вклад в собственную энергию от виртуального иона может быть представлен в виде

$$E_B^{\text{ion}} = x E_{B'}^{\text{ion}} + (1 - x) E_{B''}^{\text{ion}}.$$
 (9)

Квадрупольная и дипольная поляризуемости виртуального иона В имеют вид

$$\alpha_B^{d,q} = x \alpha_{B'}^{d,q} + (1-x) \alpha_{B''}^{d,q}.$$
 (10)

Дальнодействующая часть взаимодействия остается такой же, как для чистых веществ.

Обсудим фазовый переход в твердом растворе $PbZr_xTi_{1-x}O_3$, связанный с упорядочением *B*-катиона, для двух значений концентраций: x = 1/2 и 1/3. При этом в эффективном гамильтониане (2) ограничимся взаимодействием в пределах трех координационных сфер. Для расчета эффективных констант вычислим энергии нескольких структур с различным упорядочением ионов титана. Здесь нами использованы обозначения для упорядоченных структур из работы [12], где был проведен подобный расчет энергий для твердого раствора PbSc_{1/2}Ta_{1/2}O₃. В табл. 1 приведены мотив конфигурации и параметры решетки упорядоченных структур, вычисленные значения энергии, приходящейся на одну формульную единицу АВО3, без учета и с учетом релаксации ионов Pb и O, а также выражения для энергии через эффективные константы из (2). Здесь также даны

Таблица 2. Эффективные константы взаимодействия (в meV)

v_1	v_2	v_3
-12.22	-1.61	-0.86

значения энергии смеси чистых веществ PbTiO₃ (PTO) и PbZrO₃ (PZO) для концентраций x = 1/2 и 1/3. Как видно из табл. 1, самой выгодной из рассматриваемых упорядоченных структур для любой концентрации является структура с упорядочением катионов Zr, Ti вдоль пространственной диагонали кубической ячейки неупорядоченной фазы. Однако без учета релаксации ионов Pb и O эта структура имеет несколько бо́льшую энергию, чем смесь чистых веществ. Для концентрации x = 1/2полученный результат согласуется с расчетами других авторов [4]. Разница в энергии двух нерелаксированных структур с упорядочением вдоль [111] и [100], полученная в настоящей работе (5.3 mRy), также согласуется с данными других расчетов (4.6 и 5.9 mRy [4]).

Поскольку в эффективном гамильтониане учитываются только степени свободы, связанные с позиционным беспорядком B' и B'', эффективные константы взаимодействия вычисляются через значения энергии нерелаксированных структур. В выражение для энергии через эффективные константы входит постоянная величина E_0 — энергия, не зависящая от расположения ионов B' и B''; ее значение можно взять за начало отсчета. Вычисленные значения эффективных констант взаимодействия приведены в табл. 2.

Для исследования статистических свойств фазовых переходов, связанных с упорядочением *B*-катионов, в соединениях $PbZr_xTi_{1-x}O_3$ (x = 1/2, 1/3) наряду с эффективным гамильтонианом (2) мы применили стандартный метод Монте-Карло (МК) [13].

Процедура метода МК заключается в следующем: в качестве исходной выбирается одна из упорядоченных структур или полностью неупорядоченная структура при фиксированной температуре. Один МК-шаг состоит из последовательного перебора всех узлов решетки. Для каждого узла (s) случайным образом выбирается один из ближайших соседей (s'). Если атомы в узлах s и s' одного сорта, то конфигурация сохраняется. Если атомы в узлах s и s' разного сорта, то вычисляется разность энергий начальной конфигурации и конфигурации, в которой атомы в узлах s и s' меняются местами,

$$\Delta E^{\text{conf}} = \sum_{i=1}^{3} 2(m_{B'B'}^{(i)} - m_{B'B''}^{(i)} + \delta)v_i, \qquad (11)$$

где $m_{B'B'}^{(i)}$ — число *i*-х соседей сорта *B'* атома сорта *B'* до перестановки; $m_{B'B''}^{(i)}$ — число *i*-х соседей сорта *B'* атома сорта *B''* до перестановки; $\delta = 1$, если i = 1; $\delta = 0$, если i = 2, 3.

Последнее условие означает, что меняются местами ближайшие соседи. Обмен считается состоявшимся и конфигурация принимается в качестве новой в следующих случаях: 1) $\Delta E^{\text{conf}} \leq 0$; 2) $\Delta E^{\text{conf}} > 0$, если $\xi < \exp\left[\frac{-\Delta E^{\text{conf}}}{kT}\right]$, где ξ — случайное число, $0 < \xi < 1$.

После каждого МК-шага вычисляются энергия конфигурации, параметр ближнего σ и параметр дальнего порядка η . Параметр ближнего порядка определяется следующим образом [14]:

$$\sigma = \left| \frac{n_{B'B''} - n_{B'B''}(\text{disord})}{n_{B'B''}(\text{ord}) - n_{B'B''}(\text{disord})} \right|, \quad (12)$$

где $N_{B'B''}(\text{disord}) = \overline{Z}Nx(1-x)$ — число пар B'B'' в полностью разупорядоченном растворе, \overline{Z} — координационное число, N — число атомов в смеси, x — концентрация атомов сорта B'.

Для концентрации x = 1/2 наиболее низкую энергию имеют структуры с упорядочением вдоль [111], [110] и [100], поэтому они представляют наибольший интерес. Для каждой из этих структур вычисляются параметры ближнего и дальнего порядка.

Для различных полностью упорядоченных структур в случае $x = 1/2 n_{B'B''}$ (ord) принимает значения

$$n_{B'B''}(111) = 6N, \quad n_{B'B''}(110) = 4N, \quad n_{B'B''}(100) = 2N.$$

Для концентрации x = 1/3 рассматривались две упорядоченные структуры: с упорядочением вдоль [111] и [100]. Число пар B'B'' для упорядоченных структур в случае x = 1/3 равняется

$$n_{B'B''}(111) = 4N, \quad n_{B'B''}(100) = 4/3N.$$

Параметр дальнего порядка для x = 1/2 определяется следующим образом:

$$\eta = \left| \frac{4R_{B'}(B')}{N} - 1 \right|,\tag{13}$$

где $R_{B'}(B')$ — число атомов сорта B', находящихся в "своих узлах".

Для различных типов упорядочения "узлы *В*" определяются следующими условиями:

для упорядочения вдоль [111]

$$\exp[i\pi(x+y+z)] = 1,$$
 (14a)

вдоль [110]

$$\exp[i\pi(x+y)] = 1, \tag{14b}$$

вдоль [100]

$$\exp[i\pi(x)] = 1, \tag{14c}$$

где *x*, *y*, *z* — координаты узла.

Для концентрации *x* = 1/3 параметр дальнего порядка имеет вид

$$\eta = \frac{1}{2} \left| \frac{9R_{B'}(B')}{N} - 1 \right|.$$
(15)

"Узлы В'" определяются следующими условиями: для упорядочения вдоль [111]

$$\cos\left(\frac{2\pi}{3}(x+y+z)\right) = 1,$$
 (16a)

для упорядочения вдоль [100]

$$\cos\left(\frac{2\pi}{3}x\right) = 1. \tag{16b}$$

Мы исследовали решетку размером $16 \times 16 \times 16$ для x = 1/2 и $18 \times 18 \times 18$ для x = 1/3 с периодическими граничными условиями. Первые 10 000 шагов для каждой температуры отбрасывались и не участвовали в усреднении величин E^{conf} , η и σ . Средние значения $\langle E^{\text{conf}} \rangle$, $\langle (E^{\text{conf}})^2 \rangle$, $\langle \eta \rangle$, $\langle \sigma \rangle$ вычисляются в два этапа. После p = 50 шагов рассчитываются групповые средние

$$\langle \eta \rangle_g = \frac{1}{p} \sum_{i=1}^p \eta_i, \quad \langle \sigma \rangle_g = \frac{1}{p} \sum_{i=1}^p \sigma_i,$$
$$\langle E^{\text{conf}} \rangle_g = \frac{1}{p} \sum_{i=1}^p E_i^{\text{conf}}, \ \langle (E^{\text{conf}})^2 \rangle_g = \frac{1}{p} \sum_{i=1}^p (E_i^{\text{conf}})^2, \ (17)$$

а затем производится усреднение по M = 500 группам

$$\langle \eta \rangle = \frac{1}{M} \sum_{i=1}^{M} \langle \eta \rangle_{g}, \quad \langle \sigma \rangle = \frac{1}{M} \sum_{i=1}^{M} \langle \sigma \rangle_{g},$$
$$\langle E^{\text{conf}} \rangle = \frac{1}{M} \sum_{i=1}^{M} \langle E^{\text{conf}} \rangle_{g}, \quad \langle (E^{\text{conf}})^{2} \rangle = \frac{1}{M} \sum_{i=1}^{M} \langle (E^{\text{conf}})^{2} \rangle_{g}.$$
(18)

Теплоемкость системы определяется как $C = \frac{1}{kT} \times (\langle (E^{\text{conf}})^2 \rangle - \langle E^{\text{conf}} \rangle^2).$

Температурные зависимости теплоемкости и параметров ближнего и дальнего порядка для x = 1/2приведены на рис. 1 и 2. При низких температурах единственной стабильной структурой оказывается структура с упорядочением вдоль [111]. Она реализуется и при нагреве, и при охлаждении. Структуры с другим типом упорядочения нестабильны; это видно из рис. 2. Параметры дальнего порядка структур с упорядочением вдоль [110] и [100] во всем интервале температур равны нулю. Фазовый переход из упорядоченного в неупорядоченное состояние происходит в районе 250 К. Как уже отмечалось во Введении, экспериментальные данные показывают, что твердый раствор PbZr_{1/2}Ti_{1/2}O₃ не упорядочивается. Поскольку процессы упорядочения в твердых растворах, как и в металлических сплавах, имеют диффузный характер, при полученной здесь температуре перехода $T = 250 \, \text{K}$,

Рис. 1. Температурная зависимость избыточной теплоемкости, связанной с упорядочением *B*-катионов в PbZr_{1/2}Ti_{1/2}O₃.

Рис. 2. Температурная зависимость параметров дальнего и ближнего порядка PbZr_{1/2}Ti_{1/2}O₃.

которая значительно меньше температуры плавления PZT ($T_{\text{melt}} \sim 1200 \text{ K}$), кинетика этих процессов "заморожена" и фазового перехода в упорядоченное состояние не происходит.

Температурные зависимости теплоемкости и параметров ближнего и дальнего порядка для концентрации x = 1/3 приведены на рис. 3 и 4. Структура в соотношении 1:2 с упорядочением вдоль [111] для этой концентрации является метастабильной. Если при низкой температуре начать процедуру МК в этой конфигурации, то при повышении температуры она разрушается. При этом часть раствора упорядочивается также вдоль пространственной диагонали, но в соотношении атомов Zr и Ti 1:1 и появляются области чистого Ті. При дальнейшем повышении температуры (в районе 180К) области с упорядочением 1:1 разупорядочиваются. В режиме охлаждения при 180 К появляются области с упорядочением 1:1 и такая структура сохраняется вплоть до низких температур. Пик теплоемкости наблюдается при 180 К. Имеются

Рис. 3. То же, что на рис. 1, для PbZr_{1/3}Ti_{2/3}O₃.

Рис. 4. Температурная зависимость параметров дальнего и ближнего порядка для $PbZr_{1/3}Ti_{2/3}O_3$. Штриховыми линиями показан параметр порядка упорядочения вдоль [111] в соотношении *B*-катионов 1:2 в режиме нагрева, точками показан параметр порядка упорядочения вдоль [111] в соотношении *B*-катионов 1:1 в режиме нагрева и охлаждения, треугольниками показан параметр ближнего порядка.

экспериментальные указания [2] на то, что действительно при низких температурах в твердом растворе PZT имеются нанообласти с упорядочением ионов Zr и Ti в соотношении 1:1.

Динамика решетки неупорядоченной и некоторых упрорядоченных фаз

Спектр частот колебаний, высокочастотная диэлектрическая проницаемость, эффективные заряды Борна и упругие модули в упорядоченных фазах твердого раствора PbZr_xTi_{1-x}O₃ вычислены в рамках той же модели Гордона–Кима ионного кристалла с учетом деформируемости, дипольных и квадрупольных искажений электронной плотности ионов. Соответствующие формулы для расчета приведены в работе [15]. В случае неупорядоченного твердого раствора для расчета динамических свойств мы использовали приближение виртуального кристалла, т.е. при записи динамической матрицы все вклады, кроме дальнодействующих кулоновских, вычисляются путем разложения в ряд Тейлора по малым смещениям энергии взаимодействия виртуального иона $\langle B \rangle$ с остальными ионами.

Обсудим сначала случай неупорядоченного твердого раствора, имеющего, как и чистые вещества, структуру перовскита кубической симметрии и одну молекулу в элементарной ячейке.

В табл. З для чистых веществ PbZrO₃, PbTiO₃ и для твердого раствора с концентрациями x = 1/3, 1/2, 2/3 представлены вычисленные значения параметра элементарной ячейки, высокочастотной диэлектрической проницаемости, эффективных зарядов Борна и упругих модулей. Здесь же для сравнения приведены некоторые результаты других *ab initio* расчетов [16,17]. Вычисленный спектр колебаний неупорядоченного твердого раствора PbZr_{1/2}Ti_{1/2}O₃ для симметричных точек и направлений зоны Бриллюэна показан на рис. 5,

Таблица 3. Параметры решетки a_0 , диэлектрическая проницаемость ε_{∞} , эффективные заряды Борна Z, упругие модули C_{ij} кристаллов PbZr_xTi_{1-x}O₃ в приближении виртуального кристалла

x	$a_0, \text{\AA}$	\mathcal{E}_{∞}	$Z_{ m Pb}$	$Z_{\langle B angle}$	Z_{O1}	Z_{O3}	$C_{11}, 10^2 \mathrm{GPa}$	$C_{12}, 10^2 \mathrm{GPa}$	$C_{44}, 10^2 \mathrm{GPa}$
0	3.83 3.97*	4.90 8.24*	2.78 3.90**	5.67 7.06**	-4.93 -5.83**	$-1.76 \\ -2.56^{**}$	2.58	1.16	1.14
1/3	3.91	5.21	2.78	5.78	-4.97	-1.79	2.45	0.99	0.96
1/2	3.95 3.99***	4.87	2.77 3.92***	5.62 6.47***	$-4.68 \\ -5.28^{***}$	-1.86 -2.54^{***}	2.34	0.91	0.90
2/3	3.97	4.81	2.77	5.56	-4.53	-1.90	2.42	0.89	0.86
1	4.03 4.12*	4.50 6.97*	2.77 3.92**	5.35 5.85**	$-4.15 \\ -4.81^{**}$	$-1.98 \\ -2.48^{**}$	2.36	0.80	0.78

* Вычисления методом псевдопотенциала и методом линейного отклика [17].

** Вычисления методом псевдопотенциала и методом замороженных фононов [16].

*** Вычисления методом псевдопотенциала в приближении виртуального кристалла [6].

Рис. 5. Фононный спектр PbZr_{1/2}Ti_{1/2}O₃ в приближении виртуального кристалла.

а в табл. 4 приведены вычисленные значения частот колебаний в точках $\Gamma(0, 0, 0)$ и R(1/2, 1/2, 1/2) для чистых веществ и для неупорядоченного раствора с концентрациями x = 1/3, 1/2 и 2/3. Как видно из табл. 3 и 4, результаты данного расчета в пределах 10-30% согласуются с результатами других *ab initio* расчетов (за исключением значения ε_{∞} для PbTiO₃, полученного в работе [17]). В твердых растворах, как и в чистых веществах, в спектре колебаний имеются мягкие моды.

Таблица 4. Вычисленные значения частот колебаний (cm⁻¹) для PbZr_xTi_{1-x}O₃ для различных концентраций в приближении виртуального кристалла (в скобках указано вырождение мод)

	q=0										
x	<i>TO</i> 1(2)	LO1	$T_{2u}(3)$	TO	2(2)	LOZ	2 <i>TO</i> 3(2)	LO3			
0	87.3 <i>i</i>	142.0	180.8	23	6.7	318.	9 437.8	616.3			
	144 <i>i</i> *	104*		12	1*	410*	497*	673*			
1/3	88.3 <i>i</i>	121.6	154.6	22	222.5		7 442.8	608.2			
1/2	89.5 <i>i</i>	114.7	156.4	21	9.7	289.	5 448.4	600.7			
2/3	88.4 <i>i</i>	113.3	153.4	21	218.2		5 470.8	611.4			
1	91.9 <i>i</i>	104.9	150.0	21	214.1		5 488.2	609.3			
	131 <i>i</i> *	90*	30**	6	63*		486*	720**			
	140 <i>i</i> **			17	0**		600**				
				q =	= <i>R</i>						
	$R_{15}(3)$	$R_{25}(3)$) R_{15}	(3)	<i>R</i> ₂₅	·(3)	$R_{12'}(2)$	$R_{2'}$			
0	110.5 <i>i</i>	51.3	177	7.5	38	3.0	423.8	718.9			
1/3	119.4 <i>i</i>	67.8 <i>i</i>	i 171	.8	36	5.7	438.6	691.2			
1/2	113.3 <i>i</i>	77.5i	178	3.8	34	2.2	451.6	676.8			
2/3	110.9 <i>i</i>	93.6i	181	.5	32	8.5	483.9	677.5			
1	105.0 <i>i</i>	113.3	i 190).9	299.7		510.8	661.6			

* Вычисления методом псевдопотенциала и методом замороженных фононов [15].

** Вычисления методом псевдопотенциала и методом линейного отклика [16]. Следует отметить, что наш расчет для чистого PbTiO₃ кроме полярной моды колебаний дает "антисегнетоэлектрическую" неустойчивость решетки, а мода колебаний R_{25} , собственные векторы которой соответствуют повороту октаэдра TiO₆, оказывается жесткой. В то же время в PbZrO₃ наряду с сегнетоэлектрической и антисегнетоэлектрической неустойчивостью появляется мягкая мода R_{25} , связанная с поворотом октаэдра ZrO₆. Все три типа неустойчивости имеются в твердом растворе, когда позицию четырехвалентного катиона занимает виртуальный атом $\langle B \rangle$.

Как видно из табл. 1, имеются две наиболее энергетически выгодные упорядоченные структуры при концентрации x = 1/2. Структура с упорядочением катионов В' и В" вдоль направления [001] обладает симметрией Р4/тт, а структура с упорядочением вдоль [111] (структура эльпасолита) имеет симметрию Fm3m. В обеих структурах есть свободные параметры. В тетрагональной структуре ионы кислорода, расположенные между ионами Zr и Ti, и ионы Pb могут смещаться по оси z; в структуре эльпасолита имеется степень свободы, связанная с "дыханием" кислородного октаэдра. Мы минимизировали полную энергию по объему и свободным параметрам, сохраняя при этом для тетрагональной решетки соотношение c/a = 2.0. В структуре эльпасолита кислородный октаэдр "поджимается" к иону Ті на 0.05 Å. В тетрагональной структуре ионы кислорода и свинца смещаются по оси z в сторону Ті на 0.11 Å. Вычисленные значения параметра элементарной ячейки, высокочастотной диэлектрической проницаемости, эффективных зарядов Борна для этих двух упорядоченных структур при x = 1/3 и 1/2 приведены в табл. 5, 6; здесь же для сравнения представлены результаты других расчетов. Как видно из табл. 5 и 6, вычисленные в данной работе значения динамических зарядов Борна (особенно для иона свинца) как в неупорядоченной, так и в упорядоченных фазах при концентрациях x = 1/2 и 1/3 несколько меньше, чем полученные при расчете методом псевдопотенциала [18].

Таблица	5.	Параметры	решетки,	эффективные	заряды	Борна	И	диэлектрическая	проницаемость	для	упорядоченного
$PbZr_{1/2}Ti_{1/2}$	$_2O_3$	с различным	типом упо	рядочения (для	и упорядо	очения в	дол	ь [001] ионы кисло	орода 1 располож	кены	между ионами Zr
и Ті, ионы	кисл	порода 2 — в	одной пло	скости с ионам	и Zr, ион	ны кисло	opo,	да 3 — в одной пл	оскости с ионами	и Ti)	

Упорялочение	a. Å	$a_0 \stackrel{\circ}{A} \qquad \varepsilon_{\infty}$		Z _{Pb}		$Z_{ m Ti}$		Z _{Zr}		Z ₀₁		Z ₀₂		Z _{O3}	
	<i>u</i> ₀ , 11	11	33	xx	zz	xx	zz	xx	ZZ	xx	ZZ	xx, yy	zz	xx, yy	zz
Вдоль [111]	<i>a</i> = 7.88	4.97	4.97	2.78		5.48		5.77		-1.85	-4.71				
Вдоль [001]	a = 3.95, c/a = 2.0	5.01	4.85	2.78	2.84	5.52	6.02	6.10	5.53	-1.79	-4.98	$-5.02 \\ -1.93$	-2.12	-5.11, -1.71	-1.51
Вдоль [001] (расчет [5])	a = 3.99, c/a = 2.07	_	_		3.0		5.3		6.0		-4.6		-2.1		-2.1

Интересно отметить, что если в чистых веществах эффективный заряд иона титана превышает эффективный заряд иона циркония, то в упорядоченных структурах заряды титана и циркония либо примерно равны, либо эффективный заряд циркония превышает эффективный заряд титана.

Мы вычислили полные спектры колебаний решетки в низкоэнергетических упорядоченных фазах РZT при значениях концентрации x = 1/3 и 1/2. Значения предельных оптических частот колебаний при q = 0представлены в табл. 7. В этой же таблице для сравнения

Таблица 6. Диэлектрическая проницаемость и эффективные заряды Борна для упорядоченного PbZr_{1/3}Ti_{2/3}O₃ с различным типом упорядочения

	вд Наст	Упоряд оль [001 раб.	Упорядочение вдоль [111] (расчет, наст. раб.)				
Ион	ε_{11}	£33	ε ₁₁	£33	ε_{11}	E33	
	5.09	5.28	_	_	5.11	5.04	
	Z_{xx}	Z_{zz}	Z_{xx}	Z_{zz}	Z_{xx}	Z_{zz}	
Pb1	2.88	2.87	3.90	4.04	2.86	2.96	
Pb2	2.81	2.92	3.88	3.53	2.93	2.65	
Pb3	2.88	2.87	3.90	4.04	2.86	2.96	
Ti1	5.50	6.52	6.77	6.65	5.63	5.07	
Ti2	5.50	6.52	6.77	6.65	5.63	5.07	
Zr	6.09	5.87	6.33	6.69	5.24	5.75	
01	-1.65	-5.32	-2.58	-5.39	-1.69	-5.23	
02	-5.16	-1.62	-5.58	-2.34	-1.57	-5.20	
O3	-1.72	-1.62	-2.72	-2.34	-1.57	-5.20	
O4	-1.55	-6.09	-2.53	-5.57	-1.65	-4.91	
05	-5.16	-1.62	-5.58	-2.34	-1.79	-4.93	
06	-1.72	-1.62	-2.72	-2.34	-1.65	-4.91	
07	-1.65	-5.32	-2.58	-5.39	-1.79	-4.93	
08	-5.06	-2.17	-5.17	-2.94	-1.65	-4.91	
09	-1.96	-2.17	-2.33	-2.94	-1.65	-4.91	

приведены результаты ab initio расчета методом LAPW некоторых предельных частот в упорядоченной вдоль [111] фазе PbZr_{1/2}Ti_{1/2}O₃ [3]. Как видно из табл. 7, в упорядоченных фазах при обоих значениях соотношения Zr/Ti кристаллическая решетка нестабильна как по отношению к сегнетоэлектрической моде (100.6*i* cm⁻¹ и 115*i* ст⁻¹ в фазах $P\overline{3}m1$ и P4mm при x = 1/3 и 87.3*i* сm⁻¹ и 103.5*i* сm⁻¹ в фазах *Fm*3*m* и *P*4/*mmm* при x = 1/2), так и по отношению к другим модам колебаний. Следует отметить, что в упорядоченной структуре эльпасолита Pb₂ZrTiO₆ кроме сегнетоэлектрической мягкой моды колебаний имеется очень близкая по энергии $(87i \text{ cm}^{-1})$ мягкая мода симметрии T_{1g} , собственные векторы которой соответствуют повороту октаэдра TiO_6 (ZrO₆). Таким образом, при соотношении Zr/Ti, близком к 1/2, следует ожидать как полярных, так и ротационных искажений кристаллической решетки. Соединение Pb₃ZrTi₂O₉, как это видно из табл. 7, с упорядочением вдоль [111] и [001] еще более нестабильно по отношению к близким по энергии сегнетоэлектрическим и другим модам колебаний. При этих значениях соотношения Zr/Ti картина искажений решетки при структурных фазовых переходах может быть более сложной.

4. Заключение

Перечислим основные результаты данной работы. Записан эффективный гамильтониан и методом МК исследованы термодинамические свойства катионного упорядочения в твердом растворе $PbZr_xTi_{1-x}O_3$. Параметры эффективного гамильтониана вычислены в рамках неэмпирического расчета полной энергии структур с различным типом упорядочения ионов циркония и титана. Расчет энергий проведен в рамках модели ионного кристалла с учетом деформируемости и дипольной и квадрупольной поляризуемости ионов. В результате МК-вычислений определены температуры фазовых переходов катионного упорядочения $T_c \approx 180$ и ≈ 250 К для концентраций x = 1/3 и 1/2 соответственно. Эти температуры существенно ниже температуры плавления ($T_{melt} \sim 1200$ K) данного соединения;

	Pb ₃ Zr	Ti ₂ O ₉		Pb ₂ ZrTiO ₆						
Упорядочение вдоль [111], симметрия <i>Р</i> 3 <i>т</i> 1		Упорядочение симметри	е вдоль [001], я <i>Р4тт</i>	Упорядочение симметрия <i>Fm</i> 2	вдоль [111], Зт (расчет)	Упорядочение вдоль [001], симметрия <i>Р4/mmm</i> (расчет, наст. раб.)				
(расчет, наст. раб.)		(расчет, на	аст. раб.)	Наст. раб.	[3]					
100.6 <i>i</i>	218.1	115.0 <i>i</i>	185.6	87.3 <i>i</i> (2)	125 <i>i</i>	103.5 <i>i</i>	379.7			
98.9 <i>i</i>	219.2	95.5 <i>i</i>	186.6(2)	87.0 <i>i</i> (3)		101.8 <i>i</i>	398.6			
94.6 <i>i</i> (2)	237.4	67.5i(2)	195.5	58.2 <i>i</i> (3)	16 <i>i</i>	28.8(2)	431.9			
66.7 <i>i</i>	261.8	23.5 <i>i</i>	202.0	117.0		75.9	453.3			
52.8 <i>i</i>	286.5	22.8 <i>i</i>	203.9	157.3(3)		82.6	517.5			
52.7 <i>i</i>	299.6	63.3(2)	227.0	217.5(2)		106.3	625.6			
16.9 <i>i</i> (2)	332.2	91.4(2)	296.6	226.9(3)	158	119.4	626.1			
3.6 <i>i</i>	335.3(2)	97.6	319.5	276.5		120.8				
42.3	357.3	102.3	375.9	361.3(2)	326	158.9				
78.3	370.6	116.0	383.4(2)	372.2	357	159.4				
90.3(2)	372.1	138.7(2)	384.8	442.6(2)	538	164.8(2)				
120.9	459.8	141.8	442.9	456.6(2)		190.3				
147.9(2)	489.3(2)	160.3(2)	452.1	608.2		197.5				
156.8	491.8	167.5(2)	551.0	699.7	838	205.9				
207.4	622.2	172.5	628.7			210.6				
211.6	687.5	181.7	650.6			212.9				
214.7(2)	723.7	183.4	666.0			213.8				
215.2						293.3				

Таблица 7. Частоты колебаний (cm⁻¹) при q = 0 для упорядоченных структур РZT при концентрациях x = 1/3 и 1/2 (в скобках указано вырождение мод)

вследствие диффузионного характера процессов упорядочения в сплаве кинетика такого упорядочения при температурах порядка комнатной "заморожена" и, таким образом, реального фазового перехода в упорядоченную фазу не происходит, что и наблюдается экспериментально.

В рамках той же модели ионного кристалла вычислены высокочастотная диэлектрическая проницаемость, динамические заряды Борна и спектр колебаний решетки для полностью разупорядоченной и наиболее низких по энергии упорядоченных фаз. Получено, что в спектре колебаний решетки как в полностью неупорядоченной, так и в упорядоченных фазах имеются мягкие моды колебаний, в том числе и сегнетоэлектрические, причем несколько мягких мод разной симметрии имеют почти одинаковую энергию.

Список литературы

- B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, G. Shirane. Phys. Rev. B 61, 8687 (2000).
- [2] D. Viehland. Phys. Rev. B 52, 778 (1995).
- [3] M. Fornari, D.J. Singh. Cond-mat/0012126. V. 1. (2000).
- [4] G. Saghi-Szabo, R.E. Cohen. Ferroelectrics 194, 287 (1997).
- [5] L. Bellaiche, D. Vanderbilt. Phys. Rev. Lett. 83, 1347 (1999).
- [6] L. Bellaiche, D. Vanderbilt. Phys. Rev. B 61, 7877 (2000).

- [7] G. Saghi-Szabo, R.E. Cohen, H. Krakauer. Phys. Rev. B 59, 12771 (1999).
- [8] H. Fu, O. Gülseren. Phys. Rev. B 66, 214114 (2002).
- [9] А.Г. Хачатурян. Теория фазовых превращений и структура твердых растворов. Наука, М. (1974).
- [10] О.В. Иванов, Е.Г. Максимов. ЖЭТФ 108, 1841 (1995).
- [11] В.И. Зиненко, Н.Г. Замкова, С.Н. Софронова. ЖЭТФ 123, 846 (2003).
- [12] B.P. Burton, R.E. Cohen. Ferroelectrics 151, 331 (1994).
- [13] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).
- [14] L. Guttman. J. Chem. Phys. 34, 1024 (1961).
- [15] N.G. Zamkova, V.I. Zinenko, O.V. Ivanov, E.G. Maksimov, S.N. Sofronova. Ferroelectrics 283, 49 (2003).
- [16] W. Zhong, R.D. King-Smith, D. Vanderbilt. Phys. Rev. Lett. 72, 3618 (1994).
- [17] P. Ghonsez, E. Cockrayne, U.V. Waghmare, K.M. Rabe. Phys. Rev. B 60, 836 (1999).
- [18] L. Bellaiche, J. Padilla, D. Vanderbilt. Cond-mat/9802201.
 V. 1. (1998).