Взаимосвязь режимов получения и тонкой структуры углерода волокна

© В.А. Тюменцев, А.Г. Фазлитдинова

Челябинский государственный университет, 454001 Челябинск, Россия e-mail: tyum@csu.ru

(Поступило в Редакцию 27 апреля 2015 г.)

Изучена тонкая структура углеродных волокон, полученных в различных технологических режимах. Показано, что материал волокон гетерогенен, его компонентный состав определяется режимами термомеханической обработки и наличием добавки бора, а также зависит от угла φ ориентировки областей когерентного рассеяния относительно оси нити. Наблюдаемая зависимость компонентного состава от температуры и продолжительности термообработки, а также от угла ориентировки областей когерентного рассеяния относительно оси нити позволяет предположить, что процесс перехода углеродного материала волокон в более равновесное состояние, по-видимому, развивается через ряд метастабильных состояний.

Введение

05

Наноструктурированный материал углеродных волокон, получаемых на основе полиакрилонитрила, относят к труднографитируемым, поскольку даже в процессе высокотемпературной (~ 3000°C) термомеханической обработки его перекристаллизация развивается медленно. Для активирования массопереноса при более низких температурах перекристаллизацию углеродного материала можно проводить в присутствии добавки бора.

В результате такой обработки при температурах до 2800°С удается получить углеродное волокно, обладающее достаточно высоким модулем упругости [1]. Для определения средних размеров областей когерентного рассеяния (ОКР) и текстуры материала, а также установления взаимосвязи структуры волокна и его свойств широко применяют метод рентгеноструктурного анализа. Однако при этом на дифрактограммах углеродных волокон наблюдается существенная асимметрия максимума 002, что может быть обусловлено одновременным присутствием в материале компонент, заметно отличающихся по величине межслоевого расстояния и размерам ОКР [2]. Поэтому вычисляемые по интегральной ширине и положению центра тяжести таких максимумов данные не отражают реальную структуру материала. Анализ асимметричных профилей дифракционных максимумов может позволить оценить компонентный состав углеродного материала, установить более четкую взаимосвязь между режимами получения и его тонкой структурой, получить новые данные о закономерностях формирования структуры графита в процессе высокотемпературной обработки.

В настоящей работе методами рентгеноструктурного анализа и растровой электронной микроскопии изучены тонкая структура и пространственная однородность по сечению углеродных волокон, полученных при различных режимах термообработок.

Экспериментальная часть

Объекты исследования

Исследования изменения тонкой структуры углеродных материалов выполнены на углеродных волокнах, полученных в атмосфере аргона при ~ 2200, 2500 и \sim 3000°С, а также при 2450, 2500, 2600 и 2650°С в присутствии добавки бора. Состав сополимера волокна-прекурсора: 95% полиакрилонитрил + 5% метилакрилат. Углеродные волокна № 1-5 и № 6-14, данные о которых приведены ниже в табл. 1, изготовлены на основе полиакрилонитрильных нитей, отличающихся условиями формования. Добавку бора вводили в углеродный материал в процессе высокотемпературной обработки в атмосфере аргона термостабилизированного жгута, предварительно пропитанного водным раствором борная кислота + тетраборнокислый натрийгидрат и высушенного при 200°С [1]. Плотность борсодержащего раствора составляла 1.035 и 1.1 g/cm³.

Методы исследования

Рентгеноструктурные исследования углеродного волокна выполнены с помощью рентгеновского дифрактометра D8 ADVANCE, фильтрованное Cu K_{α} -излучение. Для обеспечения условия самофокусировки дифрагированного пучка по Брэггу–Брентано всем исследуемым объемом углеродного волокна, его располагали в виде тонкого ($\sim 0.2 \text{ mm}$) слоя нитей. При получении данных о текстуре материала по заданной программе с шагом 1° записывали дифракционные максимумы 002 OKP, ориентированных относительно оси нити в угловом интервале $\varphi = \pm 10^\circ$. Разделение наиболее интенсивных асимметричных дифракционных максимумов, формируемых OKP, ориентированными относительно оси нити под углом φ от 0 до 6°, а также максимумов 004 и 006 ($\varphi = 0^\circ$), на симметричные, описываемые функци-

Рис. 1. Профили дифракционных максимумов 002, формируемых ОКР, ориентированными относительно оси углеродного волокна под углом φ от 0 до 8°. Температура получения волокон: *a*, *b* — порядка 3000°, модуль упругости 470 и 490 GPa соответственно; *c* — 2650°С в присутствии добавки бора.

ей Гаусса, проводили используя пакет программ Origin 8. Межплоскостное расстояние и средние размеры OKP вычисляли по центру тяжести и интегральной ширине выделенных дифракционных максимумов (полагали, что физическое уширение максимума обусловлено только дисперсностью). Растровую электронную микроскопию поперечного сечения волокон выполнили с использованием Jeol 7001F.

Результаты и обсуждение

Профили дифракционных максимумов 002 углеродных волокон, сформированные ОКР, ориентированными относительно оси нити под углом φ , равным 0, 1, ... 10°, асимметричные и не описываются функциями Гаусса или Лоренца. Интегральная ширина $\beta(2\theta)$ и асимметрия таких максимумов существенно зависят от условий термомеханической обработки и от угла φ ориентировки ОКР относительно оси нити (рис. 1).

По мере возрастания угла ориентировки ОКР φ от 0 до 8° наблюдаются увеличение $\beta(2\theta)$ на ~ 16% и смещение центра тяжести максимума в сторону меньших углов. Добавка бора существенно активирует структурные преобразования углеродного материала уже при сравнительно низких (2450–2650°С) температурах. При этом следует подчеркнуть, что дифракционные максимумы 002 всех исследованных углеродных материалов асимметричны. Это, как отмечалось выше, может быть обусловлено одновременным присутствием в волокне ОКР, заметно отличающихся по величине межслоевого расстояния.

Разделение таких экспериментально наблюдаемых асимметричных дифракционных максимумов на симметричные выполнили, опираясь на физическую модель, которая предполагает одновременное сосуществование в углеродном материале нескольких метастабильных состояний. Так, авторами [2–6] отмечается, что в углеродном материале могут реализоваться состояния, которым соответствуют фиксированные значения межслое-

N волокна	T,°C	ν, m/hour	E, GPa	Межплоскостное расстояние $(\varphi=0^\circ), { m \AA}$							Средние размеры ОКР $(arphi=0^\circ),{ m nm}$				
				d_{002}^1	d_{002}^2	d_{002}^3	d_{002}^4	d_{002}^5	d_{002}^{6}	L_{002}^{1}	L^2_{002}	L_{002}^3	L_{002}^4	L_{002}^5	L_{002}^{6}
1	_	_	300	_	_	_	3.424	3.485	3.652				9.2	5.5	2.7
2	_	-	390			3.403	_	3.442	3.585	_	_	10.4	_	5.4	1.7
3	_	-	440			3.410	_	3.443	3.567			12.0	_	5.9	1.8
4	~ 3000	-	470	—	—	3.413	—	3.453	3.581	—	—	12.0	_	6.0	1.7
5	~ 3000	—	490	—	—	3.408	—	3.441	3.520			14.9	_	7.6	2.3
6	2500	12	_	—	—	3.396	3.422	3.501	—	—	—	14.0	5.6	2.9	—
7	3000	30	510	3.350	_	3.391	3.415	_	_	20.5	_	15.5	5.6	_	_
8	2450	12	330	—	3.385	—	3.413	3.495	—		18.6	—	6.3	3.0	_
9	2500	12	_	—	3.373	—	3.410	3.462	—		14.3		8.0	3.3	—
10	2600	12	_	3.362	_	3.398	_	3.443	_	23.2	_	11.0	_	4.2	_
11	2650	12	500	3.360	—	3.388	—	3.437	—	22.3	—	11.5	_	3.8	_
12	2650	20	_	—	3.370	—	3.412	3.480	—	—	14.3	—	7.5	3.3	—
13	2500	10.5	_	3.350	3.379	3.406	—	_	—	27.9	17.3	6.3	_	_	—
14	2500	12	—	3.359	—	3.394	—	3.449	—	25.0	—	9.8	—	3.1	—

Таблица 1. Влияние температуры (*T*), скорости транспортирования жгута (*v*) и борсодержащей добавки на модуль упругости (*E*), компонентный состав и параметры структуры углеродных волокон. Жгуты № 8–12 и № 13, 14 до высокотемпературной обработки пропитаны борсодержащим раствором плотностью 1.035 и 1.1 g/cm³ соответственно

вого расстояния: $d_{002}^1 = 0.335$, $d_{002}^2 = 0.337$, $d_{002}^3 = 0.340$, $d_{002}^4 = 0.3425$, $d_{002}^5 = 0.3440$ и $d_{002}^6 = 0.355/0.368$ nm. В связи с этим асимметричный максимум разделяли на минимальное число симметричных, описываемых функцией Гаусса, положение которых 2θ , как мы предполагали, должно соответствовать метастабильным состояниям из числа возможных перечисленных выше. Для этого указывали примерное значение 2θ предполагаемых компонент, программа рассчитывала и оптимизировала интенсивность, интегральную ширину и корректировала положение максимумов. Это позволяло оценить количество материала ОКР, их средние размеры и межслоевое расстояние.

Рассмотрим результаты такого анализа профилей асимметричных дифракционных максимумов 002 четырнадцати образцов углеродных волокон (угол ориентировки ОКР относительно оси нити $\varphi = 0^{\circ}$), полученных при различных режимах термообработки. Из приведенных в табл. 1 данных следует, что в каждом случае формируются всего три компоненты, суммарный максимум которых совпадает с экспериментально наблюдаемым (коэффициент детерминации $R^2 \sim 0.9999$). Изменения продолжительности и температуры обработки, а также количества вводимой борсодержащей добавки существенно влияют как на компонентный состав, так и на средние размеры ОКР компонент. Так, в углеродном волокне № 1 выявляются компоненты K4, K5 и K_6 в количестве ~ 30, ~ 43 и ~ 27% соответственно. Повышение температуры обработки (образцы N 2-5) обусловило формирование компонент К₃, К₅ и К₆ в количестве ~ 35, ~ 40, ~ 25%. Увеличению средних размеров ОКР соответствует рост модуля упругости волокон от 390 до 490 GPa.

Углеродные волокна N 6–14, как было отмечено выше, изготовлены на основе полиакрилонитрильной нити, отличающейся условиями формования. Значения межплоскостных расстояний компонент волокна N 6, полученного при ~ 2500°С, соответствуют компонентам K_3 , K_4 и K_5 . Модуль упругости волокна N 7, изготовленного в процессе термомеханической обработки при ~ 3000°С, равен 510 GPa. Его тонкая структура существенно отличается от волокон N 4, 5 и представлена компонентами K_1 , K_3 и K_4 (соотношение 38, 34 и 28%).

Добавка бора активирует структурные преобразования углеродного материала при сравнительно низких (2450-2650°С) температурах. Так, в углеродных волокнах N 8 и 9, изготовленных при 2450 и 2500°C, наряду с компонентами K₄ и K₅ формируется K₂. Образцы N 10 и 11 по компонентному составу и средним размерам ОКР, ориентированными параллельно оси нити, достаточно близки к волокну N 7, полученному при 3000°С (борсодержащая добавка отсутствует). Однако в материале этих волокон третьей компонентой является K_5 , в то время как в волокне N 7 — компонента K_4 . Сокращение продолжительности термообработки при 2650°C путем увеличения скорости транспортирования жгута с 12 до 20 m/hour (образцы N 11 и 12) существенно повлияло на тонкую структуру волокна. Компонентный состав оказался близким к таковому материала, полученного при $\nu = 12$ m/hour и более низкой (2500°C, образец N 9) температуре. Соотношение компонент в этих углеродных волокнах составляет 19, 46, 35% и 18, 45, 37% соответственно.

При повышенном содержании добавки бора и максимальной в наших экспериментах продолжительности обработки (волокно N 13) формируются также три

Рис. 2. Профили дифракционных максимумов 002, 004 и 006 (ОКР ориентированны под углом $\varphi = 0^{\circ}$ С к оси нити) и результаты разделения на составляющие компоненты. Жгут волокна получен при ~ 2600°С, плотность борсодержащего раствора ~ 1.035 g/cm³.

Таблица 2. Компонентный состав и параметры структуры ОКР углеродных волокон ($\varphi = 0^{\circ}$), рассчитанные по результатам разделения максимумов 002, 004 (температура получения ~ 3000) и 002, 004, 006 (температура получения ~ 2600°С, плотность борсодержащего раствора ~ 1.035 g/cm³)

hkl		Межслоевое компон	е расстояние нент, Å	2		Средние р компо	Соотношение		
	d_{002}^2	d_{002}^3	d_{002}^4	d_{002}^5	L^2_{002}	L_{002}^3	L_{002}^4	L_{002}^5	компонент
002	-	3.40	3.43	3.49	_	14.7	8.1	3.4	26:48:26
004	_	3.40	3.42	3.46	_	18.4	11.2	6.2	26:46:28
002	3.38	3.41	_	3.47	27.3	10.9	—	4.2	18:44:38
004	3.38	3.40	_	3.44	38.4	14.8	—	7.0	13:44:43
006	3.38	3.41	-	3.44	26.4	10.8	_	10.2	25:33:42

компоненты, параметры структуры которых оказались наиболее близкими к структуре графита. Соотношение компонент образцов N 13 и 14 составляет 42, 30, 28% и 17, 45, 38% соответственно. Отметим, средние размеры ОКР одинаковых компонент, регистрируемых во всех исследованных материалах, приведенных в табл. 1, оказались достаточно близкими.

С целью более четкого разделения экспериментально наблюдаемого дифракционного максимума на составляющие нами были записаны профили максимумов 004 и 006 слабой интенсивности — 10 и 1% при 2 θ , равном ~ 54 и ~ 86° соответственно. Как видно на рис. 2, асимметрия максимума 004 проявляется более четко. Также достаточно отчетливо просматриваются несколько компонент, составляющих экспериментально наблюдаемый максимум слабой интенсивности 006, регистрация которого вследствие необходимости работать с малым количеством материала углеродного волокна представляет определенные трудности. Оказалось, что и в этих случаях асимметричные максимумы 004 и 006

Рис. 3. Изменение компонентного состава и средних размеров *L*₀₀₂ от угла ориентировки ОКР относительно оси нити углеродных волокон: *a* — N 7, *b* — N 11 и *c* — N 14, табл. 1.

могут быть представлены как сумма трех описываемых функцией Гаусса. Более четко на экспериментально наблюдаемых максимумах 004 и 006 выделить составляющие компоненты не удается. Это обусловлено, вопервых, слишком малыми размерами ОКР компонент, вследствие чего интегральная ширина $\beta(2\theta)$ максимумов достаточно велика, порядка 1 градуса. Во-вторых, тем, что интегральная ширина максимума растет при увеличении брэгговского угла, поэтому $\beta(2\theta)$ кратных максимумов компонент (при 2θ , равном ~ 54 или ~ 86 degree) также возрастает. В связи с этим близко расположенные перекрывающиеся и достаточно широкие максимумы экспериментально четко выделить даже на дальних углах не удается.

Данные вычислений межслоевых расстояний и средних размеров компонент, полученные по результатам разделения максимумов 002, 004 и 006, находятся в достаточно хорошем соответствии (табл. 2). Отметим, при определении средних размеров ОКР по формуле Селякова-Шеррера константу k для компонент всех перечисленных выше максимумов полагали равной единице. По-видимому, этим фактом обусловлены отличия размеров L_{002} , L_{004} и L_{006} .

Материал углеродных волокон текстурирован. Рассмотрим взаимосвязь компонентного состава и ориентировки ОКР относительно оси нити волокон, отличающихся условиями формования ПАН нити. Из данных, приведенных в табл 3, следует, что межплоскостное расстояние и средние размеры L_{002} компонент волокон N 2 и 3 практически не зависят от угла φ уменьшение размеров ОКР на ~ 10% наблюдается в волокне N 3 при φ , равном 5 и 6°). В углеродных волокнах N 4 и 5 (модуль упругости 470 и 490 GPa соответственно), в угловом интервале φ от 0 до 6° достаточно четко прослеживаются компоненты K_3 , K_4 и K_5 . При увеличении φ до 6° средние размеры ОКР волокна N 5 уменьшаются на 10–25%.

Углеродные волокна N 6–14 отличаются от описанных выше существенной зависимостью компонентного состава и размеров ОКР от угла ориентировки φ . Так, в материале углеродного волокна, полученного при 3000°С (N 7 в табл. 1), и значениях $\varphi = 0.1^{\circ}$ присутствуют компоненты K_1 , K_3 и K_4 , при $\varphi = 2.3^{\circ}$ компоненты K_1 , K_3 и K_5 , при $\varphi = 4.5^{\circ}$ — компоненты K_2 , K_3 и K_5 , при $\varphi = 6^{\circ}$ — K_2 , K_4 и K_5 (табл. 4).

В образце волокна N 11 компонента K_1 наблюдается в составе ОКР, ориентированных к оси нити под углом $\varphi = 0$, 1 и 2°. Угловой интервал существования K_2 соответствует φ от 3 до 6°. Компоненты K_3 и K_5 наблюдаются в составе ОКР, ориентированных под уг-

Bonormo	arphi,deg	I	Межслоевое	расстояние, А	Средние размеры ОКР, nm					
DOJIOKHO		d_{002}^3	d_{002}^4	d_{002}^5	d_{002}^{6}	L_{002}^3	L_{002}^4	L_{002}^5	L_{002}^{6}	
N 2 табл. 1	0	3.403	_	3.442	3.585	10.4	_	5.4	1.7	
	1	3.41	_	3.45	3.57	10.7	_	5.6	1.8	
	2	3.41	_	3.45	3.58	10.7	_	5.3	1.7	
	3	3.41	-	3.45	3.59	10.3	_	5.1	1.7	
	4	3.41	-	3.45	3.57	10.4	_	5.2	1.7	
	5	3.40	-	3.44	3.55	10.9	_	5.8	1.9	
	6	3.41	-	3.45	3.56	9.3	_	5.0	1.6	
	0	3.410	_	3.443	3.567	12.0	-	5.9	1.8	
	1	3.41	-	3.44	3.56	11.7	—	6.0	2.0	
N 3 табл. 1	2	3.41	-	3.45	3.56	10.9	—	5.6	1.9	
	3	3.41	-	3.44	3.55	11.7	—	6.0	2.0	
	4	3.41	-	3.44	3.56	11.3	—	5.6	1.8	
	5	3.41	-	3.44	3.55	11.4	_	5.9	1.9	
	6	3.41	—	3.44	3.55	10.7	_	5.4	1.8	
	0	3.413	_	3.453	3.581	12.0	_	6.0	1.7	
	1	3.41	-	3.45	3.58	11.6	—	5.9	1.8	
N 4	2	3.41	-	3.45	3.58	12.6	—	6.2	1.9	
табл. 1	3	3.41	-	3.45	3.57	11.7	—	5.9	1.9	
	4	3.41	-	3.45	3.57	10.7	—	5.5	1.7	
	5	3.41	-	3.45	3.58	10.8	—	5.5	1.6	
	6	3.41	—	3.45	3.56	11.0		5.8	1.8	
	0	3.408	_	3.441	3.520	14.9	-	7.6	2.3	
N 5	1	3.41	-	3.44	3.53	14.2	—	7.2	2.2	
	2	3.41	-	3.44	3.53	14.1	—	7.1	2.2	
табл. 1	3	3.41	—	3.44	3.54	13.4	—	6.7	2.0	
	4	3.41	—	3.44	3.53	12.8	—	6.9	2.2	
	5	3.41	—	3.45	3.54	11.9	—	5.9	1.9	
	6	3.41	-	3.45	3.54	11.7	—	5.8	1.8	

Таблица 3. Компонентный состав углеродных волокон и параметры структуры ОКР, ориентированных в угловом интервале φ от 0 до 6°

лом φ от 0 до 6°. В образце N 14 компоненты K_1 и K_2 наблюдаются в составе ОКР, ориентированных под углом φ от 0 до 3° и от 4 до 6° соответственно. Компонента K_3 присутствует при φ от 0 до 4°, K_4 при φ , равном 5 и 6°. Компонента K_5 наблюдается при φ от 0 до 6°. По мере увеличения угла φ средние размеры ОКР одной и той же компоненты уменьшаются, а компонентный состав материала волокон смещается в сторону состояний, характеризуемых более высокими значениями межплоскостных расстояний d_{002} (рис. 3).

Пространственная гетерогенность углеродного материала наиболее отчетливо наблюдается методом растровой электронной микроскопии на поперечных срезах волокон, полученных в присутствии бора. В случае, когда жгут перед высокотемпературной обработкой пропитывали борсодержащим раствором высокой плотности (образцы N 13, 14, табл. 1), от поверхности к центру нити формируются пакеты, имеющие слоистую структуру (микрообъемы рекристаллизованного углеродного материала) размером в сечении более $1 \mu m$ (рис. 4). Процесс сопровождается значительным перераспреде-

5* Журнал технической физики, 2016, том 86, вып. 3

лением вещества, волокно теряет в сечении круглую форму. По мере продвижения от поверхности к центру нити размеры пластинчатых образований постепенно уменьшаются до $\sim 0.05\,\mu$ m. Это обусловлено тем, что борсодержащую добавку наносят на поверхность волокна, поэтому процесс перекристаллизации углеродного материала в периферийной области в присутствии бора развивается более активно.

Таким образом, по нашему мнению, анализ профиля наиболее интенсивного асимметричного дифракционного максимума 002 углеродного материала по предложенной методике позволяет получить данные о тонкой структуре — компонентном составе и средних размерах ОКР компонент. Материал исследованных углеродных волокон, полученных в существенно различающихся режимах, гетерогенен, его компонентный состав определяется режимами термомеханической обработки и наличием добавки бора, а также зависит от угла φ ориентировки ОКР относительно оси нити. Повышение как температуры, так и продолжительности обработки обусловливает формирование в материале углеродного

Углеродное	φ,		Межсл	оевое расст	гояние, Å	Средние размеры ОКР, nm					
волокно	deg	d_{002}^1	d_{002}^2	d_{002}^3	d_{002}^4	d_{002}^5	L_{002}^1	L^2_{002}	L_{002}^3	L_{002}^4	L_{002}^5
	0	3.350	_	3.391	3.415	_	20.5	_	15.5	5.6	_
	1	3.36	_	3.40	3.43	_	20.5	_	14	4.5	_
N 7	2	3.36	_	3.40	_	3.44	19	_	12	_	3.5
табл 1	3	3.36	_	3.41	_	3.44	18	_	13	_	4
10051. 1	4	_	3.37	3.41	_	3.46	_	17	11	_	3
	5	—	3.37	3.41	—	3.47	_	17	9.5	_	3
	6	—	3.38	—	3.426	3.49	—	14	-	8	2
	0	3.360	_	3.388	_	3.437	22.3	_	11.5	_	3.8
	1	3.36	_	3.39	_	3.433	25.1	_	12.3	-	4.3
N 11	2	3.36	_	3.40	—	3.45	20.5	—	11.0	_	3.6
табл 1	3	—	3.37	3.40	—	3.46	_	19.2	9.8	_	3.1
14051. 1	4	—	3.37	3.41	—	3.51	_	16.2	7.7	_	2.2
	5	—	3.38	3.41	—	3.50	_	15.2	7.6	_	2.1
	6	_	3.38	3.40	_	3.48	—	16.6	8.2	—	2.6
	0	3.359	_	3.394	-	3.449	25.0	_	9.8	-	3.1
	1	3.36	_	3.40	—	3.47	24.0	—	9.3	_	2.9
N 14	2	3.36	—	3.40	—	3.47	23.0	—	9.4	-	2.9
табл 1	3	3.36	_	3.40	_	3.47	20.8	_	8.9	-	2.7
10051, 1	4	—	3.37	3.41	—	3.49	—	16.2	7.6	—	2.3
	5	—	3.37	—	3.42	3.49	—	16.1		7.4	2.2
	6	—	3.38	—	3.42	3.49	—	13.7		6.8	2.0

Таблица 4. Изменение компонентного состава и параметров структуры ОКР при увеличении угла ориентировк φ к оси нити углеродного волокна

волокна компонент, которым соответствуют меньшие значения межплоскостных расстояний. Увеличение количества борсодержащей добавки активирует массоперенос, обусловливает формирование в том числе ОКР компонент, значение d_{002} которых соответствует графиту. Следует также отметить, что вычисленные значения d_{002} компонент исследованных углеродных волокон, как пра-

Рис. 4. Электронно-микроскопическое изображение поперечного сечения углеродного волокна, образец N 13.

вило, находятся в достаточно хорошем соответствии с приведенными в литературе данными.

Наблюдаемая зависимость компонентного состава от температуры и продолжительности термообработки, а также от угла ориентировки ОКР относительно оси нити позволяет предположить, что процесс перехода углеродного материала волокон в более равновесное состояние, по-видимому, развивается через ряд метастабильных. Формирование ОКР компонент с меньшим межплоскостным расстоянием и увеличение их количества обусловливает постепенное смещение экспериментально наблюдаемого дифракционного максимума 002 в сторону увеличения угла 2θ .

Выводы

Анализ профиля наиболее интенсивного асимметричного дифракционного максимума 002 углеродного волокна позволяет получить данные о его тонкой структуре.

Материал углеродных волокон гетерогенен, его компонентный состав определяется условиями получения и зависит от угла ориентировки областей когерентного рассеяния относительно оси нити.

Средние размеры областей когерентного рассеяния по мере перехода к компонентам, соответствующим

меньшим значениям d_{002} , увеличиваются и при этом зависят от угла ориентировки φ относительно оси нити.

Повышение температуры и продолжительности обработки, а также введение добавки бора стимулируют массоперенос и обусловливают формирование в углеродном материале компонент, межплоскостное расстояние d_{002} которых приближается к таковому графита.

Список литературы

- Buguslavskii M.B., Bodrov I.M., Kaverov A.T., Krestyannikov Y.A., Naimushin A.A., Podkopayev S.A., Fayzullin I.A., Frishberg A.M. Russian Inventor's Certificate. 1994. Vol. N 5. 51.
- [2] Lachter J., Bragg R.M. // Phys. Rev. B. 1986. Vol. 33, N 12.
 P. 8903–8905.
- [3] Tadjani M., Lechter Jacil, Kabret T.S., Bragg R.H. // Carbon. 1986. Vol. 24, N 4. P. 447–449.
- [4] Kawamura K., Bragg R.H. // Carbon. 1986. Vol. 24. N 3.
 P. 301–309.
- [5] Aladekomo J.B., Bragg R.H. // Carbon. 1990. Vol. 28. N 6.
 P. 897–906.
- [6] Wang C.S., Wu G.T., Li W.Z. // J. Power Sources. 1998. Vol. 76.
 P. 1–10.