12,18

Гексагональные двумерные слои соединений $A_N B_{8-N}$ на металлах

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 5 октября 2015 г.)

Методом сильной связи с использованием низкоэнергетического приближения получены аналитические выражения для плотностей состояний свободных графенободобных соединений $A_N B_{8-N}$ и плоских и измятых (buckled) эпитаксиальных монослоев на металлической подложке. Анализируются характерные особенности плотностей состояний в функции от величины константы связи слой — подложка и фактора измятости. Для свободных слоев сделаны оценки величин энергетических щелей и эффективной массы носителей. Для эпитаксиальных слоев выполнены оценки перехода заряда и энергии связи между слоем и подложкой.

1. Введение

Интерес к теоретическому описанию разнообразных двумерных (2D) структур в последнее время заметно растет (см., например, статьи [1–6] и ссылки, приведенные там). При этом значительное внимание уделяется графеноподобным соединениям (ГПС) $A_N B_{8-N}$ [7–14] и структурам, построенным на их основе [15–19]. Дело в том, что в отличие от графена, силицена и германена, в свободном состоянии являющихся полуметаллами, или бесщелевыми полупроводниками, соединения $A_N B_{8-N}$ (при $A \neq B$) характеризуются отличными от нуля значениями ширины запрещенной зоны. Именно это обстоятельство делает соединения $A_N B_{8-N}$ перспективными элементами приборных структур.

Если, однако, обращаться к реальным приборным структурам, то следует рассматривать не свободные 2Dлисты, а многослойные структуры, или, как минимум, эпитаксиальные слои, сформированные на твердотельных подложках. При этом подложка играет роль не только опоры для 2D-слоев, но может способствовать их образованию и устойчивости [12,13]. В настоящей работе мы рассмотрим металлические подложки.

В цитированных выше статьях (как и в подавляющем числе других работ в этой области) представлены результаты численных расчетов, выполненных на основе различных вариантов формализма функционала плотности. Здесь нами будет использован подход, основанный на теории функций Грина и методе сильной связи [20]. Такой подход дает возможность получить аналитические выражения для электронного спектра и плотности состояний эпитаксиальных слоев.

2. Общие соотношения

Для нахождения функции Грина

$$\mathbf{G} = \begin{pmatrix} G^{AA} & G^{AB} \\ G^{BA} & G^{BB} \end{pmatrix} \tag{1}$$

гексагонального монослоя чередующихся атомов A и B, находящегося на твердотельной подложке, воспользуемся адсорбционным подходом [21] и представим функцию Грина невзаимодействующих между собой адсорбированных атомов A и B в виде

$$\mathbf{g} = \begin{pmatrix} g^A & 0\\ 0 & g^B \end{pmatrix},$$
$$g^{A(B)}(\omega) = \left(\Omega_{a(b)} + i\Gamma_{a(b)}(\omega)\right)^{-1}) \tag{2}$$

где $\Omega_{a(b)} = \omega - \tilde{\varepsilon}_{a(b)}, \ \tilde{\varepsilon}_{a(b)} = \varepsilon_{a(b)} + \Lambda_{a(b)}(\omega), \ \omega$ — энергетическая переменная, $\varepsilon_{a(b)}$ — энергия *p*-орбитали атома A(B),

$$\Gamma_{a(b)}(\omega) = \pi V_{a(b)}^2 \rho_{\text{sub}}(\omega) \tag{3}$$

есть функция полуширины квазиуровня адатома A(B), $V_{a(b)}$ — матричный элемент взаимодействия атома A(B) с подложкой, $\rho_{sub}(\omega)$ — плотность состояний подложки,

$$\Lambda_{a(b)}(\omega) = P \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\Gamma_{a(b)}(\omega')d\omega'}{\omega - \omega'}$$
(4)

есть функция сдвига квазиуровня адатома A(B) (P — символ главного значения). При записи выражений (2)-(4) предполагается, что все адатомы A находятся в эквивалентных позициях, то же относится и к адатомам B.

На рис. 1 представлен участок 2D-структуры, необходимый для вывода выражений для функций Грина $G_{i,j}^{A(B)}(\omega, \mathbf{k})$, где i, j — номера узлов решетки. Координаты (x, y) пронумерованных на рис. 1 атомов в единицах расстояния между ближайшими соседями a есть: 0 — (0,0), 1 — $(-\sqrt{3}/2, 1/2)$, 2 — $(\sqrt{3}/2, 1/2)$, 3 — (0, -1), 11 — $(-\sqrt{3}/0)$, 21 — $(\sqrt{3}, 0)$, 12 — $(-\sqrt{3}/2, 3/2)$, 22 — $(\sqrt{3}/2, 3/2)$, 31 — $(-\sqrt{3}/2, -3/2)$,

Рис. 1. К выводу выражения (6): I — атомы, принадлежащие подрешетке *A*, II — подрешетке *B*; числа обозначают номера узлов.

32 — $(\sqrt{3}/2, -3/2)$. Включив взаимодействие t (энергию перехода) между p_z -орбиталями ближайших атомов A и B и используя уравнения Дайсона [20,21], получим следующие соотношения:

$$G_{0,0}^{AA} = g_{0,0}^{A} + g_{0,0}^{AA} t (G_{1,0}^{AB} + G_{2,0}^{BA} + G_{3,0}^{BA}),$$

$$G_{1,0}^{BA} = g_{11}^{B} t (G_{0,0}^{AB} + G_{11,0}^{AA} + G_{12,0}^{AA}),$$

$$G_{2,0}^{BA} = g_{22}^{B} t (G_{0,0}^{AA} + G_{22,0}^{AA} + G_{21,0}^{AA}),$$

$$G_{3,0}^{BA} = g_{33}^{B} t (G_{0,0}^{AA} + G_{31,0}^{AA} + G_{32,0}^{AA}),$$
(5)

где $g_{ij}^{A(B)} = g^{A(B)}\delta_{ij}$ и δ_{ij} — символ Кронекера. С учетом трансформационных свойств [20,21], функция Грина $G_{i,j}^{AA(BB)}$ принимает вид

$$G^{AA(BB)}(\omega, \mathbf{k}) = \frac{g^{A(B)}(\omega)}{1 - t^2 g^A(\omega) g^B(\omega) f^2(\mathbf{k})},$$
$$f(\mathbf{k}) = \sqrt{3 + 2\cos(k_x a \sqrt{3}) + 4\cos(k_x a \sqrt{3}/2)\cos(3k_y a/2)},$$
(6)

или

$$G^{AA(BB)}(\omega, \mathbf{k}) = \frac{\Omega_{b(a)} + i\Gamma_{b(a)}(\omega)}{\left(\Omega_a + i\Gamma_a(\omega)\right)\left(\Omega_b + i\Gamma_b(\omega)\right) - t^2 f^2(\mathbf{k})},$$
(7)

где $\mathbf{k} = (k_x, k_y)$ — волновой вектор для движения электрона в плоскости листа. Электронный спектр системы определяется из уравнения $\Omega_a \Omega_b = t^2 f^2(\mathbf{k})$, что дает

$$E_{\pm}(\omega, \mathbf{k}) = \varepsilon(\omega) \pm R(\omega, \mathbf{k}),$$
$$R(\omega, \mathbf{k}) = \sqrt{\Delta^2(\omega) + t^2 f^2(\mathbf{k})},$$
(8)

где $\varepsilon(\omega) = (\tilde{\varepsilon}_a + \tilde{\varepsilon}_b)/2$, $\Delta(\omega) = (\tilde{\varepsilon}_a - \tilde{\varepsilon}_b)/2$, откуда $\Omega_{a(b)} = \omega - \varepsilon(\omega) \mp \Delta(\omega)$. Отметим, что выражение (8) описывает для знака минус валентную π -зону, а для знака плюс — π^* -зону проводимости.

Плотность состояний эпитаксиальных ГПС в расчете на атом равна

$$\rho_{AB}(\omega) = \rho_A(\omega) + \rho_B(\omega),$$

$$\rho_{A(B)}(\omega) = -\frac{1}{2\pi N} \sum_{\mathbf{k}} \operatorname{Im} G^{AA(BB)}(\omega, \mathbf{k}), \qquad (9)$$

где $\rho_{A(B)}(\omega)$ — плотность состояний на адатоме A(B), $N = N_A = N_B$ — число атомов в подрешетках A и B(число элементарных ячеек), суммирование ведется по первой зоне Бриллюэна. Действительная и мнимая части функции Грина (7) приведены в Приложении (формулы (П1)-(П3)).

3. Свободные двумерные слои $A_N B_{8-N}$

В случае свободных (не связанных с подложкой) ГПС имеем $\Gamma_a(\omega) = \Gamma_b(\omega) = 0$, $\Lambda_a(\omega) = \Lambda_b(\omega) = 0$, так что $E_{\pm}(\mathbf{k}) = \varepsilon \pm \sqrt{\Delta^2 + t^2 f^2(\mathbf{k})}$, где $\varepsilon = (\varepsilon_a + \varepsilon_b)/2$, $\Delta = (\varepsilon_a - \varepsilon_b)/2$. Здесь и в дальнейшем используем для электронного спектра низкоэнергетическое приближение, положив $f(\mathbf{k}) \approx (3a/2)|\mathbf{q}|$, где $\mathbf{q} = \mathbf{K} - \mathbf{k}$, $\mathbf{K} = a^{-1}(2\pi/3\sqrt{3}, 2\pi/3)$ — волновой вектор точки Дирака [22]. Тогда для соединений $A_N B_{8-N}$ ширина щели в спектре при $\mathbf{q} = 0$ равна $2|\Delta| = |\varepsilon_a - \varepsilon_b|$. Для графена, силицена и германена щель отсутствует.

Для свободных ГПС плотность состояний равна

$$\rho_{AB}^{0}(\omega, \mathbf{k}) = \rho_{A}^{0}(\omega, \mathbf{k}) + \rho_{B}^{0}(\omega, \mathbf{k})$$
$$= \delta \big(\Omega - R(\mathbf{k})\big) + \delta \big(\Omega + R(\mathbf{k})\big), \qquad (10)$$

где $\Omega = \omega - \varepsilon$. Используя низкоэнергетическое приближение и переходя в (9) от суммирования к интегрирова-

Рис. 2. Зависимость приведенной плотности состояний $I_0(x)$ от приведенной энергии $x = \Omega/t$ для свободного монослоя $A_N B_{8-N}$. Пунктирная линия отвечает случаю $\delta = |\Delta|/t = 0$ (графен, силицен, германен).

Соединение	SiC	GeC	GeSi	SnC	SnSi	SnGe
Настоящая работа, таблицы [23]	2.45	2.65	0.16	3.03	0.58	0.42
Настоящая работа, таблицы [24]	3.48	3.74	0.26	4.31	0.83	0.57
[7] Структура	2.52* 4.19* F	2.09 3.83 F	0.02 0.00 B	1.18* 6.18* F	0.23 0.68 B	0.23 0.40 B
[8]	3.526	3.160	0.275	_	_	_
[11]	2.547*	2.108	_	_	_	_

Таблица 1. Значения ширины щели 2Δ = $\varepsilon_p^A - \varepsilon_p^B$ (eV) в сопоставлении с результатами расчетов из первых принципов [7,8,11] для свободных гексагональных 2D-соединений IV–IV

Примечание. * Непрямая щель, плоская F (flat) и B (buckled) структуры, верхние результаты работы [7] получены в рамках формализма функционала плотности без учета градиентной поправки, нижние — с учетом этой поправки.

Таблица 2. Значения ширины щели 2 $\Delta = \varepsilon_p^A - \varepsilon_p^B$ (eV) в сопоставлении с результатами расчетов из первых принципов [7,8,10–12] для свободных гексагональных 2D-соединений III–V

Соединение	BN	BP	BAs	BSb	AlN	AlP	AlAs	AlSb
Настоящая работа, таблицы [23]	4.83	1.69	1.27	0.60	6.61	3.47	3.05	2.38
Настоящая работа, таблицы [24]	5.41	1.11	0.55	-0.29	7.43	3.83	3.27	2.43
[7]	4.61	0.82	0.71	0.39	3.08*	—	—	1.49*
	6.36*	1.81	1.24	0.23	5.57*	—	—	2.16
Структура	F	F	F	F	F	-	-	В
[8]	6.377	1.912	1.594	-	-	3.453*	2.938*	-
[10]	4.48-6.07	0.82-1.36	0.72-1.18	0.29-0.61	-	-	-	-
[11]	4.606	_	_	_	3.037*	_	_	_
[12]	_	_	_	_	4.85	3.24	2.49	2.07
					5.03	3.93	3.08	2.17
Структура					F	F	В	В
	1	1			1	1	1	1
Соединение	GaN	GaP	GaAs	GaSb	InN	InP	InAs	InSb
Настоящая работа, таблицы [23]	6.57	3.43	3.01	2.34	6.78	3.64	3.22	2.55
Настоящая работа, таблицы [24]	8.17	3.87	3.31	2.47	8.47	4.17	3.61	2.77
[7]	2.27*	1.92*	1.29*	-	0.62*	1.18*	0.86*	0.68*
	5.00*	3.08*	2.96*	_	5.76*	2.88*	2.07*	1.84*
Структура	F	В	В	_	F	В	В	В
[8]	_	3.054*	2.475*	_	_	_	_	_
[11]	3.462*	_	_	_	_	_	_	_
[12]	3.23	2.51	1.83	1.43	1.52	1.80	1.41	1.25
	4.00	3.21	2.39	1.88	1.57	2.32	1.81	1.62
Структура	F	В	В	В	F	В	В	В

Примечание. * Прямая щель в точке Г; верхние результаты работ [7,12] получены в рамках формализма функционала плотности без учета градиентной поправки, нижние — с учетом этой поправки; остальные обозначения те же, что и в табл. 1.

нию (см. Приложение, формулы (П4)-(П6)), получим

$$\rho_{AB}^{0}(\Omega) = \begin{cases} \frac{1}{\pi\sqrt{3}} \frac{|\Omega|}{t^{2}}, & |\Omega| \ge |\Delta|, \\ 0, & |\Omega| < |\Delta|. \end{cases}$$
(11)

Приведенная плотность состояний $\bar{\rho}_{AB}^{0}(x) = \rho_{AB}^{0}(x)(\pi\sqrt{3}t) \equiv I_{0}(x)$ в функции от безразмерной энергии $x = \Omega/t$ представлена на рис. 2, где $\delta = |\Delta|/t$ — безразмерная полуширина щели. При $\Delta = 0$ выражение (11) переходит в плотность состояний свободного однослойного графена $\rho_{g}(\Omega) = |\Omega|/\pi\sqrt{3}t^{2}$ и совпадает с выражением (15) работы [22] без учета вырождения.

В табл. 1 и 2 приведены значения $2\Delta = \varepsilon_p^A - \varepsilon_p^B$ $(\varepsilon_p^{A(B)} -)$ энергия *p*-состояния атома A(B)), вычисленные по таблицам атомных термов Хермана-Скиллмана [23] и Манна [24] (см. также [25]). Там же представлены результаты расчетов из первых принципов, выполненные в рамках различных вариантов метода функционала плотности [7,8,10-12]. Как показано в [7,11,12] (см. также приведенные там ссылки на более ранние публикации), некоторые ГПС, находясь в свободном состоянии, имеют не плоскую (flat structure — F), а определенным образом перестроенную структуру, где атомы подрешеток располагаются не в одной, а в двух достаточно близко расположенных плоскостях. Такую структуру иногда называют измятой (buckled structure — B). В то же время расчеты [10] показывают, что плоская структура выгодна во всех рассмотренных случаях, а в [8,10] возможность появления измятой структуры игнорировалась. Следует также отметить, что в работах [7,8,10-12] для некоторых ГПС максимумы валентной зоны и минимумы зоны проводимости относятся к разным точкам зоны Бриллюэна (непрямые щели), что отмечено "звездочками" в табл. 1, 2. В настоящей работе для свободных ГПС измятую структуру мы не рассматриваем, наличие же непрямой щели несовместимо с формулой (8) (см. также [10]).

Сравнение значений $2\Delta = \varepsilon_p^A - \varepsilon_p^B$ с результатами расчетов [7,8,10–12] (с учетом их разброса, вызванного использованием различных вариантов метода функционала плотности), показывает удовлетворительное согласие за исключением случаев GaN и InN. (Для BSb получаем $\Delta < 0$, что означает не отсутствие щели вследствие перекрытия валентной и проводящей зон, а наличие неравенства $\varepsilon_p^A < \varepsilon_p^B$. Щель же в данном случае равна $2|\Delta|$). Вообще говоря, хорошо известно, что методы сильной связи, как правило, переоценивают ширину запрещенной зоны.

Плотности состояний свободных ГПС, полученные путем численных расчетов, приведены в [9,10,12,26]. Сравнение показывает, что использованное нами низкоэнергетическое приближение для *л*-электронов вполне приемлемо для описания плотности состояний ГСП в области щели и краев зон.

Воспользовавшись (8), легко показать, что для свободных 2D-ГПС с собственной проводимостью ($E_F = \varepsilon$) обратные эффективные массы электронов и дырок равны

Таблица 3. Расстояния между ближайшими соседями a (в Å), энергия перехода t (в eV), отношения Δ/t для свободных гексагональных 2D-соединений IV–IV

Соединение	SiC	GeC	GeSi	SnC	SnSi	SnGe
а	1.77	1.86	2.31	2.05	2.52	2.57
t	1.53	1.39	0.90	1.14	0.76	0.73
Δ/t ,	0.80	0.95	0.09	1.33	0.38	0.29
таблицы [23]						
Δ/t ,	1.14	1.35	0.14	1.89	0.55	0.39
таблицы [24]						
m_{e}/m_{0} ,	0.57	0.67	0.06	0.94	0.27	0.20
таблицы [23]						
m_e/m_0 ,	0.81	0.95	0.10	1.34	0.39	0.27
таблицы [24]						
3D ϕ_{AB} , eV	4.95 [38]	—	4.51 [39]	—	—	—

Примечание. Значение работы выхода SiC дано для 6*H*-политипа, за работу выхода принято среднее арифметическое работ выхода Si и Ge.

соответственно $m_{e,h}^{-1} = \pm \hbar^{-2} (\partial^2 R(q) / \partial q^2)_{q=0}$ (\hbar — приведенная постоянная Планка), откуда находим

$$\frac{1}{m_{e,h}} = \pm \frac{v_F^2}{|\Delta|}, \quad v_F = \frac{3at}{2\hbar}.$$
 (12)

Здесь мы по аналогии с графеном [22] ввели скорость Ферми $v_{\rm F}$, хотя в свободных невырожденных полупроводниковых ГПС нет электронов с фермиевской энергией. Согласно методу связывающих орбиталей Харрисона, матричный элемент π -взаимодействия p_z -орбиталей $t = \eta_{pp\pi} (\hbar^2/m_0 a^2)$, где $\eta_{pp\pi} = 0.63$, m_0 — масса свободного электрона [23–25]. Таким образом, $v_{\rm F} \propto a^{-1}$.

В табл. 3 и 4 представлены значения *a*, вычисленные из первых принципов различными авторами. Из таблиац следует, что отношение скоростей $v_{\rm F}(AB)/v_{\rm F}({\rm Gr}) = a({\rm Gr})/a(AB)$ всегда меньше 1, так как $a(AB) >= a({\rm Gr}) = 1.42$ Å. Там же приведены значения и соответствующие отношения Δ/t . Необходимо отметить следующее: для графена $t \approx 2.38$ eV, откуда $v_{\rm F} \approx 0.74 \cdot 10^6$ m/s, тогда как экспериментальное значение $v_{\rm F}({\rm Gr}) \approx 1.1 \cdot 10^6$ m/s [27]. Поэтому в рамках приближения сильной связи обычно принимают $t \sim 3$ eV. Мы, однако, здесь и в дальнейшем для всех оценок будем пользоваться теорией Харрисона [23–25].

В табл. 3 и 4 представлены отношения m_e/m_0 ($= -m_h/m_0$), вычисленные по формуле (12), в сопоставлении с результатами расчетов [13]. Для дырок согласие можно считать вполне удовлетворительным, для электронов полученное нами отношение m_e/m_0 значительно выше, чем в [13].

4. Плоские эпитаксиальные слои

Рассмотрим теперь эпитаксиальные слои ГПС, для которых положим $\Gamma_a(\omega) = \Gamma_b(\omega) = \Gamma(\omega)$, $\Lambda_a(\omega) = \Lambda_b(\omega)$ = $\Lambda(\omega)$, но $\varepsilon_a \neq \varepsilon_b$. Здесь требуются некоторые пояс-

Соединение	BN	BP	BAs	BSb	AlN	AlP	AlAs	AlSb
a [7,8]	1.45	1.83	1.93	2.12	1.79	2.28*	2.34*	2.57
a [10,12]	1.44	1.84	1.93	2.13	1.80	2.27	2.34	2.54
t	2.28	1.43	1.29	1.07	1.50	0.92	0.88	0.73
Δ/ <i>t</i> , таблицы [23]	1.06	0.59	0.49	0.28	2.21	1.88	1.74	1.64
Δ/ <i>t</i> , таблицы [24]	1.18	0.39	0.21	-0.14	2.48	2.07	1.86	1.67
<i>m_e/m</i> 0, таблицы [23]	0.75	0.42	0.35	0.20	1.56	1.33	1.22	1.15
<i>m_e/m</i> 0, таблицы [24]	0.83	0.33	0.15	0.10	1.75	1.47	1.30	1.17
$m_e/m_0, \ m_k/ /m_0, \ [13]$					1.24 2.33	0.59 1.37	0.48 1.20	0.38 1.01
$\begin{array}{c} \text{3D } \phi_{AB}, \text{eV} \\ [38] \end{array}$	_	_	—	_	_	4.80	4.58	4.41
Соединение	GaN	GaP	GaAs	GaSb	InN	InP	InAs	InSb
Соединение а [7,8]	GaN 1.85	GaP 2.25	GaAs 2.36	GaSb	InN 2.06	InP 2.46	InAs 2.55	InSb 2.74
Соединение а [7,8] а [10,12]	GaN 1.85 1.88	GaP 2.25 2.26	GaAs 2.36 2.34	GaSb - 2.53	InN 2.06 2.10	InP 2.46 2.45	InAs 2.55 2.53	InSb 2.74 2.70
Соединение <i>а</i> [7,8] <i>а</i> [10,12] <i>t</i>	GaN 1.85 1.88 1.40	GaP 2.25 2.26 0.95	GaAs 2.36 2.34 0.86	GaSb 2.53 0.75	InN 2.06 2.10 1.13	InP 2.46 2.45 0.79	InAs 2.55 2.53 0.74	InSb 2.74 2.70 0.64
Соединение <i>а</i> [7,8] <i>а</i> [10,12] <i>t</i> <i>Δ/t</i> , таблицы [23]	GaN 1.85 1.88 1.40 2.34	GaP 2.25 2.26 0.95 1.81	GaAs 2.36 2.34 0.86 1.75	GaSb 2.53 0.75 1.56	InN 2.06 2.10 1.13 3.00	InP 2.46 2.45 0.79 2.29	InAs 2.55 2.53 0.74 2.18	InSb 2.74 2.70 0.64 1.99
Соединение <i>а</i> [7,8] <i>а</i> [10,12] <i>t</i> <i>Δ/t</i> , таблицы [23] <i>Δ/t</i> , таблицы [24]	GaN 1.85 1.88 1.40 2.34 2.91	GaP 2.25 2.26 0.95 1.81 2.04	GaAs 2.36 2.34 0.86 1.75 1.92	GaSb - 2.53 0.75 1.56 1.65	InN 2.06 2.10 1.13 3.00 3.74	InP 2.46 2.45 0.79 2.29 2.63	InAs 2.55 2.53 0.74 2.18 2.44	InSb 2.74 2.70 0.64 1.99 2.17
Соединение <i>а</i> [7,8] <i>а</i> [10,12] <i>t</i> <i>Δ/t</i> , таблицы [23] <i>Δ/t</i> , таблицы [24] <i>m_e/m</i> 0, таблицы [23]	GaN 1.85 1.88 1.40 2.34 2.91 1.65	GaP 2.25 2.26 0.95 1.81 2.04 1.27	GaAs 2.36 2.34 0.86 1.75 1.92 1.24	GaSb - 2.53 0.75 1.56 1.65 1.10	InN 2.06 2.10 1.13 3.00 3.74 2.12	InP 2.46 2.45 0.79 2.29 2.63 1.62	InAs 2.55 2.53 0.74 2.18 2.44 1.53	InSb 2.74 2.70 0.64 1.99 2.17 1.40
Соединение <i>а</i> [7,8] <i>а</i> [10,12] <i>t</i> <i>Δ/t</i> , таблицы [23] <i>Δ/t</i> , таблицы [24] <i>m_e/m</i> 0, таблицы [24]	GaN 1.85 1.88 1.40 2.34 2.91 1.65 2.06	GaP 2.25 2.26 0.95 1.81 2.04 1.27	GaAs 2.36 2.34 0.86 1.75 1.92 1.24 1.36	GaSb - 2.53 0.75 1.56 1.65 1.10 1.16	InN 2.06 2.10 1.13 3.00 3.74 2.12 2.64	InP 2.46 2.45 0.79 2.29 2.63 1.62 1.86	InAs 2.55 2.53 0.74 2.18 2.44 1.53 1.72	InSb 2.74 2.70 0.64 1.99 2.17 1.40
Соединение <i>а</i> [7,8] <i>а</i> [10,12] <i>t</i> <i>Δ/t</i> , таблицы [23] <i>Δ/t</i> , таблицы [24] <i>m_e/m</i> 0, таблицы [24] <i>m_e/m</i> 0, таблицы [24] <i>m_e/m</i> 0, таблицы [24]	GaN 1.85 1.88 1.40 2.34 2.91 1.65 2.06 0.69 1.97	GaP 2.25 2.26 0.95 1.81 2.04 1.27 1.44 0.41 1.16	GaAs 2.36 2.34 0.86 1.75 1.92 1.24 1.36 0.33 1.06	GaSb - 2.53 0.75 1.56 1.65 1.10 1.16 0.28 0.91	InN 2.06 2.10 1.13 3.00 3.74 2.12 2.64 0.43 2.26	InP 2.46 2.45 0.79 2.29 2.63 1.62 1.86 0.37 1.39	InAs 2.55 2.53 0.74 2.18 2.44 1.53 1.72 0.32 1.27	InSb 2.74 2.70 0.64 1.99 2.17 1.40 1.53 0.28 1.09

Таблица 4. Расстояния между ближайшими соседями a (в Å), энергия перехода t (в eV), отношения Δ/t для свободных гексагональных 2D-соединений III–V

Примечание. Значения *a*, отмеченные звездочкой, взяты из работы [8], остальные — из работы [7]; значения *t* рассчитывались с использованием *a* из первой строки таблицы.

нения. Согласно теории Харрисона [23–25], матричные элементы $V_{a(b)} = \eta^{a(b)} (\hbar^2/m_0 d_{a(b)}^2)$, входящие в выражения (3) и (4) для функций уширения и сдвига, определяются, во-первых, характером взаимодействия адатом—подложка (множитель $\eta^{a(b)}$) и, во-вторых, расстояниями d_a и d_b между этими адатомами и по-

верхностью подложки. Для адатомов A и B в связи с подложкой участвуют p_z -орбитали, так что $\eta^a = \eta^b$. Принятые нами выше равенства предполагают, таким образом, плоскую F-структуру эпитаксиальных ГПС, для которой $d_a = d_b = d$ и $V_a = V_b = V$. Из (8) теперь получаем $E_{pm}(\omega, \mathbf{k}) = \varepsilon + \Lambda(\omega) \pm \sqrt{\Delta^2 + t^2} f^2(\mathbf{k})$, откуда следует, что зоны эпитаксиальных ГПС отличаются от зон свободных ГПС только сдвигом по оси энергии на величину $\Lambda(\omega)$, тогда как значение $2\Delta = \varepsilon_p^A - \varepsilon_p^B$ остается неизменным и не зависит от энергии. Плотность состояний имеет вид

$$\rho_{AB}(\tilde{\Omega}) = \frac{I(\Omega)}{\pi\sqrt{3}t},$$

$$I(\tilde{\Omega}) = \frac{\Gamma}{2\pi t} \ln \frac{|\xi^4 + b\xi^2 + c|}{c}$$

$$+ \frac{\tilde{\Omega}}{\pi t} \left(\operatorname{arctg} \frac{2\xi^2 + b}{4\Gamma\tilde{\Omega}} - \operatorname{arctg} \frac{b}{4\Gamma\tilde{\Omega}} \right).$$
(13)

Здесь $\tilde{\Omega} = \omega - \varepsilon(\omega), b = -2(\tilde{\Omega}^2 - \Delta^2 - \Gamma^2) c = (\tilde{\Omega}^2 - \Delta^2)^2 + \Gamma^2(\Gamma^2 + 2\Delta^2 + 2\tilde{\Omega}^2), \xi = 3taq_c/2$ — энергия обрезания, q_c — волновой вектор обрезания, для которого, согласно низкоэнергетическому приближению, должно выполняться неравенство $q_c \ll 2\pi/a$. Вслед за авторами работы [28], по аналогии с моделью Дебая, положим $\pi q_c^2 = (2\pi)^2/S$ ($S = 3a^2\sqrt{3}/2$ — площадь элементарной ячейки), откуда $q_c = 2\sqrt{2\pi}/a\sqrt{3\sqrt{3}} \approx 2.2/a$ и $\xi = \sqrt{2\pi\sqrt{3}t} \approx 3.3t$. При этом плотность состояний свободного графена $\rho_g(\Omega) = 2|\Omega|/\xi^2$ для $|\Omega| \le \xi$ и 0 в остальных случаях [21,28–30]. При $\Gamma = 0$ плотность состояний (13) обращается в 0 при $|\tilde{\Omega}| < |\Delta|$ и $|\tilde{\Omega}| > \sqrt{\xi^2 + \Delta^2}$, в интервале $\sqrt{\xi^2 + \Delta^2} \ge |\tilde{\Omega}| \ge |\Delta|$ имеем $\tilde{\rho}_{AB}(\tilde{\Omega}) = |\tilde{\Omega}|/\pi\sqrt{3t^2}$.

Для дальнейшего рассмотрения примем для металлической подложки простейшую модель плотности состояний Андерсона [20,21], в рамках которой $\rho_{\rm sub}(\omega)$ не зависит от энергии, так что $\Gamma(\omega) = \Gamma = {\rm const} \ {\rm u} \ \Lambda(\omega) = 0$. Последнее равенство следует из соотношения (4) в приближении бесконечно широкой зоны, когда интегрирование идет от $-\infty$ до $+\infty$. При этом $\tilde{\Omega} = \Omega = \omega - \varepsilon$.

На рис. З изображены зависимости приведенной плотности состояний $\rho_{AB}^*(x) = \rho_{AB}(x)(\pi\sqrt{3}t) \equiv I(x)$ от безразмерной энергии $x = \Omega/t$ для различных значений констант взаимодействия $\gamma = \Gamma/t$ и параметров щели $\delta = |\Delta|/t$. В силу симметрии $\rho_{AB}^*(x) = \rho_{AB}^*(-x)$ на рис. З представлена только область положительных энергий. Из рис. З (*b* и *c*) следует, что в эпитаксиальных ГПС на металле щель, как область запрещенных энергий, отсутствует. При малых значениях константы взаимодействия γ , можно определить такую область как псевдощель. С ростом константы γ влияние подложки усиливается, и при больших значениях константы взаимодействия псевдощель практически

Рис. 3. Зависимость приведенной плотности состояний I(x) от приведенной энергии $x = \Omega/t$ для плоской структуры при различных значениях констант взаимодействия $\gamma = \Gamma/t$ и безразмерных параметров щели $\delta = |\Delta|/t$ (изображена только область положительных энергий). $\delta = 0$ (*a*), 0.5 (*b*), 1.0 (*c*); $\gamma = 0.01$, 0.1, 0.5, 1.0.

исчезает. Рис. 3, *а* демонстрирует, что для графена, силицина и германена $\rho_{AB}^*(0) \neq 0$ в точке Дирака, в чем и состоит основной эффект взаимодействия с подложкой для гомополярных ГПС. На рис. 4 представлены значения приведенной плотности состояний I(0) в функции от константы взаимодействия γ (рис. 4, *a*) и полуширины щели δ (рис. 4, *b*). Следует отметить существенно нелинейный характер приведенных зависимостей.

Рассмотрим некоторые аналитические оценки для безразмерной плотности состояний I(x), общее выражение для которой приведено в Приложении, формула (П8). В центре псевдощели (при x = 0) имеем

$$I(0) = \frac{\gamma}{\pi} \ln \frac{\bar{\xi}^2 + \delta^2 + \gamma^2}{\delta^2 + \gamma^2},$$
 (14)

где $\bar{\xi} = 3.3$. Из (14) сразу же следует, что нелинейность зависимости I(0) от γ нарастает с уменьшением δ , что и демонстрирует рис. 4, *а*. Аналогичным образом ведет себя зависимость I(0) от δ : с уменьшением γ нелинейность нарастает.

Можно показать (см. Приложение, (П9), (П10)), что при $\delta = 0$ и $x^2 \ll \gamma^2 \ll \bar{\xi}^2$ имеем $I(x) - I(0) \approx x^2 / \pi \gamma$.

Рис. 4. Значения приведенной плотности состояний I(0) плоской структуры в функции от константы взаимодействия $\gamma(a)$ и полуширины щели $\delta(b)$.

Это соответствует случаю, изображенному на рис. 3, *а* для $\gamma = 0.01$ (квадратичная зависимость I(x) при $x^2 \ll 0.01$ в масштабе рисунка не проявляется). В более общем случае $x^2 \ll \min\{\gamma^2, \delta^2\}$ и $\bar{\xi}^2 \gg \max\{\gamma^2, \delta^2\}$ получаем $I(x) - I(0) \approx (\gamma x^2/\pi)(3\delta^2 + \gamma^2)/(\delta^2 + \gamma^2)^2$. При $\delta^2 \gg \gamma^2$ имеем $I(x) - I(0) \approx 3\gamma x^2/\pi \delta^2$, что объясняет зависимости рис. 3, *b* и *c* для случаев $\gamma = 0.01, 0.1$. В соответствии с выражением (П12) для случая $x^2 = \delta^2$ имеем $I(\delta) \approx (\delta/2) + (2\gamma/\pi) \ln \bar{\xi}$ (см. Приложение, (П11), (П12)), что описывает зависимости от δ и γ , представленные на рис. 3, *b* и *c*.

Пусть теперь $x^2 \gg \max\{\gamma^2, \delta^2\}$, но $|x| \ll \overline{\xi}$. Тогда получим $I(x) \approx |x| + O(\gamma)$. Таким образом, с ростом |x|

5. Измятые эпитаксиальные слои

Перейдем теперь к измятым эпитаксиальным слоям соединений $A_N B_{8-N}$ на металле. Общее выражение для плотности состояний дается формулами (П13) и (П14) Приложения. Пусть $\Gamma_a = \Gamma$, $\Gamma_b = \vartheta \Gamma$. Неравенство $\vartheta < 1$ ($\vartheta > 1$) означает, что $V_b < V_a$ ($V_b > V_a$), так как адатом *B* более (менее) удален от поверхности, чем адатом *A*. В этом случае плотность состояний имеет вид

$$\rho_{AB}'(\Omega) = \frac{1}{\pi\sqrt{3t}} I'(\Omega), \qquad (15)$$

$$\begin{split} I'(\omega) &= \frac{\Gamma(1+\vartheta)}{4\pi t} \ln \frac{|\xi^4 + b'\xi^2 + c'|}{c'} \\ &+ \frac{\Omega}{\pi t} \bigg(\arctan \frac{2\xi^2 + b'}{2\Gamma[(1+\vartheta)\Omega + (1-\vartheta)\Delta]} \\ &- \arctan \frac{b'}{2\Gamma[(1+\vartheta)\Omega + (1-\vartheta)\Delta]} \bigg), \end{split}$$

где $c' = (\Omega^2 - \Delta^2)^2 + \vartheta^2 \Gamma^4 + \Gamma^2 [(1 + \vartheta^2)\Omega^2 + (1 + \vartheta^2)\Delta^2 + 2(1 - \vartheta)\Omega\Delta]$ и $b' = 2(\vartheta\Gamma^2 + \Delta^2 - \Omega^2)$. Типичные графики функции I'(x), где по-прежнему $x = \Omega/t$, представлены на рис. 5. Здесь следует отметить отсутствие симметрии плотности состояний $\rho'_{AB}(\Omega)$ для случаев $\Delta \neq 0$ и $\vartheta \neq 1$: $I'(\Omega) \neq I'(-\Omega)$. При этом появляется особая точка $\Omega^* = -\Delta(1 - \vartheta)/(1 + \vartheta)$, в которой второе слагаемое в выражении (14) для $I'(\Omega)$ обращается в нуль (см. (П15)). Вообще говоря, в асимметрии плотности состояний нет ничего необычного. Так, например, при

Рис. 5. Плотность состояний измятой структуры.

Рис. 6. Зависимость отношений η_{pm} от фактора измятости ϑ .

учете взаимодействия вторых соседей в графене или межплоскостного взаимодействия в графите электроннодырочная симметрия исчезает (см., например, [22]).

Положим $1 - \vartheta = \alpha \ll 1$. Тогда в линейном приближении по α можно показать, что в точке $\Omega = 0$ приведенная плотность состояний измятой структуры I'(0) может быть представлена в виде

$$I'(0) \approx I(0) - \alpha S(0),$$

$$S(0) = \frac{\gamma}{2\pi} \left(\ln \frac{\bar{\xi}^2 + \delta^2 + \gamma^2}{\delta^2 + \gamma^2} - \frac{2\bar{\xi}^2 \gamma^2}{(\delta^2 + \gamma^2)(\bar{\xi}^2 + \delta^2 + \gamma^2)} \right),$$

(16)

где приведенная плотность состояний плоского слоя I(0) дается формулой (14). Аналогичным образом, легко показать, что $I'(x^*) \approx I(0) - \alpha S(0)$, где

 $x^* + \Omega^*/t = -\delta(1 - \vartheta)/(1 + \vartheta)$, так что $I'(x^*) \approx I'(0)$. Отсюда, в частности следует, что в области $x < |x^*|$ второе слагаемого в выражении (15) для $I'(\Omega)$ имеет максимум. Этот максимум, однако, достаточно мелкий и не проявляется в масштабе рис. 5.

Рассмотрим теперь отношения $\eta_{\pm} = I'(\pm\delta)/I(\delta)$, характеризующие степень асимметрии плотности состояний измятой структуры. Результаты соответствующих расчетов представлены на рис. 6. Для случая $1 - \vartheta = \alpha \ll 1$ приведенные плотности состояний $I'(\pm\delta) \approx I(\delta) - \alpha S(\pm\delta)$, где $I(\delta)$ дается выражением (П12), а $S(\pm\delta)$ — формулами (П16) и (П17). Считая для простоты $\bar{\xi}^2 \gg \max\{\gamma^2, \delta^2\}$, получим

$$S(\delta) \approx S(-\delta) \approx \frac{\gamma}{\pi} \left(\frac{1}{2} \ln \frac{\bar{\xi}^2}{\gamma (\gamma^2 + 4\delta^2)^{1/2}} - \frac{\gamma^2 + 3\delta^2}{\gamma^2 + 4\delta^2} \right),$$
(16a)

что соответствует зависимостям рис. 5 для $\vartheta = 0.8$ и рис. 6 для $\gamma = 0.1$. С уменьшением ϑ и увеличением γ асимметрия плотности состояний возрастает. Увеличивается также нелинейность зависимостей $\eta_{\pm}(\vartheta)$.

Оценка значений фактора измятости может быть выполнена следующим образом. Согласно (3), фактор измятости $\vartheta = \Gamma_b/\Gamma_a = (d_a/d_b)^4$. Положив для определенности $d_b = d_a + z_{\perp}$, получим $z_{\perp} = d_b(1 - \vartheta^{1/4})$. По данным [13] для эпитаксиальных слоев A_3B_5 на переходных и редкоземельных металлах значения z_{\perp} могут быть как положительными, так и отрицательными, а по величине сравнимыми с d_a и d_b (см. Supplemental Material к [13]). Вообще говоря, измятость слоев ГПС может быть унаследована ими от свободного состояния (см. В-структуры в табл. 1 и 2), а может возникнуть вследствие взаимодействия с подложкой.

Оценки перехода заряда и энергии связи слоя с подложкой

Оценим переход заряда между плоским слоем ГПС и металлической подложкой. Из общих соображений ясно, что в случае, когда уровень Ферми $E_{\rm F}$ металла совпадает с центром псевдощели, переход заряда отсутствует. Полагая $\gamma^2 \ll \delta^2 \ll \bar{\xi}^2$, в соответствии с (П9) аппроксимируем приведенную плотность состояний в области псевдощели выражением вида

$$I(x) \approx \frac{2\gamma}{\pi} \left(\ln(\bar{\xi}/\delta) + \frac{x^2}{\delta^2} \right).$$
(17)

При нулевой температуре среднее число заполнения n_{AB} на атом в слое есть

$$n_{AB} = \int_{-\infty}^{E_{\rm F}} \rho_{AB}(\omega) d\omega = \frac{1}{\pi\sqrt{3}} \int_{-\infty}^{e_{\rm F}} I(x) dx, \qquad (18)$$

где $e_{\rm F} = E_{\rm F}/t$ — приведенный уровень Ферми и за нуль энергии принято значение $\varepsilon = (\varepsilon_a + \varepsilon_b)$. Отсюда следует, что при малом смещении уровня Ферми от центра зоны в область отрицательных энергий число заполнения понижается на величину

$$\nu \approx \frac{2\gamma |e_{\rm F}|}{\pi^2 \sqrt{3}} \ln(\bar{\xi}/\delta), \tag{19}$$

а при смещении уровня Ферми в область положительных энергий число заполнения на ту же величину увеличивается. В первом случае слой ГПС заряжается положительно, во втором — отрицательно. Подчеркнем, что в соответствии с (18) рассматривается переход π -электронов.

Сделаем некоторые численные оценки. Будем считать, что p_z -состояния ГПС связаны σ -связью с *s*-состояниями металла. Соответствующий матричный элемент $V_{a(b)} = V_{sp\sigma} = \eta_{sp\sigma} (\hbar^2/m_0 d^2)$, где $\eta_{sp\sigma} = 1.42$ [24,25] (об оценке матричных элементов взаимодействия адатом-подложка см. подробнее [31]). В соответствии с моделью Фриделя (см., например, [32]) положим для переходных металлов $\rho_{sub} = N_d/W_m$, где W_m — ширина зоны проводимости, $N_d = 10$. Тогда вместо (19) имеем

$$\nu \approx \frac{2N_d}{\pi\sqrt{3}}\ln(\xi/|\Delta|) \left(\frac{\eta_{sp\sigma}}{\eta_{pp\pi}}\right)^2 \left(\frac{a}{d}\right)^4 \frac{|E_{\rm F}|}{W_m},\qquad(20)$$

откуда при $a \sim d$ получим $\nu \sim 20|E_{\rm F}|/W_m$. Отметим, что выражение (19) получено в предположении $|E_{\rm F}| \ll t$, откуда следует, что $|E_{\rm F}|/W_m \ll 1$ (значения W_m для переходных металлов приведены в [32,33]).

В рамках принятой нами модели энергия уровня Ферми $E_{\rm F} = \phi_m - |\varepsilon|$, где ϕ_m — работа выхода металлической подложки, $\varepsilon = (\varepsilon_p^A + \varepsilon_p^B)/2$ и $\varepsilon_p^{A(B)}$, как и выше, есть энергия p-состояния атома A(B), отсчитываемая от уровня вакуума. Согласно таблицам атомных термов (см. [23–25]) величина ε для углерода $\sim 10 \, \text{eV}$, тогда как работа выхода графена $\phi_{\rm Gr}$ равна 4.3–5.1 eV [34–36]. Поэтому в оценках следует полагать $E_{\mathrm{F}}=\phi_m=\phi_{AB},$ где ϕ_{AB} — работа выхода ГПС. В [12,13] показано, что наиболее перспективными подложками для формирования гексагональных 2D-слоев являются, в частности, медь и никель, работы выхода граней (100) которых равны соответственно $\phi_{Cu} = 4.59$ и $\phi_{Ni} = 5.22 \text{ eV}$ [37]. Таким образом, значения $\phi_{\mathrm{Gr}}, \phi_{\mathrm{Cu}}$ и ϕ_{Ni} близки по величине, так что для эпитаксиального графена неравенство $|e_{\rm F}| \ll 1$ выполняется с достаточной для оценок точностью. То же можно сказать и о 2D-соединений III-V, так как все вычисленные в [13] значения работ выхода ϕ_{AB} гексагональных структур попадают в интервал 4.25-5.25 eV. В последних строках табл. 3 и 4 представлены оценки работы выхода собственных объемных (3D) полупроводниковых соединений А_NB_{8-N}, приняв $\phi_{AB} = \chi_{AB} + E_g^{AB}/2$, где первое слагаемое — сродство к электрону, второе — полуширина запрещенной зоны (см. [38,39]). Приведенные в таблицах значения ϕ_{AB} не только попадают в область 4.25-5.25 eV, но и близки к результатам расчетов [13].

В соответствии с теорией [20,21], вызванное адсорбцией монослоя ГПС изменение работы выхода металлической подложки равно

$$\Delta\phi_m = -\frac{4\pi e^2 d}{(S/2)} \,\Delta Z,\tag{21}$$

где e — величина заряда электрона, ΔZ — изменение заряда адсорбированного атома, равное $\pm v$ соответственно для перехода π -электронов из слоя в подложку и наоборот. Вновь полагая $a \sim d$, получим $|\Delta \phi_m| \sim 10(e^2/a)v$. Учитывая, что $e^2 = 14.4 \text{ eV} \cdot \text{\AA}$ и $a \sim 2 \text{\AA}$, при $v \sim 0.01$ получаем $|\Delta \phi_m| \sim 0.7 \text{ eV}$. Так как смещение уровня Ферми на поверхности металла, вызванное адсорбцией, $\Delta E_F = -\Delta \phi_m$, полученная нами оценка близка к оценке [36], равной 0.47 eV для адсорбции графена на металлах. Полученное в [13] значение перехода ~ 0.25 электрона/атом представляется на порядок завышенным. Отметим, что в общем виде

$$|\Delta\phi_m| \propto \frac{e^2 a^2}{d^3} \frac{|E_{\rm F}|}{W_m}.$$
 (22)

Следует, однако, уточнить, что в случае ГПС понимать под монослоем [21]. В модели гладкой поверхности за монослой адсорбата принимают 2D-структуру, отвечающую какой-либо плотноупакованной плоскости соответствующей 3D-структуры. В этом случае поверхностная концентрация адатомов ГПС равна S/2, как и принято в (21). Если же считать, что поверхность подложки представляет собой сеть глубоких потенциальных ям, то монослою отвечает ситуация, когда все ямы заняты адатомами.

Перейдем теперь к оценке энергии адсорбционной связи E_{ads} монослоя ГПС с металлическим субстратом. Согласно теории адсорбции [20,21], E_{ads} можно представить в виде суммы металлической E_{met} и ионной E_{ion} составляющих. Первая вычисляется из стандартного выражения [20,21,33]

$$E_{\rm met} = \int_{-\infty}^{E_{\rm F}} (\omega - E_{\rm F}) \Delta \rho_{\rm sys}(\omega) d\omega, \qquad (23)$$

где $\Delta \rho_{\text{sys}}$ — изменение плотности состояний системы слой—подложка вследствие адсорбции. Не прибегая к вычислениям, воспользуемся для оценки E_{met} соотношением неопределенности $\Delta p_z \Delta z \sim \hbar$, где Δp_z и Δz — неопределенности импульса и координаты. Считая, что если в результате адсорбции в положении электрона свободного слоя в направлении, перпендикулярном слою, возникает неопределенность $\Delta z \sim d$, то выигрыш за счет понижения кинетической энергии есть (\hbar^2/m_0d^2). Учтем теперь, что делокализовалась только ν электронов на атом. Тогда металлическая составляющая энергии адсорбции есть

$$E_{\rm met} \sim -\nu \, \frac{\hbar^2}{m_0 d^2}.\tag{24}$$

Так как $\hbar^2/m_0 = 7.62 \,\mathrm{eV} \cdot \mathrm{\AA}^2$, то при $d = 2 \,\mathrm{\AA}$ и $\nu = 0.01$ получим $E_{\mathrm{met}} \sim 0.2 \,\mathrm{eV}$, что достаточно хорошо согласуется с результатами работы [13]. Составляющей $E_{\mathrm{ion}} \sim \nu^2 e^2/4d$ пренебрегаем.

7. Заключение

Итак, в настоящей работе методом сильной связи в низкоэнергетическом приближении для π -электронов получены в аналитическом виде плотности состояний свободных и эпитаксиальных (плоских и измятых) слоев ГПС.

При записи уравнений (5) априорно предполагалось, что все адатомы A(B) находятся в эквивалентных состояниях, что в теории адсорбции соответствует так называемой модели гладкой подложки [21]. Если кристаллографические характеристики 2D-слоя и поверхности субстрата существенно различны, такая ситуация может возникнуть только в том случае, когда взаимодействие атомов А и В намного сильнее их связи с подложкой. В нашей модели это соответствует случаю $\gamma \ll 1$. В проведенном анализе мы, однако, не ограничивались только малыми константами, отдавая себе отчет, что при $\gamma \sim 1$ и выше решетка ГПС должна претерпеть изменения, переходя как минимум в напряженное (деформированное) состояние, а как максимум выстраиваясь (при $\gamma \gg 1$) в структуру, аналогичную поверхностной грани субстрата. Как показано в [12,13], для монослоев А₃В₅ можно подобрать реальные пары подложка-слой, где рассогласование решеток контактирующих структур сравнительно мало.

Для описания металла мы пользовались простейшим приближением бесконечно широкой зоны. Введем модель "пьедестал", положив $\rho_{sub}(\omega) = N_d/W_m$ при $|\omega - \varepsilon_m| \le W_m/2$, где ε_m — энергия центра зоны проводимости, и $\rho_{sub}(\omega) = 0$ при $|\omega - \varepsilon_m| > W_m/2$. Тогда для плоских слоев $\Gamma(\omega) = \Gamma$ при $|\omega - \varepsilon_m| \le W_m/2$ и $\Gamma(\omega) = 0$ в остальных случаях, и

$$\Lambda(\omega) = \frac{N_d V^2}{W_m} \ln \left| \frac{W_m - 2\varepsilon_m + 2\omega}{W_m + 2\varepsilon_m - 2\omega} \right|.$$
 (25)

Если центр зоны проводимости металла ε_m расположен вблизи центра щели ГСП (начало отсчета энергии $(\varepsilon_a + \varepsilon_b) = 0$), когда $|\varepsilon_m|/W_m \ll 1$, то в области малых энергий $\Lambda(\omega) \approx (4N_dV^2/W_m^2)(\omega - \varepsilon_m)$. Ясно, что такая поправка лишь незначительно меняет плотность состояний, внося слабую асимметрию при $\varepsilon_m \neq 0$. Модель "пьедестал", однако, позволяет, смещая уровень Ферми от энергии $(-W_m + \varepsilon_m)$ к энергии $(W_m + \varepsilon_m)$, моделировать переход от металлов начала к металлам конца *d*-ряда. Заменив N_d на $N_f = 14$, можно описывать редкоземельные подложки.

Подчеркнем, что сделанные нами простые оценки ширины щелей, перехода заряда, смещения уровня Ферми и энергии адсорбции вполне в целом достаточно удовлетворительно согласуются с результатами численных расчетов. Отметим также, что настоящая работа является естественным продолжением работ по эпитаксиальному графену (см. [40] и ссылки, приведенные там). Как и в случае графена, предложенная здесь модель может служить для описания адсорбции на эпитаксиальных структурах [41], их транспортных [42,43] и термоэлектрических [44,45] свойств.

Приложение

1. Функция Грина, определяемая выражением (7), может быть переписана в виде $G^{AA(BB)} =$ = Re $G^{AA(BB)} + i \operatorname{Im} G^{AA(BB)}$, где

$$\operatorname{Re} G^{A(B)} = \frac{\Omega_{b(a)}(\Omega_a \Omega_b - t^2 f^2) + \Omega_{a(b)} \Gamma_{b(a)}^2}{|D|^2}, \quad (\Pi 1)$$

$$\operatorname{Im} G^{A(B)} = \frac{\Gamma_{b(a)}(\Gamma_a \Gamma_b - t^2 f^2) + \Gamma_{a(b)} \Omega_{b(a)}^2}{|D|^2}, \qquad (\Pi 2)$$

$$|D|^{2} = (\Omega_{a}\Omega_{b} - t^{2}f^{2})^{2} + \Gamma_{a}^{2}\Gamma_{b}^{2} + 2\Gamma_{a}\Gamma_{b}t^{2}f^{2} + \Gamma_{a}^{2}\Omega_{b}^{2} + \Gamma_{b}^{2}\Omega_{a}^{2}.$$
(II3)

Здесь для простоты записи входящие в формулы аргументы ω и **k** опущены.

2. В отсутствие связи с подложкой функции Грина (7) могут быть переписаны как

$$G^{A(B)}(\Omega, \mathbf{k}) = \frac{\Omega \mp \Delta}{(\Omega - R(\mathbf{k}))(\Omega + R(\mathbf{k}))}, \quad (\Pi 4)$$

где $\Omega = \omega - \varepsilon$, $R(\mathbf{k}) = \sqrt{\Delta^2 + t^2 f^2(\mathbf{k})}$. Тогда

$$G^{A}(\Omega, \mathbf{k}) + G^{B}(\Omega, \mathbf{k}) = \frac{1}{\Omega - R(\mathbf{k}) + is} + \frac{1}{\Omega + R(\mathbf{k}) + is},$$
$$s = 0^{+} \tag{\Pi5}$$

и выражения (9) принимают вид

$$\rho_{AB}(\Omega) = \frac{S}{(2\pi)^2} 2\pi \frac{1}{(3ta/2)^2}$$
$$\times \int z dz [\delta(\Omega - R(z)) + \delta(\Omega + R(z))]. \quad (\Pi 6)$$

При выводе выражения (Пб) мы перешли от суммирования к интегрированию по общему правилу

$$\frac{1}{N}\sum_{\mathbf{k}}(\ldots) \to \frac{S}{(2\pi)^2}\int(\ldots)d\mathbf{k}$$
(II7)

 $(S = 3a^2\sqrt{3}/2$ — площадь элементарной ячейки) и использовали низкоэнергетическое приближение $(z = 3taq/2, R(z) = \sqrt{\Delta^2 + z^2})$. Выполнив интегрирование в (Пб), получим выражение (11).

3. В приведенном виде плотность состояний (12) принимает вид $\rho_{AB}^*(x) = I(x)$, где

$$I(x) = \frac{\gamma}{2\pi t} \ln \frac{\bar{\xi}^4 + \bar{\xi}^2 \bar{b} + \bar{c}}{\bar{c}} + \frac{|x|}{\pi t} \left(\operatorname{arctg} \frac{2\bar{\xi}^2 + \bar{b}}{4\gamma |x|} - \operatorname{arctg} \frac{\bar{b}}{4\gamma |x|} \right), \qquad (\Pi 8)$$

где $\bar{b} = 2(\delta^2 + \gamma^2 - x^2), \quad \bar{c} = (x^2 - \delta^2)^2 + \gamma^2(\gamma^2 + 2\delta^2 + 2x^2), \quad \bar{\xi} = 3.3.$ Пусть $x^2 \ll \delta^2$. Тогда

$$I(x) \approx I(0) + \frac{\gamma x^2}{\pi} \left(\frac{8\bar{\xi}^2}{\bar{b}_0(2\bar{\xi}^2 + \bar{b}_0)} - \frac{\bar{\xi}^2}{\bar{\xi}^4 + \bar{\xi}^2\bar{b}_0 + \bar{c}_0} + (\delta^2 - \gamma^2) \frac{\bar{\xi}^4 + \bar{\xi}^2\bar{b}_0}{\bar{c}(\xi^4 + \bar{\xi}^2\bar{b}_0 + \bar{c}_0)} \right), \ I(0) = \frac{\gamma}{\pi} \ln \frac{\bar{\xi}^2 + \delta^2 + \gamma^2}{\delta^2 + \gamma^2}.$$
(II9)

Полагая $\bar{\xi}$ самым большим параметром задачи, получим

$$I(x) \approx I(0) + \frac{\gamma x^2}{\pi} \frac{3\delta^2 + \gamma^2}{\delta^2 + \gamma^2}.$$
 (II10)

При энергиях $x^2 = \delta^2$, отвечающих границам псевдощели ГПС, получим

$$I(\delta) = \frac{\gamma}{2\pi t} \ln \frac{(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2}{\gamma^2 (\gamma^2 + 4\delta^2)} + \frac{\delta}{\pi t} \left(\operatorname{arctg} \frac{\bar{\xi}^2 + \gamma^2}{2\gamma\delta} - \operatorname{arctg} \frac{\gamma}{2\delta} \right).$$
(II1)

Вновь полагая $\bar{\xi}$ наибольшей величиной, найдем

$$I(\delta) \approx \frac{\gamma}{\pi t} \ln \frac{\bar{\xi}^2}{\gamma (\gamma^2 + 4\delta^2)^{1/2}} + \frac{\delta}{\pi t} \left(\frac{\pi}{2} - \arctan \frac{\gamma}{2\delta}\right). \tag{\Pi12}$$

4. В общем случае плотность состояний эпитаксиального ГПС имеет вид

$$\tilde{\rho}_{AB}(\omega) = \frac{1}{\pi\sqrt{3}t}\,\tilde{I}(\omega),\tag{II13}$$

$$\tilde{I}(\omega) = \frac{\Gamma_a(\omega) + \Gamma_b(\omega)}{4\pi t} \ln \frac{|\xi^4 + \tilde{b}\xi^2 + \tilde{c}|}{\tilde{c}} + \frac{\Gamma_a(\omega)\Omega_b^2 + \Gamma_b(\omega)\Omega_a^2 + [\Gamma_a(\omega) + \Gamma_b(\omega)]\Omega_a\Omega_b}{2\pi t C(\omega)}$$

$$\times \left(\operatorname{arctg} \frac{2\xi^2 + \tilde{b}}{2C(\omega)} - \operatorname{arctg} \frac{\tilde{b}}{2C(\omega)} \right), \qquad (\Pi 14)$$

где $\tilde{b} = 2[\Gamma_a(\omega)\Gamma_b(\omega) - \Omega_a\Omega_b], \ \tilde{c} = \Omega_a^2\Omega_b^2 + \Gamma_a^2(\omega)\Gamma_b^2(\omega) + \Gamma_a^2(\omega)\Omega_b^2 + \Gamma_b^2(\omega)\Omega_a^2, \ C(\omega) = \Gamma_a(\omega)\Omega_b + \Gamma_b(\omega)\Omega_a.$ При $\Omega = \Omega^*$ коэффициенты \tilde{b} и \tilde{c} для случая металлического субстрата принимают вид

$$b'(\Omega^*) = 2\vartheta \left(\Gamma^2 + \frac{4\Delta^2}{(1+\vartheta)^2}\right),$$
 (II15)

$$\begin{split} c'(\Omega^*) &= \vartheta^2 \Gamma^4 + 2\Gamma^2 \Delta^2 \bigg(\frac{(1+\vartheta^2)^2}{(1+\vartheta)^2} - \frac{(1-\vartheta)^2}{1+\vartheta} \bigg) \\ &+ \frac{16\vartheta^2 \Delta^4}{(1+\vartheta)^4}. \end{split}$$

Так как $b'(\Omega^*) > 0$, то величина $I'(\Omega^*)$ дается первым слагаемым второго из выражений (14).

5. Для измятых слоев величины приведенных плотностей состояний при $1 - \vartheta = \alpha \ll 1$ и $x = \pm \delta$ равны $I'(\pm \delta) \approx I(\delta) - \alpha S(\pm \delta)$, где $I(\delta)$ дается выражением (П11) и

$$S(\delta) = \frac{\gamma}{\pi} \left(\frac{1}{4} \ln \frac{(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2}{\gamma^2 (\gamma^2 + 4\delta^2)} - \frac{\gamma^2 + \delta^2}{\gamma^2 + 4\delta^2} + \frac{\gamma^2 (\bar{\xi}^2 + \gamma^2 + \delta^2)}{(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2} \right) - \frac{2\gamma}{\pi} \frac{\bar{\xi}^2 (\bar{\xi}^2 + 2\gamma^2) \delta^2}{(\gamma^2 + 4\delta^2) [(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2]}, \quad (\Pi 16)$$

$$S(-\delta) = \frac{\gamma}{\pi} \left(\frac{1}{4} \ln \frac{(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2}{\gamma^2 (\gamma^2 + 4\delta^2)} - \frac{\gamma^2 + 3\delta^2}{\gamma^2 + 4\delta^2} + \frac{\gamma^2 (\bar{\xi}^2 + \gamma^2 + 3\delta^2)}{(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2} \right) - \frac{2\gamma}{\pi} \frac{\bar{\xi}^2 \gamma \delta}{(\bar{\xi}^2 + \gamma^2)^2 + 4\gamma^2 \delta^2}.$$
 (II17)

Список литературы

- [1] M. Xu, T. Liang, M. Shi, H. Chen. Chem. Rev. **113**, 3766 (2013).
- [2] A.K. Geim, I.V. Grigorieva. Nature **49**9, 419 (2013).
- [3] Z. Sun, H. Chang. ASC Nano 8 (5), 4133 (2014).
- [4] P. Li, I. Appelbaum. Phys. Rev. B 90, 115439 (2014).
- [5] S. Guan, S.A. Yang, L. Zhu, J. Hu, Y. Yao. arXiv: 1502.0232.
- [6] T. Brumme, M. Calandra, F. Mauri. arXiv: 1501.07223.
- [7] H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci. Phys. Rev. B 80, 155453 (2009).
- [8] T. Suzuki, Y. Yokomizo. Physica E 40, 2820 (2010).
- [9] S. Wang, J. Phys. Soc. Jpn. 79, 064602 (2010).
- [10] H.L. Zhuang, R.G. Hennig. Appl. Phys. Lett. 101, 153 109 (2012).
- [11] G. Mukhopadhyay, H. Behera. World J. Eng. 10, 39 (2013).
- [12] H.L. Zhuang, A.K. Singh, R.G. Hennig. Phys. Rev. B 87, 165 415 (2013).
- [13] A.K. Singh, H.L. Zhuang, R.G. Hennig. Phys. Rev. B 89, 245 431 (2014).
- [14] C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, L.-M. Liu, J. Mater. Chem. A 2, 17 971 (2014).
- [15] R.M. Feenstra, D. Jena, G. Gu. J. Appl. Phys. 111, 043 711 (2012).
- [16] J. Beheshtian, D.A. Sadeghi, M. Neek-Amal, K.H. Michel, F.M. Peeters. Phys. Rev. B 86, 195433 (2012).
- [17] M. Neek-Amal, F.M. Peeters. Appl. Phys. Lett. 104, 041 909 (2014).
- [18] V. Zoliomi, J.R. Wallbank, V.I. Fal'ko. 2D Materials 1, 011 005 (2014).
- [19] J.E. Padilha, A. Fazzio, A.J.R. da Silva. Phys. Rev. Lett. 114, 066 803 (2015).
- [20] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наноситем. Изд-во "Лань", СПб. (2014). 192 с.
- [21] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2013. 235 с. twirpx.com/file/1596114/
- [22] A.H. Castro Neto, F. Guinea, N.M.R. Peres, R.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [23] У. Харрисон. Электронная структура и свойства твердых тел. Мир, М. (1983), т. 1, 382 с.
- [24] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
- [25] С.Ю. Давыдов, О.В. Посредник. Метод связывающих орбиталей в теории полупроводников. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2007. 96 с. twirpx.com/file/1014608/
- [26] H. Mousavi. ΦΤΠ **48**, 636 (2015).
- [27] Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim. Nature 438, 201 (2005).
- [28] N.M.R. Peres, F. Guinea, A.H. Castro Neto. Phys. Rev. B 73, 125 411 (2006).

- [29] С.Ю. Давыдов, О.В. Посредник. ФТТ, 57, 1654 (2015).
- [30] S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi. Rev. Mod. Phys. 83, 407 (2011).
- [31] С.Ю. Давыдов. ФТП 46, 204 (2012).
- [32] В.Ю. Ирхин, Ю.П. Ирхин. Электронная структура, физические свойства и корреляционные эффекты в *d*- и *f*-металлах и их соединениях. УрО РАН, Екатеринбург (2004). 472 с.
- [33] T.L. Einstein, J.R. Schrieffer. Phys. Rev. B 7, 3629 (1973).
- [34] A. Mattausch, O. Pankratov. Phys. Rev. Lett. 99, 076 802 (2007).
- [35] K.T. Chan, L.B. Neaton, M.L. Cohen. Phys. Rev. B 77, 235 430 (2008).
- [36] G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van der Brink, P.J. Kelly. Phys. Rev. Lett. 101, 026 803 (2008).
- [37] Физические величины. Справочник. Под ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991). 1232 с.
- [38] С.Ю. Давыдов. ФТП 41, 718 (2007).
- [39] Ф. Бехштедт, Р. Эндерлайн. Поверхности и границы раздела полупроводников. Мир, М. (1990). 488 с.
- [40] С.Ю. Давыдов. ФТП 47, 97 (2013).
- [41] С.Ю. Давыдов. ФТТ 56, 1430 (2014).
- [42] З.З. Алисултанов. Письма в ЖТФ **39**, 13, 32 (2013).
- [43] С.Ю. Давыдов. ФТТ **56**, 816 (2014).
- [44] З.З. Алисултанов. Письма в ЖЭТФ **98**, 121 (2013).
- [45] Z.Z. Alisultanov. Physica E 69, 89 (2015).