06;09

Спектры поглощения объемных кристаллов нитрида алюминия, легированных ионами Er³⁺

© Ю.В. Жиляев, В.В. Зеленин, Е.Н. Мохов, С.С. Нагалюк, Н.К. Полетаев, А.П. Скворцов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: A.Skvortsov@mail.ioffe.ru

Поступило в Редакцию 11 сентября 2015 г.

Представлены результаты исследования спектров поглощения объемных кристаллов AlN: Er³⁺. В спектральном диапазоне 370–700 nm обнаружены линии поглощения, отвечающие внутриконфигурационным электронным переходам из основного состояния ⁴I_{15/2} на уровни возбужденных состояний ионов Er³⁺. При 2 K детально исследованы переходы на уровни ⁴F_{9/2}, ²H_{11/2} и ⁴G_{11/2} состояний. Число наблюдавшихся линий для перечисленных переходов полностью соответствует теоретически возможному для электронных f - f-переходов в ионах Er^{3+} , находящихся в некубическом кристаллическом поле. Малая ширина наблюдавшихся линий и их количество свидетельствуют о замещении ионами эрбия преимущественно одной регулярной кристаллической позиции. Наиболее вероятным представляется нахождение Er^{3+} в позиции Al. Определены энергетические положения уровней возбужденных состояний для исследованных переходов.

Широкозонные полупроводники, легированные редкоземельными ионами (в том числе нитриды галлия и алюминия), вызывают непреходящий интерес в связи с возможными применениями в оптоэлектронике, в лазерных системах и в устройствах волоконно-оптической связи. Одним из таких перспективных материалов является AlN: Er^{3+} . В существующей до настоящего времени литературе представлены результаты исследований фотолюминесценции образцов AlN: Er^{3+} в виде тонких пленок [1], поликристаллических керамик [2], в аморфном состоянии [3], а также катодолюминесценции монокристаллов 2*H*-AlN: Er^{3+} [4]. Спектры оптического поглощения объемных кристаллов AlN с примесью Er^{3+} не исследовались, по-видимому, из-за сложностей с внедрением примеси в достаточно высокой концентрации в этот материал.

91

В данной работе представлены результаты исследования f-f спектров поглощения ионов Er^{3+} в объемных кристаллах AlN, выращенных методом сублимации, а также полученных газотранспортной эпитаксией в хлоридной системе. Введение легирующей примеси производилось путем диффузии металлического эрбия.

Исходные объемные кристаллы AlN (пространственная группа симметрии C_{6v}^4) были выращены в атмосфере азота (давление 0.2–0.8 ATM) методом сублимации [5] при T = 1900-2300°C на подложках карбида кремния (SiC). Скорость роста $\approx 100 \,\mu$ m/h. После отделения подложки SiC кристаллы AlN доращивались до толщины 10-15 mm. Затем полученные кристаллы разрезались на пластины толщиной $\approx 500\,\mu$ m. Для получения более полной и объективной информации были выращены эпитаксиальные слои AIN методом газофазной эпитаксии в хлоридной системе Al – HCl – NH₃ – H₂ на сапфировых (Al₂O₃) подложках с ориентацией (0001) при температуре 1050-1100°С. Толщина эпитаксиального слоя AlN составляла $\approx 4\,\mu\text{m}$. В обоих случаях легирующая примесь — металлический эрбий — была нанесена на поверхность исследуемых образцов напылением в вакууме. После чего методом диффузии в атмосфере азота активатор-эрбий внедрялся в матрицу кристалла AlN при $T \approx 1200^{\circ}$ С в течение 120 min. Для удаления остатков не продиффундировавшего эрбия с поверхности AlN все образцы подвергались травлению в растворе HNO₃ : HCl = 1 : 3. Спектроскопические исследования проводились в поляризованном свете с вектором **Е** \perp C₆ (где C₆ — гексагональная ось кристалла) при температурах 293, 77 и 2К. Измерения спектров проводились на спектрофотометре DF-170 и двойном монохроматоре ДФС-24.

В предварительных опытах при T = 293 К в оптических спектрах исследованных кристаллов наблюдались широкие бесструктурные полосы с максимумами поглощения при 650, 520 и 380 nm. При T = 77 К полосы становились структурированными, а понижение температуры от 77 до 2 К приводило к уменьшению числа линий, их сужению и возрастанию интенсивностей оставшихся линий. При 2 К, когда переходы происходят только с самого нижайшего подуровня основного состояния, появилась возможность выявить структуру спектрально неразрешенных при 77 К мультиплетов возбужденных состояний и надежно определить число подуровней мультиплетов. Здесь следует заметить, что количество энергетических уровней в мультиплетах и соответственно спектральных линий, вызванных переходами между комбинирующими уровнями, решающим образом зависит от симметрии окружающего локаль-

Мультиплет	Энергии штарковских подуровней, cm ⁻¹	Теоретически ожидаемое число компонент	Экспериментально наблюдаемое число компонент	Полное расщепление мультиплетов, cm ⁻¹
${}^{4}I_{15/2}$	0, 39,	8		
⁴ F _{9/2}	15439, 15336, 15282, 15200, 15122	5	5	317
² H _{11/2}	19246, 19189, 19136, 19071, 19044, 19038	6	6	208
${}^{4}G_{11/2}$	26459, 26388, 26277, 26205, 26113, 26089	6	6	370

Энергетические положения уровней мультиплетов Er³⁺ в AlN при 2 K, теоретическое число компонент расщепления исследованных мультиплетов и полное расщепление мультиплетов

ного кристаллического поля, в котором находится ион примеси. Так, для ионов с нечетным числом электронов, к которым относится и Er^{3+} (4 f^{11}), количество подуровней мультиплетов различается для случаев кубического и некубического кристаллического поля. В кристаллах AlN, характеризуемых гексагональной пространственной группой симметрии C_{6v}^4 , могут существовать только некубические локальные центры с максимально возможным числом подуровней мультиплетов, соответствующим полному снятию вырождения в кристаллическом поле для уровней крамерсова иона Er^{3+} . Теоретически возможное количество уровней мультиплетов для некубических центров приведено в таблице.

Наиболее детально были изучены спектральные области 644–662, 518–526 и 377–385 nm, где наблюдались группы линий поглощения, обусловленные внутриконфигурационными f-f-переходами с нижайших подуровней основного ${}^{4}I_{15/2}$ состояния эрбия ${}^{4}I_{15/2}$ на уровни возбужденных ${}^{4}F_{9/2}$, ${}^{2}H_{11/2}$ и ${}^{4}G_{11/2}$ состояний иона Er^{3+} . На рисунке a-c приведены спектры пропускания кристаллов AIN: Er^{3+} в области переходов ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$, ${}^{2}H_{11/2}$, ${}^{4}G_{11/2}$. Как видно из рисунков, при $T = 2 \mathrm{K}$ спектр перехода ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$ состояти из 5 линий, перехода

Спектр пропускания AlN: Er³⁺ в области перехода ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$ (*a*), ${}^{4}I_{15/2} \rightarrow {}^{2}H_{11/2}$ (*b*), ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$ (*c*), *T* = 2 K.

Письма в ЖТФ, 2016, том 42, вып. 3

Рисунок (продолжение).

 ${}^4I_{15/2} \to {}^2H_{11/2}$ из 6 линий и перехода ${}^4I_{15/2} \to {}^4G_{11/2}$ тоже из 6 линий, что полностью совпадает с теоретически возможным числом линий для ионов Er³⁺, находящихся в некубическом кристаллическом поле. Анализ полученных спектров позволил определить энергетические положения подуровней исследованных возбужденных состояний. Кроме того, сравнение спектров, полученных при 77 и 2К, дало возможность определить энергетическое положение нижайших подуровней основного ${}^{4}I_{15/2}$ состояния. Результаты представлены в таблице. Важно заметить, что спектры исследованных переходов, как оказалось, практически совпадают как для кристаллов, выращенных методом сублимации, так и для кристаллов, полученных методом газофазной эпитаксии. Экспериментально наблюдавшееся количество линий при 2К и их узость (полуширина $\approx 6-8\,{
m cm}^{-1}$) дают весомые основания считать, что в исследованных образцах ионы Е³⁺ занимают преимущественно одну регулярную позицию в кристаллической решетке AlN. Наиболее вероятным представляется нахождение Er³⁺ в позиции Al.

Как известно, редкоземельные ионы (RE³⁺) имеют частично заполненную 4*f*-оболочку, экранированную полностью заполненными

 $5s^25p^6$ -оболочками. Экранирующее действие внешних оболочек приводит к слабому взаимодействию внутриконфигурационных переходов с окружающей кристаллической решеткой. Вследствие этого спектр конкретного RE³⁺-иона сравнительно слабо меняется по спектральному положению при помещении его в различные кристаллические матрицы. Наиболее близкая к AlN: Er³⁺ структура уровней исследованных мультиплетов иона эрбия обнаружена в кристаллах Er₂O₃[6], Y₂O₃ : Er³⁺ [7] и GaN : Er³⁺ [8].

Таким образом, число наблюдавшихся при температуре 2 K спектральных линий и их узость убедительно свидетельствуют о том, что примесные ионы Er^{3+} замещают в гексагональной решетке AlN одну регулярную позицию — позицию Al. Определены энергетические положения уровней возбужденных состояний Er^{3+} для исследованных переходов в объемных кристаллах нитрида алюминия, выращенных методом сублимации и газофазной эпитаксией.

Результаты представленной работы являются, по нашему мнению, первым наблюдением f-f-спектров поглощения ионов эрбия в кристаллах нитрида алюминия.

Список литературы

- [1] Oliveira J.C., Cavaleiro A., Vieira M.T. et al. // Opt. Mater. 2003. V. 24. P. 321–325.
- [2] Merkle Larry D., Sutorik Anthony C., Sanamyan Tigran et al. // Opt. Mater. Express. 2012. V. 2. N 1. P. 78–91.
- [3] Maqbool Muhammad, Corn Tyler R. // Opt. Lett. 2010. V. 35. N 18. P. 3117-3119.
- [4] John B.Gruber, Ulrich Vetter, Gary W. Burdick et al. // Opt. Mater. Express. 2012. V. 2. N 9. P. 1186–1202.
- [5] Mokhov E.N., Avdeev A.V., Barash I.S., Chemikova T.Yu., Roenkov A.D., Karpov S.Yu., Segal A.S., Wolfson A.A., Makarov Yu.N., Ramm M.G., Helava H. // J. Cryst. Growth. 2005. V. 281. N 1. P 93–1000.
- [6] Gruber J.B., Henderson J.R., Muramoto M. et al. // J. Chem. Phys. 1966. V. 45. N 2. P. 477–482.
- [7] Kisliuk P., Krupke W.F., Gruber J.B. // J. Chem. Phys. 1964. V. 40. N 12. P. 3606– 3610.
- [8] Krivolapchuk V.V., Mezdrogina M.M., Raevskii S.D., Skvortsov A.P., Yusupova Sh.A., Zhilyaev Yu.V. // Phys. Stat. Sol. (a). 2003. V. 195. N 1. P. 112– 115.