09,04

Спектральные характеристики и перенос энергии от Ce^{3+} к Tb^{3+} в соединениях $Lu_{1-x-y}Ce_xTb_yBO_3$

© С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько

Институт физики твердого тела РАН, Черноголовка, Россия E-mail: shmurak@issp.ac.ru

(Поступила в Редакцию 22 июля 2015 г.)

Проведены исследования структуры, ИК-спектров поглощения, морфологии и спектральных характеристик соединений Lu_{1-x-y}Ce_xTb_yBO₃. Показано, что в спектре возбуждения люминесценции ионов Tb³⁺ в соединениях Lu_{1-x-y}Ce_xTb_yBO₃ доминирует широкая полоса, совпадающая с полосой возбуждения ионов Ce³⁺, что однозначно свидетельствует о переносе энергии от ионов Ce³⁺ к Tb³⁺. Спектральное положение этой полосы зависит от структурного состояния образца: ее максимумы в структурах кальцита и ватерита находятся при ~ 339 и ~ 367 nm соответственно. Изменение соотношения между фазами кальцита и ватерита в образце позволяет направленно изменять спектр возбуждения свечения ионов Tb³⁺, что важно для оптимизации спектральных характеристик Lu_{1-x-y}Ce_xTb_yBO₃ при его использовании в светодиодных источниках света. Проведена оценка максимального расстояния между ионами Ce³⁺ и Tb³⁺, при котором осуществляется перенос энергии электронного возбуждения. Показано, что высокая интенсивность свечения ионов Tb³⁺ в результате диполь-дипольного взаимодействия.

1. Введение

На протяжении многих лет ведется поиск способов направленного изменения спектральных характеристик оптически активных материалов. Это становится особенно актуальным в связи с широким использованием светодиодов в качестве источников "белого" света. В работах [1-6] показано, что спектральными характеристиками ряда люминофоров (молибдатов европия и гадолиния, боратов лютеция, алюмобората европия) можно управлять, изменяя их структурное состояние. При этом существенную трансформацию претерпевают спектры люминесценции этих соединений. Изменение структуры материалов приводит и к значительному перераспределению интенсивностей полос в спектре возбуждения люминесценции (СВЛ) ряда материалов. Например, если в СВЛ основных полос свечения ватеритной модификации соединения LuBO3: Еи интенсивности полосы с переносом заряда (ППЗ) ($\lambda_{max} \sim 250 \, nm$) и резонансной полосы возбуждения Eu³⁺-центров ($\lambda_{max} \sim 394$ nm, электронный переход ${}^7F_0 \rightarrow {}^5L_6)$ сравнимы, то для кальцитной модификации LuBO3: Еи интенсивность ППЗ более чем на порядок превышает интенсивность полосы с $\lambda_{\rm max} \sim 394 \, {\rm nm}$ [7]. При этом спектральные положения полос в спектрах возбуждения люминесценции образцов изменяются незначительно. В то же время для практического применения люминофоров в качестве материалов для светодиодных источников "белого" света в ряде случаев возникает необходимость изменения спектральных характеристик возбуждения свечения люминофоров, например, сдвиг спектров возбуждения в область длин волн 355-390 nm — спектральную область излучения широко используемых светодиодов на основе GaN.

Значительные изменения спектров возбуждения люминесценции могут быть достигнуты при реализации процесса переноса энергии электронного возбуждения от одного центра к другому. При этом интенсивность люминесценции различных редкоземельных ионов может усиливаться [8,9]. Этот процесс исследовался для целого ряда соединений. Например, в образцах LaPO₄: (Ce, Tb) интенсивность свечения Tb³⁺ увеличивается в результате переноса энергии от Ce³⁺ к Tb³⁺ [9]. Эффективный перенос энергии между ионами Tb³⁺ и Eu³⁺ наблюдается в молибдатах [10] и вольфраматах [11] редкоземельных ионов, в образцах Tb(OH)₃:Eu³⁺ и SrTiO₃: (Tb³⁺, Eu³⁺) [12,13]. Перенос энергии от Gd³⁺ к Eu³⁺ фиксируется в системе Gd_{1-x}Eu_xBO₃ [14].

В настоящей работе исследуется перенос энергии электронного возбуждения между ионами Ce^{3+} и Tb^{3+} в решетке ортобората LuBO₃. Показано, что, изменяя структурное состояние соединения Lu_{1-x-y}Ce_xTb_yBO₃, можно направленным образом влиять на положение максимума возбуждения свечения иона Tb^{3+} . Проведены количественные оценки характеристик процесса передачи электронного возбуждения от Ce³⁺ к Tb³⁺.

2. Методика эксперимента

Исследуемые в настоящей работе поликристаллические образцы бората лютеция состава $Lu_{1-x-y}Ce_xTb_yBO_3$ (0 < x < 0.05, 0 < y < 0.2) были синтезированы по реакциям взаимодействия оксидов редкоземельных элементов с расплавом тетрабората

натрия (при $T=970^{\circ}\mathrm{C})$ или борного ангидрида (при $T=800^{\circ}\mathrm{C})$

$$(1-x-y)Lu_{2}O_{3} + xCe_{2}O_{3} + yTb_{2}O_{3} + Na_{2}B_{4}O_{7} \cdot 10H_{2}O$$

$$= Na_{2}B_{2}O_{4} + 2Lu_{1-x-y}Ce_{x}Tb_{y}BO_{3} + 10H_{2}O,$$
(1)
$$(1-x-y)Lu_{2}O_{3} + xCe_{2}O_{3} + yTb_{2}O_{3} + 2H_{3}BO_{3}$$

$$= 2Lu_{1-x-y}Ce_{x}Tb_{y}BO_{3} + 3H_{2}O.$$
(2)

В качестве исходных борсодержащих реагентов использовались бура или борная кислота, которые брались с избытком от стехиометрических количеств, равным 10 и 100% для реакций (1) и (2) соответственно. Предварительно исходные компоненты тщательно перетирались в агатовой ступке с добавлением воды. После высушивания водных суспензий полученный порошок отжигался при температуре 500° С в течение часа для удаления воды. Далее порошки вновь перетирались и подвергались высокотемпературному отжигу в течение 4 h. Для выделения поликристаллов ортобората лютеция полученные продукты обрабатывались соляной кислотой с концентрацией 6 wt.% в течение часа, затем фильтровались и высушивались при 120°С.

Фазовый состав синтезированных образцов определялся по дифрактограммам, полученным с использованием рентгеновского дифрактометра D500 (Siemens) с выходным графитовым монохроматором (излучение CuK_{α}).

Инфракрасные спектры поглощения измерялись на Фурье-спектрометре VERTEX 80v в спектральном диапазоне $400-5000 \,\mathrm{cm^{-1}}$ с разрешением $2 \,\mathrm{cm^{-1}}$. Процедура приготовления образцов состояла в следующем: поликристаллические порошки боратов предварительно растирались в агатовой ступке и наносились тонким слоем на шлифованную поверхность кристаллической подложки KBr.

Морфология образцов изучалась с использованием рентгеновского микроанализатора Supra 50VP с пристав-кой для EDS INCA (Oxford).

Спектры фотолюминесценции и спектры возбуждения люминесценции изучались на установке, состоящей из источника света — лампы ДКСШ-150, двух монохроматоров МДР-4 и МДР-6 (спектральный диапазон 200–1000 nm, дисперсия 1.3 nm/mm). Регистрация свечения осуществлялась фотоумножителем ФЭУ-106 (область спектральной чувствительности 200–800 nm) и усилительной системой.

Спектральные и структурные характеристики, а также морфология образцов исследовались при комнатной температуре.

3. Рентгеноструктурные исследования

Как известно, ортоборат лютеция LuBO₃ имеет две устойчивые структурные модификации: ватерит и кальцит [15–17]. Структуру кальцита имеют образцы бората лютеция, полученные при $\sim 970^{\circ}$ С, а при $T \sim 800^{\circ}$ С борат лютеция кристаллизуется в структуре ватерита. Как показано в работах [7,18], структурное состояние твердых растворов, состоящих из двух ортоборатов — LuBO₃, имеющего две устойчивые структурные модификации (кальцит и ватерит), и REBO3 (RE = Eu, Gd, Tb, Dy и Y), имеющих одну структурную модификацию (ватерит), определяется мольным соотношением этих ортоборатов в твердом растворе. При концентрациях RE, меньших 10–15 at.%, полученные при 970°C образцы $Lu_{1-x}RE_xBO_3$ имеют структуру кальцита. При концентрациях редкоземельных ионов, замещающих лютеций, бо́льших 15-20 at.%, соединения $Lu_{1-x}RE_xBO_3$, полученные при 970°С (температуре существования кальцитной фазы бората LuBO₃), имеют структуру ватерита [7,18].

В настоящей работе проводятся исследования синтезированных при разных температурах образцов состава $Lu_{1-x-y}Ce_xTb_yBO_3$. Согласно данным рентгенофазового анализа, образцы бората лютеция, полученные при 970°С, содержащие 0.5 at.% Се, 5 at.% Тb и одновре-

Рис. 1. Дифрактограммы соединений $Lu_{1-x-y}Ce_xTb_yBO_3$. *I*, 3 — x = 0.005, y = 0; 2, 4 — x = 0.005, y = 0.05; 5 — x = 0, y = 0.15; 6 — x = 0.005, y = 0.15. *I*, 2, 5, 6 — образцы синтезированы при 970°С; 3, 4 — при 800°С. Стрелками отмечен кальцит LuBO₃, V — ватерит LuBO₃.

менно 0.5 at.% Се и 5 at.% Тb, имеют структуру кальцита. Образцы с таким же содержанием церия и тербия, полученные при 800°С, имеют структуру ватерита. В качестве примера на рис. 1 (кривые 1-4) приведены дифрактограммы некоторых из этих образцов.

Синтезированные при 970°С образцы Lu_{0.85}Tb_{0.15}BO₃ содержат ~ 92 vol.% ватерита и ~ 8 vol.% кальцита (рис. 1, кривая 5). Интересно отметить сильное влияние на структурное состояние этого образца Се. Введение в соединение Lu_{0.85}Tb_{0.15}BO₃ даже незначительного количества церия (0.5 at.%) приводит к существенному увеличению доли кальцитной модификации, которая, согласно данным рентгеноструктурного анализа, составляет в образцах Lu_{0.845}Ce_{0.005}Tb_{0.15}BO₃ ~ 30 vol.% (рис. 1, кривая 6). В то же время легирование церием в количестве 0.5 at.% образцов бората лютеция, содержащих 20 at.% Tb, не изменяет его структурного состояния. Полученные при 970°С образцы Lu_{0.795}Ce_{0.005}Tb_{0.2}BO₃ являются однофазными и имеют структуру ватерита.

4. ИК-спектры

Как известно, структура кальцита в боратах редкоземельных элементов характеризуется тригональным, а структура ватерита — тетраэдрическим окружением бора атомами кислорода. Это проявляется в ИК-спект-

Рис. 2. ИК-спектры поглощения $Lu_{1-x-y}Ce_x$ Tb_yBO₃. *1*, 3 — x = 0.005, y = 0; 2, 4 — x = 0.005, y = 0.05. *1*, 2 — образцы синтезированы при 970°C, 3, 4 — при 800°C.

Рис. 3. ИК-спектры поглощения $Lu_{1-x-y}Ce_xTb_yBO_3$. 1 - x = 0.005, y = 0.05, синтез при 850°С; 2 -тот же образец после отжига при 970°С; 3 - x = 0, y = 0.15; 4 - x = 0.005, y = 0.15; 5 - x = 0.005, y = 0.20. Спектры 3-5 соответствуют образцам, синтезированным при 970°С. Стрелками отмечены полосы, отвечающие фазе кальцита.

рах колебаний В–О-связей и позволяет использовать метод ИК-спектроскопии для получения информации о структуре исследуемых образцов. Ранее [18] были исследованы ИК спектры поглощения в области частот колебаний В–О связей соединений Lu_{1-x} RE_x BO₃ (RE = Eu, Gd, Tb, Dy и Y; x = 0.001-0.3), полученных при $T = 970^{\circ}$ С. Был обнаружен переход от кристаллической фазы кальцита к фазе ватерита с ростом концентрации RE. Спектры кальцита характеризуются интенсивной полосой поглощения вблизи 1300 cm⁻¹, обусловленной валентными колебаниями связи В–О. Для фазы ватерита эти колебания смещены в область более низких частот (800–1200 cm⁻¹).

спектры Измерялись поглощения образцов $Lu_{1-x-y}Ce_{x}Tb_{y}BO_{3}$ тех же составов, полученных при тех же условиях, которые были указаны в разделе 3. На рис. 2 (спектры 1, 2) приведены спектры поглощения образцов Lu₀ 995Ce₀ 005BO₃ и Lu₀ 945Ce₀ 005Tb₀ 05BO₃, полученных при T = 970°C. Эти спектры идентичны и совпадают со спектром образца Lu_{0.95}Tb_{0.05}BO₃ [18] модификации. кальцитной Спектры содержат интенсивную полосу поглощения валентных колебаний связей $B-O \sim 1300 \, \text{cm}^{-1}$ и полосы деформационных колебаний 629 и ~ 750 ст⁻¹. Спектры поглощения

Рис. 4. Морфология соединений Lu_{1-x-y}Ce_xTb_yBO₃. a, c - x = 0.005, y = 0; b, d - x = 0.005, y = 0.05. a, b - oбразцы синтезированы при 970°C, <math>c, d — при 800°C.

образцов тех же составов, но синтезированных при $T = 800^{\circ}$ С, содержат интенсивные полосы поглощения валентных колебаний связей B–O в области энергий $800-1200 \text{ cm}^{-1}$, что является характерным для структуры ватерита (рис. 2, спектры 3, 4). Эти спектры подобны спектрам поглощения ватеритной модификации образцов LuBO₃ [19–21] и Lu_{0.95}Tb_{0.05}BO₃ [21].

Образец Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, полученный при $T = 850^{\circ}$ C, согласно данным рентгенофазового анализа, является двухфазным и содержит 10–15 vol.% фазы кальцита. Двухфазность этого образца проявляется и в ИК-спектрах: кроме линий поглощения фазы ватерита наблюдаются линии поглощения фазы кальцита (рис. 3, спектр 1). Относительная интенсивность линий кальцита заметно возрастает при дальнейшем отжиге этого образца при $T = 970^{\circ}$ C (рис. 3, спектр 2), что свидетельствует об увеличении доли фазы кальцита.

ИК-спектры образцов $Lu_{0.85}Tb_{0.15}BO_3$ и $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$, полученных при $T = 970^{\circ}C$, показывают, что добавление 0.5 аt.% церия приводит к значительному увеличение фазы кальцита (до 30-35 vol.%) по сравнению с ее исходным содержанием (~ 8 vol.%) в образце $Lu_{0.85}Tb_{0.15}BO_3$ (рис. 3, спектры 3, 4). Это согласуется с данными рентгенофазового анализа этих образцов (рис. 1, кривая 6).

Добавление небольшого количества церия в однофазный образец с большим содержанием Тb состава Lu_{0.80}Tb_{0.20}BO₃, имеющего структуру ватерита, не приводит к появлению фазы кальцита (рис. 3, спектр 5). Это также подтверждается данными рентгенофазового анализа этих образцов.

Таким образом, проведенные исследования ИКспектров поглощения показали, что увеличение количества фазы кальцита в двухфазных образцах составов $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$ (полученного при $850^{\circ}C$) и $Lu_{0.85}Tb_{0.15}BO_3$ (полученного при $970^{\circ}C$) можно изменять разными способами. Для состава $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$ это достигается повышением температуры отжига, а для состава $Lu_{0.85}Tb_{0.15}BO_3$ легированием Ce^{3+} .

5. Морфология образцов

Полученные при 970°С образцы Lu_{0.995}Ce_{0.005}BO₃, Lu_{0.95}Tb_{0.05}BO₃ и Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, как было нами установлено, имеют структуру кальцита. Микрокристаллы этих соединений характеризуются хорошей огранкой. Их средний размер $\sim 10 \,\mu$ m. В качестве примера морфология двух из этих образцов представлена на рис. 4, *a*, *b*. Совершенно иную морфологию имеют образцы такого же состава со структурой ватерита, полученные при 800°С (рис. 4, *c*, *d*). Следует отметить, что аналогичная форма полученных при 800°С образцов ватеритной модификации LuBO₃ наблюдалась в работах [21,22].

6. Спектры люминесценции и спектры возбуждения люминесценции соединения Lu_{1-x-v}Ce_xTb_vBO₃

6.1. Кальцитная модификация. На рис. 5 представлены спектры люминесценции (СЛ) полученных при 970°C образцов бората лютеция, содержащих 0.5 at.% Ce (спектр 1), 5 at.% Tb (спектр 2) и одновременно 0.5 at.% Се и 5 at.% Ть (спектр 3). Эти образцы, согласно представленным выше данным рентгенофазового анализа и исследований ИКспектров поглощения, имеют структуру кальцита. В СЛ бората лютеция, легированного 0.5 at.% Се, наблюдаются две широкие полосы с максимумами при $\lambda_1 \sim 370 \,\text{nm}$ и $\lambda_2 \sim 407 \,\text{nm}$, обусловленные переходами $4f^05d^1 \rightarrow 4f^1(^2F_{5/2})$ и $4f^05d^1 \rightarrow 4f^1(^2F_{7/2})$ в Се³⁺-центрах, находящихся в кальцитной модификации бората лютеция [23-26]. Наибольшую интенсивность в спектре люминесценции Lu_{0.95}Tb_{0.05}BO₃ имеют полосы с $\lambda_{\text{max}} = 541.8$ и 549.5 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), амплитуды которых сравнимы (рис. 5, спектр 2). Такой спектр характерен для имеющих структуру кальцита образцов бората лютеция, легированного Тb [18,21,27].

В СЛ Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ (рис. 5, спектр 3) наблюдаются широкие полосы ~ 370 и ~ 407 nm, характерные для свечения ионов Ce³⁺, находящихся в кальцитной структуре LuBO₃, а также ряд узких полос, соответствующих электронным переходам f-f в ионе Tb³⁺, характерных для модификации кальцита (рис. 5, спектры *I*, 2). В спектре люминесценции Tb³⁺ наиболее интенсивными являются две полосы с $\lambda_{\text{max}} = 541.8$ и 549.5 nm. Также наблюдаются более слабые полосы с $\lambda_{\text{max}} = 488$ и 497 nm (${}^{5}D_{4} \rightarrow {}^{7}F_{6}$).

Следует отметить, что отжиг образца $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$ при исследованных нами более высоких температурах (до 1200°С) не изменяет его спектральные характеристики.

СВЛ образцов кальцитной модификации бората лютеция, содержащего 0.5 at.% Се, 5 at.% Тb и одновременно 0.5 at.% Се и 5 at.% Tb, представлены на рис. 6 (спектры 1-4).

Спектр возбуждения люминесценции основных полос свечения ионов Ce³⁺ в образце бората лютеция, легированного 0.5 at.% Се и 5 at.% Тb, содержит широкую полосу с $\lambda_{max} \sim 339$ nm и плечо при ~ 307 nm (рис. 6, спектр 3). Он полностью совпадает с CBЛ бората лютеция, легированного только 0.5 at.% Се, имеющего структуру кальцита (рис. 6, спектр 1). В то же время интенсивность свечения ионов Ce³⁺ при возбуждении светом, соответствующим максимуму полосы возбуждения Ce³⁺ ($\lambda_{max} = 339$ nm), в образцах бората лютеция, легированных только 0.5 at.% Се ($J_{Ce} = 1410$ arb. units), намного превосходит интенсивность свечения церия в борате лютеция, легированном одновременно 0.5 at.% Се и 5 at.% Тb ($J_{Ce} = 308 \text{ arb. inits}$) (рис. 6, спектры 1, 3). В спектре возбуждения основных полос свечения ионов Tb³⁺ в соединении Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ доминирует широкая полоса с $\lambda_{max} = 339 \text{ nm}$ (рис. 6, спектр 4). Наблюдаются также четыре коротковолновые полосы при $\lambda = 220-290 \text{ nm}$ (переход $4f^8 \rightarrow 4f^75d^1$) и узкая резонансная полоса 378 nm ($^7F_6 \rightarrow {}^5D_3$ [18,23,24]), положения которых совпадают с положениями полос в СВЛ кальцитной модификации Lu_{0.95}Tb_{0.05}BO₃ (рис. 6, спектр 2).

На основании сравнения приведенных данных можно сделать вывод о том, что спектр возбуждения люминесценции ионов Tb^{3+} ($\lambda_{max} = 541, 8 \text{ nm}$) в соединении $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$ содержит полосы, наблюдающиеся в CBЛ ионов Ce^{3+} и Tb^{3+} в соединениях $Lu_{0.995}Ce_{0.005}BO_3$ и $Lu_{0.95}Tb_{0.05}BO_3$ соответственно (рис. 6, спектры *1, 2, 4*). Таким образом, при возбуждении бората лютеция, содержащего 0.5 at.% Се

Рис. 5. Спектры люминесценции кальцитной модификации $Lu_{1-x-y}Ce_xTb_yBO_3$. I - x = 0.005, y = 0, возбуждение светом с $\lambda_{ex} = 339$ nm; 2 - x = 0, y = 0.05, $\lambda_{ex} = 274$ nm; 3 - x = 0.005, y = 0.05, $\lambda_{ex} = 339$ nm. На вставке приведен спектр люминесценции в диапазоне длин волн 350-450 nm в увеличенном по оси ординат масштабе.

Рис. 6. Спектры возбуждения люминесценции кальцитной модификации $Lu_{1-x-y}Ce_xTb_yBO_3$. I - x = 0.005, y = 0, максимум свечения $\lambda_{max} = 407$ nm; 2 - x = 0, y = 0.05, $\lambda_{max} = 541.8$ nm; 3 - x = 0.005, y = 0.05, $\lambda_{max} = 407$ nm; 4 - x = 0.005, y = 0.05, $\lambda_{max} = 541.8$ nm.

и 5 аt.% Tb, в полосе возбуждения свечения ионов Ce³⁺ ($\lambda_{max} = 339 \text{ nm}$) наблюдается свечение ионов Tb³⁺. Отметим, что в кальцитной модификации бората лютеция, легированного тербием, в спектральной области 300-370 nm отсутствуют полосы возбуждения ионов Tb³⁺ (рис. 6, спектр 2). Приведенные экспериментальные факты однозначно свидетельствуют о передаче энергии электронного возбуждения от ионов Ce³⁺ к Tb³⁺. В то же время свечение Ce³⁺ не возбуждается ни в одной из полос возбуждения ионов Tb³⁺ (рис. 6, спектр 3). Это обстоятельство свидетельствует о том, что передача энергии от Tb³⁺ к Ce³⁺ отсутствует.

В борате лютеция, легированном 5 аt.% Тb, наибольшая интенсивность свечения ионов Tb³⁺ наблюдается при возбуждении образца в коротковолновой области спектра при $\lambda \sim 236$ nm (переход $4f^8 \rightarrow 4f^75d^1$) (рис. 6, спектр 2). При резонансном возбуждении ($\lambda_{\rm max} = 378$ nm, $7F_6 \rightarrow 5D_3$) интенсивность свечения ионов Tb³⁺ ($J_r \sim 150$ arb units) на порядок меньше, чем при возбуждении в коротковолновой области спектра (рис. 6, спектр 2). В борате лютеция, легированном 0.5 at.% Се и 5 at.% Tb, интенсивность полосы $\sim 236\,\text{nm}$ в $\sim 1.1\,\text{раза,}$ а полос $\sim 260,\,274$ и 282nmв $\sim 2.6 - 2.9$ раза меньше, чем в образце Lu_{0.95}Tb_{0.05}BO₃, в то время как при резонансном возбуждении интенсивности свечения ионов Tb³⁺ ($J_r \sim 180$ arb. units) сравнимы (рис. 6, спектр 4). Максимальная интенсивность свечения ионов Tb³⁺ в образцах Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, наблюдающаяся при возбуждении светом с $\lambda_{ex} = 339 \, \text{nm}$ $(J_{\text{max}} = 6150 \text{ arb. units})$, значительно превосходит интенсивности всех остальных полос в спектрах возбуждения люминесценции бората лютеция, легированного как по отдельности Се или Тb, так и одновременно этими лигандами (рис. 6, спектры 1-4). Таким образом, при легировании бората лютеция, содержащего 5 at.% Tb, церием в количестве 0.5 at.% интенсивность свечения Tb³⁺ при возбуждении светом с $\lambda_{ex} = 339\,\text{nm}$ увеличивается в ~ 5 и ~ 40 раз по сравнению с интенсивностью свечения

Рис. 7. Зависимости интенсивностей свечения одного из ионов RE^{3+} (Ce³⁺, Tb³⁺) от концентрации другого иона (в логарифмическом масштабе) в кальцитной модификации Lu_{1-x-y}Ce_xTb_yBO₃. *a* — изменение интенсивности свечения Tb³⁺ ($\lambda_{max} = 541.8$ nm) в образце Lu_{0.95-x}Ce_xTb_{0.05}BO₃ в зависимости от концентрации Се при возбуждении светом $\lambda_{ex} = 274$ (1) и 339 nm (2). 3 и 4 — интенсивности полосы 541.8 nm в соединении Lu_{0.995-y}Ce_{0.005}Tb_yBO₃ при y = 0.025 и 0.075 соответственно при возбуждении светом $\lambda_{ex} = 339$ nm. *b* — изменение интенсивности от концентрации светом $\lambda_{ex} = 339$ nm. b соединении Lu_{0.9975-y}Ce_{0.00025}Tb_yBO₃ в зависимости от концентрации Tb при возбуждении светом $\lambda_{ex} = 339$ nm.

нелегированного церием образца при его возбуждении светом с $\lambda_{ex} = 236$ и 378 nm соответственно. Эффект увеличения интенсивности свечения является результатом переноса энергии электронного возбуждения от ионов Ce³⁺ к Tb³⁺.

Следует обсудить возможную причину уменьшения интенсивностей J_s коротковолновых полос ~ 260, 274 и 282 nm в спектре возбуждения свечения ионов Tb³⁺ при легировании бората лютеция, содержащего 5 at.% Tb^{3+} , ионами церия (рис. 6, спектры 2, 4). Увеличение концентрации церия приводит к уменьшению интенсивностей коротковолновых полос J_s. В качестве примера на рис. 7, a (кривая 1) приведена зависимость интенсивности одной из коротковолновых полос (274 nm) от концентрации Се. Интенсивность этой полосы уменьшается на порядок при концентрации Се 2 at.%. Уменьшение интенсивности коротковолновых полос с увеличением концентрации церия можно объяснить возникновением поглощения в области коротких волн, обусловленного введением в Lu_{0.95}Tb_{0.05}BO₃ ионов Ce³⁺. К сожалению, спектр поглощения микрокристаллического образца Lu_{0.95-x}Ce_xTb_{0.05}BO₃ исследовать весьма затруднительно, так как он не прозрачен.

О появлении поглощения, связанного с введением церия в борат лютеция, свидетельствует обнаруженное в работе [26] уменьшение интенсивности собственного свечения чистого LuBO₃ (широкая полоса с $\lambda_{\text{max}} = 296$ nm) при увеличении содержания Се от 0.1 до 1.0 mol.%. При концентрациях церия, бо́льших 1.0 mol.%, полоса собственного свечения LuBO₃ практически полностью исчезает.

Таким образом, при возбуждении образцов Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, имеющих структуру кальцита, в полосе возбуждения свечения ионов Ce³⁺ ($\lambda_{ex} = 339$ nm) наблюдается свечение ионов Tb³⁺. Это однозначно свидетельствует о переносе энергии электронного возбуждения от Ce³⁺ к Tb³⁺.

6.2. Ватеритная модификация. СЛ полученных при 800°С образцов бората лютеция, легированных 0.5 at.% Се, 5 at.% Тв и одновременно 0.5 at.% Се и 5 at.% Тв и имеющих, согласно приведенным выше данным рентгенофазового анализа и исследований ИК-спектров поглощения, структуру ватерита, представлены на рис. 8.

В СЛ бората лютеция, содержащего 0.5 at.% Се и 5 at.% Тb, наблюдаются две широкие полосы с максимумами при ~ 394 и ~ 424 nm и ряд узких полос (рис. 8, спектр 3). Полосы ~ 394 и ~ 424 nm присутствуют также в образцах Lu_{0.995}Ce_{0.005}BO₃ (рис. 8, спектр 1) и обусловлены переходами $4f^{0}5d^{1} \rightarrow 4f^{1}(2F_{5/2})$ и $4f^{0}5d^{1} \rightarrow 4f^{1}(2F_{7/2})$ в ионах Ce³⁺. Аналогичные полосы наблюдались в спектрах ватеритной модификации бората лютеция, легированного церием [23,24]. Узкие полосы в спектре люминесценции Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ (рис. 8, спектр 2) и соответствуют свечению ионов Tb³⁺. Наибольшую интенсивность имеет

Рис. 8. Спектры люминесценции ватеритной модификации $Lu_{1-x-y}Ce_xTb_yBO_3$. 1 - x = 0.005, y = 0, $\lambda_{ex} = 339$ nm; 2 - x = 0, y = 0.05, $\lambda_{ex} = 286$ nm; 3 - x = 0.005, y = 0.05, $\lambda_{ex} = 339$ nm. На вставке приведен спектр люминесценции в диапазоне длин волн 370–480 nm в увеличенном по оси ординат масштабе.

полоса с $\lambda_{\text{max}} = 542.3 \text{ nm}$ (переход ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$), что характерно для ватеритной модификации бората лютеция, легированного Tb³⁺ [18,21,27].

В СВЛ наиболее интенсивной полосы свечения бората лютеция, легированного 0.5 at.% Се и 5 at.% Ть $(\lambda_{max} = 542.3 \text{ nm})$, наблюдается ультрафиолетовая полоса $(\lambda_{ex} \sim 238 \text{ nm})$ и значительно более интенсивная широкая полоса с максимумом при $\sim 367 \text{ nm}$ (рис. 9, спектр 4). Ультрафиолетовая полоса совпадает с наиболее интенсивной полосой в СВЛ ионов Tb³⁺ ватеритной модификации Lu_{0.95}Tb_{0.05}BO₃ (рис. 9, спектр 2). Полоса 367 nm совпадает с полосой, наблюдающейся в СВЛ основных полос свечения ионов Ce³⁺ в соединении Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ (рис. 9, спектр 3) и борате лютеция, легированном только 0.5 at.% Ce (рис. 9, спектр 1). Следует отметить, что спектр возбуждения люминесценции ионов Tb³⁺ ($\lambda_{max} = 542.3 \text{ nm}$) в имеющих структуру ватерита образцах Lu_{0.95}Tb_{0.5}BO₃

Рис. 9. Спектры возбуждения люминесценции соединений $Lu_{1-x-y}Ce_x Tb_y BO_3$. 1 - x = 0.005, y = 0, $\lambda_{max} = 424$ nm; 2 - x = 0, y = 0.05, $\lambda_{max} = 542.3$ nm (на вставке приведен спектр возбуждения люминесценции в диапазоне 290–500 nm в увеличенном по оси ординат масштабе); 3, 5 - x = 0.005, y = 0.05, $\lambda_{max} = 424$ nm; 4, 6 - x = 0.005, y = 0.05, $\lambda_{max} = 542.3$ nm; 1-4 — синтез при 800°C; 5, 6 — синтез при 850°C, отжиг при 970°C.

в области длин волн 320-390 nm содержит ряд узких резонансных полос (рис. 9, спектр 2). Однако их интенсивность ($J_r \sim 5$ arb.units) значительно меньше, чем интенсивность свечения ионов Tb³⁺ в образцах Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ при возбуждении в полосе 367 nm, которая составляет ~ 2350 arb.units (рис. 9, спектр 4). Поэтому значительное увеличение свечения ионов Tb³⁺ в этих образцах при возбуждении в полосе 367 nm происходит, как и в кальцитной модификации этого соединения, в результате переноса электронного возбуждения от ионов Ce³⁺ к Tb³⁺. При этом, в отличие от модификации кальцита, максимум спектра возбуждения свечения ионов Tb³⁺ сдвигается в красную область спектра от 339 до 367 nm.

Если синтезированный при 850° С борат лютеция, легированный 0.5 at.% Се и 5 at.% Тb, содержащий ~ 90 vol.% ватерита и ~ 10 vol.% кальцита, отжечь при 970° С, то, как показали данные рентгенофазового анализа и исследования ИК-спектров поглощения,

процентное содержание кальцита заметно увеличивается (до $\sim 30 \text{ vol.}\%$) (рис. 3, кривая 2). В спектре возбуждения люминесценции ионов Tb³⁺ ($\lambda_{max} = 542.3 \text{ nm}$) этого образца наибольшую интенсивность имеет широкая полоса с двумя максимумами (~ 369 и ~ 340 nm) (рис. 9, спектр 6), которая совпадает с полосой СВЛ ионов Се³⁺ в данных образцах (рис. 9, спектр 5). При этом максимальная интенсивность свечения ионов Tb^{3+} J_{Tb} в образцах $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$, содержащих $\sim 30 \text{ vol.}\%$ кальцитной фазы, почти в 2 раза выше $(J_{\rm Tb} \sim 4640 \, {\rm arb.\, units})$, чем в образцах, имеющих структуру ватерита ($J_{\rm Tb} \sim 235$ arb. units). Таким образом, изменяя соотношение между количеством фаз кальцита и ватерита в соединении Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, можно в диапазоне длин волн 330-380 nm изменять спектр возбуждения и интенсивность зеленого свечения $(\lambda_{\text{max}} = 542.3 \text{ nm})$ ионов Tb³⁺.

В спектрах возбуждения люминесценции ионов Tb³⁺ ватеритной модификации Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ и образцов, содержащих ~ 70 vol.% ватерита и ~ 30 vol.% кальцита, интенсивность коротковолновой полосы (~ 285 nm), наблюдающейся в СВЛ ватеритной модификации Lu_{0.95}Tb_{0.05}BO₃, крайне мала (рис. 9, спектры 2, 4, 6). Это, как и в образцах кальцитной модификации Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, связано, скорее всего, с появлением поглощения, возникающего при введении в образец церия.

Таким образом, при возбуждении образцов Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, имеющих структуру ватерита, в полосе возбуждения свечения ионов Ce³⁺ ($\lambda_{ex} = 367 \text{ nm}$) наблюдается свечение ионов Tb³⁺, что свидетельствует о переносе энергии электронного возбуждения от Ce³⁺ к Tb³⁺.

6.3. Соединения $Lu_{0.995-y}Ce_{0.005}Tb_yBO_3$ (y = 0.15, 0.2). Как отмечалось в разделах 3 и 4, малые добавки церия оказывают значительное влияние на структуру соединения Lu_{0.85}Tb_{0.15}BO₃ (рис. 1, кривая 6; рис. 3, спектр 4). Представляет интерес исследование влияния небольших концентраций церия на спектральные характеристики этого соединения. Спектр возбуждения люминесценции с $\lambda_{max} = 542.3 \text{ nm}$, соответствующей свечению ионов Tb³⁺ в образцах Lu_{0.845}Ce_{0.005}Tb_{0.15}BO₃, содержит полосы, характерные как для кальцитной $(\sim 260, \sim 274, \sim 282 \text{ и} \sim 339 \text{ nm})$, так и для ватеритной $(\sim 240, \sim 367 \text{ и } 488 \text{ nm})$ модификации этого соединения (рис. 10. спектр 2). Наибольшую интенсивность имеют полосы 339 и 367 nm, совпадающие с полосами возбуждения люминесценции ионов Ce³⁺ в борате лютеция, содержащем 0.5 at.% Се и 15 at.% Тb (рис. 10, спектр *1*).

СЛ ионов Ce^{3+} и Tb^{3+} в образцах $Lu_{0.845}Ce_{0.005}Tb_{0.15}BO_3$ при возбуждении в полосах ~ 260, ~ 274, ~ 282 и ~ 339 nm, соответствующих кальцитной модификации, содержат полосы, характерные для структуры кальцита (рис. 11, спектр 2), такие же, как и на рис. 5 (спектр 3). При возбуждении в полосах ~ 240 и ~ 367 nm наблюдаются спектры люминесценции, соответствующие ватеритной структуре бората лютеция,

Рис. 10. Спектры возбуждения люминесценции соединений $Lu_{1-x-y}Ce_xTb_yBO_3$. I - x = 0.005, y = 0.15, $\lambda_{max} = 410$ nm; 2 - x = 0.005, y = 0.15, $\lambda_{max} = 542.3$ nm; 3 - x = 0.005, y = 0.2, $\lambda_{max} = 424$ nm; 4 - x = 0.005, y = 0.2, $\lambda_{max} = 542.3$ nm; 5 -смесь равных количеств $Lu_{0.995}Ce_{0.005}BO_3$ и $Lu_{0.95}Tb_{0.05}BO_3$, $\lambda_{max} = 407$ nm; 6 -смесь равных количеств $Lu_{0.995}Ce_{0.005}BO_3$ и $Lu_{0.95}Tb_{0.05}BO_3$, $\lambda_{max} = 541.8$ nm. Синтез всех образцов проводился при 970°С.

легированного церием и тербием (рис. 11, спектр *1*), подобные представленным на рис. 8 (спектр *3*).

В спектре люминесценции полученного при 970°C бората лютеция, содержащего 0.5 at.% Се и 20 at.% Тb, имеющего, как отмечалось, структуру ватерита (рис. 3, спектр 5), наблюдаются две широкие полосы с максимумами при \sim 396 и 424 nm, обусловленные свечением ионов Ce³⁺, и ряд узких полос, соответствующих свечению ионов Tb³⁺ (рис. 11, спектр 3).

В СВЛ наиболее интенсивной полосы свечения бората лютеция, легированного 0.5 at.% Се и 20 at.% Тb $(\lambda_{max} = 542.3 \text{ nm})$, наибольшую интенсивность $(J_{max} \sim 2050 \text{ arb. units})$ имеет широкая полоса с максимумом при $\sim 367 \text{ nm}$, совпадающая с полосой возбуждения свечения ионов Ce³⁺ в этих образцах (рис. 10, спектры 3, 4). Положения полос в СЛ и СВЛ ионов Ce³⁺ и Tb³⁺ в полученных при 970°С образцах Lu_{0.795}Ce_{0.005}Tb_{0.2}BO₃ и в образцах, имеющих структуру ватерита Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃, совпадают (рис. 8,

спектр 3; рис. 11, спектр 3; рис. 9, спектры 3, 4; рис. 10, спектры 3, 4).

Таким образом, как следует из рентгенофазовых, ИК- и спектроскопических исследований, добавление небольших количеств церия в однофазные соединения Lu_{1-y}Tb_yBO₃ (0.1 > y > 0.2) не изменяет структурного состояния образцов, в то время как добавление небольших количеств церия в двухфазный образец Lu_{0.85}Tb_{0.15}BO₃ существенно увеличивает долю кальцитной фазы. Это дает дополнительную возможность для управления спектральными характеристиками образца путем направленного изменения его структуры.

Следует заметить, что интенсивности ультрафиолетовых полос ~ 240 и ~ 284 nm в соединении $Lu_{0.795}Ce_{0.005}Tb_{0.2}BO_3$ составляют ~ 840 и ~ 240 arb.units соответственно (рис. 10, спектр 4), что значительно меньше, чем интенсивности этих полос в СВЛ образца $Lu_{0.8}Tb_{0.2}BO_3$, величины которых

Рис. 11. Спектры люминесценции соединения Lu_{1-x-y}Ce_xTb_yBO₃. *I* — *x* = 0.005, *y* = 0.15, $\lambda_{ex} = 367$ nm; *2* — *x* = 0.005, *y* = 0.15, $\lambda_{ex} = 339$ nm; *3* — *x* = 0.005, *y* = 0.2, $\lambda_{ex} = 367$ nm; *4* — смесь равных количеств Lu_{0.995}Ce_{0.005}BO₃ и Lu_{0.95}Tb_{0.05}BO₃, $\lambda_{ex} = 339$ nm. На вставках приведены спектры люминесценции в диапазонах длин волн 370–470 nm (спектр *I* и *3*) и 350–460 nm (спектр *2*) в увеличенных по оси ординат масштабах.

равны ~ 1500 и ~ 2000 arb. units [18]. Уменьшение интенсивностей коротковолновых полос в СВЛ Lu_{0.795}Ce_{0.005}Tb_{0.2}BO₃ связано, скорее всего, как и в образцах бората лютеция, содержащих 0.5 at.% Се и 5 at.% Tb, с появлением поглощения, возникающего при введении в образец церия.

Оценка эффективности переноса энергии электронного возбуждения между ионами Ce³⁺ и Tb³⁺ в соединениях Lu_{1-x-y}Ce_xTb_yBO₃

было установлено, что в ортоборатах Выше Lu_{1-x-v}Ce_xTb_vBO₃ осуществляется перенос энергии электронного возбуждения от Ce³⁺ к Tb³⁺. Важной характеристикой этого процесса является величина максимального "порогового" расстояния R, при котором еще осуществляется процесс переноса возбуждения от Ce^{3+} к Tb^{3+} . Величину *R* можно определить следующим образом. Предположим, что доноры и акцепторы (в нашем случае Ce^{3+} и Tb^{3+} соответственно), концентрация которых мала, замещают ионы Lu³⁺ случайным образом независимо друг от друга. Это предположение правомерно, так как ионные радиусы Ce³⁺ и Tb³⁺ (1.081 и 0.956 Å) больше ионного радиуса Lu³⁺ (0.867 Å), поэтому ионы, создающие однотипные расталкивающие напряжения в микрокристалле, будут располагаться на максимально возможном удалении друг от друга.

Пусть среднее расстояние между донорами в образце $Lu_{1-x-y}Ce_{x}Tb_{y}BO_{3}$ значительно больше чем 2*R*. Будем проводить исследование интенсивности свечения донора $(Ce^{3+}, \lambda_{max} = 407 \text{ nm})$ при возбуждении в максимуме полосы возбуждения донора ($\lambda_{ex} = 339 \, \text{nm}$) в зависимости от концентрации акцептора (Тb³⁺). Очевидно, что при возбуждении ионов Се³⁺ интенсивность его свечения в случае отсутствия передачи энергии ионам Tb³⁺ не будет зависеть от концентрации тербия. Интенсивность свечения донора начнет уменьшаться при осуществлении переноса электронного возбуждения. Среднее расстояние между ионами акцептора (Tb^{3+}) , при котором начнет уменьшаться интенсивность свечения донора (Ce^{3+}) , равно 2*R*. Действительно, при концентрации донора, значительно меньшей концентрации акцептора, и при их независимом расположении между двумя акцепторами (Tb³⁺) (в среднем) будет находиться один донор (Ce³⁺). Интенсивность свечения Ce³⁺ в соединении Lu_{0.99975-у}Ce_{0.00025}Tb_yBO₃ при возбуждении светом с $\lambda_{ex} = 339 \, nm$ в зависимости от концентрации Тb³⁺ приведена на рис. 7, *b*. При используемой нами концентрации Се (0.025 at.%) среднее расстояние между ионами Ce^{3+} составляет ~ 80 Å. Как следует из рис. 7, *b*, интенсивность свечения Се³⁺ начинает уменьшаться при концентрациях Тb, бо́льших чем 0.2 at.%. На основании этого порогового значения концентрации Tb и с учетом того, что параметры элементарной ячейки кальцитной модификации бората лютеция равны a = 4.9153 Å, c = 16.212 Å, а элементарная ячейка содержит шесть атомов Tb³⁺ [28], из простых расчетов следует, что "пороговое" расстояние *R*, на котором осуществляется перенос энергии от Ce³⁺ к Tb³⁺ в соединении Lu_{1-x-y}Ce_xTb_yBO₃, равно ~ 19.5 Å.

В работе [29] это "пороговое" расстояние *R* определялось из соотношения, предложенного Blasse,

$$R_c \sim 2(3V/4\pi XN)^{1/3}$$
,

где V — объем элементарной ячейки, N — число ионов акцептора в элементарной ячейке, X — общая концентрация донора и акцептора, при которой интенсивность свечения донора уменьшается в 2 раза при добавлении ионов акцептора. Для соединения $Ba_3Gd(PO_3)_4$: (Ce^{3+}, Tb^{3+}) величина R_c оказалась равной 16.16 Å, что близко к значению R, определенному в настоящей работе.

Нами также была проведена оценка значения R_c по формуле Blasse для LuBO₃: (Ce³⁺, Tb³⁺). Поскольку для кальцитной модификации LuBO₃ V = 339.2 Å, N = 6 [28,29], а X для LuBO₃: (Ce³⁺, Tb³⁺), согласно данным рис. 7, b, равно 0.02585, величина $R_c = 16$ Å, что совпадает с оценкой R_c в соединении Ba₃Gd(PO₃)₄: (Ce³⁺, Tb³⁺) [29]. Следует отметить, что совпадение значений R_c ("пороговых" расстояний, на которых осуществляется перенос энергии от Ce³⁺ к Tb³⁺) для разных соединений свидетельствует о том, что процесс переноса энергии от Ce³⁺ к Tb³⁺ слабо зависит от матрицы, в которой находятся ионы церия и тербия.

Перенос энергии электронного возбуждения от одного оптически активного центра (донора) к другому центру свечения (акцептору) может осуществляться путем резонансного переноса энергии [12,13,26,27]. Донор, находящийся в возбужденном состоянии, в процессе девозбуждения передает свою энергию акцептору. Перенос энергии электронного возбуждения происходит не путем процесса эмиссии-адсорбции фотона, а в результате безызлучательного переноса энергии вследствие кулоновского диполь-дипольного взаимодействия между донором и акцептором (ферстеровский механизм переноса энергии).

Для осуществления процесса переноса энергии необходимо выполнение двух условий: 1) спектр излучения донора (D) должен находиться в спектральном диапазоне поглощения акцептора (A); 2) расстояние между донором и акцептором должно быть не больше ("порогового") расстояния R. Следует заметить, что перенос энергии в результате диполь-дипольного взаимодействия в разных соединениях осуществляется при расстояниях между донором и акцептором в диапазоне 5–50 Å [9,30–34].

Эти условия выполняются для исследуемого нами соединения состава $Lu_{0.99975-y}Ce_{0.00025}Tb_yBO_3$ при y > 0.002. Действительно, в этом соединении спектры люминесценции ионов Ce^{3+} перекрываются со

Рис. 12. Схемы электронных переходов для ионов Ce^{3+} и Tb^{3+} в соединении $Lu_{1-x-y}Ce_xTb_yBO_3$ и процесса переноса энергии от Ce^{3+} к Tb^{3+} .

спектрами резонансного возбуждения ионов Tb³⁺ как в кальцитной ($\lambda_{ex} = 378$ nm), так и в ватеритной ($\lambda_{ex} = 335-390$ nm) модификации (рис. 5, спектр 1; рис. 6, спектр 2; рис. 8, спектр 1; рис. 9, спектр 2). При концентрации ионов Tb³⁺, большей 0.2 at.%, среднее расстояние между донорами (Ce³⁺) и акцепторами (Tb³⁺) становится меньше ("порогового") расстояния *R*. Поэтому при возбуждении ионов церия светом с $\lambda_{ex} = 339$ и 367 nm (для кальцита и ватерита соответственно) вследствие диполь-дипольного взаимодействия осуществляется перенос энергии от церия к тербию. Схематически этот процесс для кальцитной модификации Lu_{1-x-y}Ce_xTb_yBO₃ представлен на рис. 12.

Как отмечалось, интенсивность свечения ионов тербия в соединениях Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ при возбуждении светом, соответствующим максимуму возбуждения свечения ионов Ce^{3+} ($\lambda_{ex} = 339 \text{ nm}$), многократно (более чем в ~ 40 раз) превосходит интенсивность свечения ионов Tb³⁺ при их резонансном возбуждении $(\lambda_{ex} = 378 \, \text{nm})$. Возможная причина столь значительного увеличения интенсивности свечения ионов тербия состоит в следующем. Как известно, электрические дипольные переходы между состояниями свободных ионов RE^{3+} , принадлежащих одной, в нашем случае 4 fⁿ-конфигурации, запрещены по четности [35,36]. Под действием кристаллического поля этот запрет частично снимается, что открывает возможность осуществления переходов между состояниями 4 fⁿ-электронной конфигурации. Интенсивность свечения ионов Tb³⁺ J_{ть} при возбуждении в коротковолновых полосах при $\lambda_{ex} = 220 - 290$ nm, соответствующих разрешенному переходу $4f^8 \rightarrow 4f^75d^1$, более чем в 10 раз превосходит интенсивность их свечения при резонансном возбуждении $\lambda_{ex} = 378$ nm (рис. 6, спектр 2). Поэтому при высокой эффективности переноса энергии от ионов Ce³⁺ к Tb³⁺ J_{Tb} при возбуждении образца в полосах, соответствующих разрешенным переходам в ионах Ce³⁺ $4f \rightarrow 5d$ ($\lambda_{ex} \sim 339$ и ~ 367 nm для кальцитной и ватеритной модификаций LuBO₃: (Ce, Tb) соответственно), может быть также значительно выше, чем при резонансном возбуждении ионов Tb³⁺ ($\lambda_{ex} = 378$ nm).

Об эффективности переноса энергии от донора к акцептору можно судить по уменьшению интенсивности свечения донора при добавлении в соединение акцептора.

Сравнивая интенсивности свечения донора (в нашем случае Ce³⁺) при отсутствии и наличии акцептора (Tb³⁺), можно определить эффективность процесса переноса энергии по формуле $\eta = (1 - J_{D+A}/J_D) \cdot 100\%$ (где J_D и J_{D+A} — интенсивности свечения Ce³⁺ в соединениях Lu_{0.995}Ce_{0.005}BO₃ и Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃) при возбуждении в максимуме свечения Ce³⁺ (~ 339 и ~ 367 nm для кальцитной и ватеритной модификаций соответственно).

Значения J_D и J_{D+A} равны соответственно 1410 и 308 arb. units для кальцитной (рис. 6, спектры *I*, *3*) и 192 и 43 arb. units для ватеритной (рис. 9, спектры *I*, *3*) модификаций этих соединений. Величины η для кальцита и ватерита равны ~ 78 и 77.6% соответственно, что свидетельствует о высокой эффективности процесса переноса энергии от Ce³⁺ к Tb³⁺ в борате лютеция. Интересно отметить, что эффективность переноса энергии от Ce³⁺ к Tb³⁺ в соединении Ba₃Gd(PO₃)₄: (Ce³⁺, Tb³⁺) составляет 78.6% [29].

Как следует из рис. 7, *а* (кривая 2), максимальная интенсивность свечения Tb^{3+} в соединении $Lu_{0.95-x}Ce_xTb_{0.05}BO_3$ при возбуждении в полосе ~ 339 nm наблюдается при концентрации Ce 0.5 at.%. Интенсивности свечения Tb^{3+} при концентрация Ce 0.5 at.% и Tb 2.5 и 7.5 at.% (точки 3 и 4) имеют меньшую интенсивность, чем при концентрации тербия 5 at.% (рис. 7, *a*). Таким образом, максимальная интенсивность свечения Tb^{3+} в соединении $Lu_{1-x-y}Ce_xTb_yBO_3$ при возбуждении в полосе ~ 339 nm наблюдается при x = 0.005 и y = 0.05.

Наряду с резонансным диполь-дипольным переносом энергии от Ce³⁺ к Tb³⁺ свечение Tb³⁺ можно возбудить светом, излучаемым при возбуждении Ce³⁺. Для оценки эффективности осуществления такого процесса в исследуемых в настоящей работе соединениях Lu_{1-x-y}Ce_xTb_yBO₃ нами был проведен следующий эксперимент. Микрокристаллы кальцитной модификации Lu_{0.995}Ce_{0.005}BO₃ и Lu_{0.95}Tb_{0.05}BO₃ в равных количествах смешивались и перетирались в агатовой ступке до размера микрокристаллитов ~ $3-5\mu$ m. СЛ полученного таким способом образца при возбуждении в полосе поглощения Ce³⁺ ($\lambda_{ex} = 339$ nm) содержат только полосы, характерные для ионов Ce³⁺ (~ 370 и ~ 408 nm) (рис. 11, спектр 4). Полосы свечения

ионов Tb³⁺ (541.8 и 549.5 nm), наблюдающиеся в СЛ образцов Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ при возбуждении светом $\lambda_{ex} = 339$ nm (рис. 5, спектр 3) в смеси порошков отсутствуют.

В спектрах возбуждения люминесценции основных полос свечения ионов Ce^{3+} и Tb^{3+} смеси порошков наблюдаются спектры отдельных компонентов смеси (рис. 10, спектры 5, 6). Полоса 339 nm в спектре возбуждения свечения ионов Tb^{3+} (541,8 nm) смеси $Lu_{0.995}Ce_{0.005}BO_3$ и $Lu_{0.95}Tb_{0.05}BO_3$ отсутствует полностью (рис. 10, спектр 6). Это свидетельствует о том, что свет (в диапазоне длин волн 350-425 nm), излучаемый при возбуждении Ce^{3+} , в пределах точности эксперимента не возбуждает свечения ионов Tb^{3+} . Поэтому и в соединении $Lu_{1-x-y}Ce_xTb_yBO_3$ свечение Tb^{3+} не возбуждется светом, излучаемым при возбуждении ионов Ce^{3+} , а является следствием переноса энергии электронного возбуждения в результате диполь-дипольного взаимодействия.

8. Заключение

В настоящей работе проведены исследования структуры, ИК-спектров поглощения, морфологии и спектральных характеристик соединений Lu_{1-x-v}Ce_xTb_vBO₃ при 0 < x < 0.05, 0 < y < 0.20. Показано, что в спектре возбуждения люминесценции ионов Tb³⁺ в соединениях Lu_{1-x-v}Ce_xTb_vBO₃ доминирует широкая полоса, совпадающая с полосой возбуждения ионов Ce³⁺. Таким образом, при возбуждении ионов Ce^{3+} в $Lu_{1-x-y}Ce_xTb_yBO_3$ наблюдается свечение ионов Tb^{3+} , что однозначно свидетельствует о переносе энергии от ионов Ce³⁺ к Tb³⁺. Спектральное положение этой полосы зависит от структурного состояния образца: ее максимумы в структурах кальцита и ватерита находятся при ~ 339 и $\sim 367\,\mathrm{nm}$ соответственно. Изменяя соотношение структур ватерита и кальцита в образце, можно направленно управлять спектром возбуждения ионов Tb³⁺ в этих соединениях. Соотношение между фазами кальцита и ватерита можно изменять различными способами: путем дополнительного высокотемпературного отжига образца, имеющего изначально небольшое количество фазы кальцита; путем легирования бората лютеция примесями, бораты которых имеют только одну структурную модификацию ватерит; путем добавления небольших количеств Се в ортобораты Lu_{1-у} Tb_у BO₃, содержащие кроме фазы ватерита небольшую долю кальцита.

Интенсивность свечения ионов Tb³⁺ J_{Tb} в имеющих структуру кальцита образцах Lu_{0.945}Ce_{0.005}Tb_{0.05}BO₃ при возбуждении светом с $\lambda_{ex} = 339$ nm увеличивается в ~ 5 и ~ 40 раз относительно J_{Tb} в образцах Lu_{0.95}Tb_{0.05}BO₃ при возбуждении светом с $\lambda_{ex} = 236$ и 378 nm соответственно. Интенсивность свечения бората лютеция, легированного 0.5 at.% Се и 5 at.% Tb, примерно такая же, как и у промышленного зеленого люминофора Y_2O_2S : Tb. Интенсивное свечение LuBO₃: (Ce,Tb) обус-

ловлено высокой эффективностью переноса энергии от ионов Ce^{3+} к Tb^{3+} . Экспериментально показано, что в образцах $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$ кальцитной и ватеритной модификаций перенос энергии от Ce^{3+} к Tb^{3+} осуществляется с эффективностью ~ 78%.

Установлено, что свечение, излучаемое при возбуждении ионов Ce³⁺, в пределах точности измерений не возбуждает люминесценцию ионов Tb³⁺. Перенос энергии от Ce³⁺ к Tb³⁺ осуществляется в результате кулоновского диполь-дипольного взаимодействия между донором и акцептором (ферстеровский механизм переноса энергии). Проведена оценка максимального ("порогового") расстояния *R*, при котором еще осуществляется процесс переноса возбуждения от Ce³⁺ к Tb³⁺ ($R \sim 16-19$ Å).

Обнаружено сильное влияние ионов Ce^{3+} на структурное состояние соединений $Lu_{1-x}RE_xBO_3$, содержащих смесь двух фаз. Введение даже незначительного количества ионов церия (0.5 at.%) приводит к существенному увеличению доли кальцитной модификации в соединении $Lu_{0.85}Tb_{0.15}BO_3$.

Учитывая высокую интенсивность свечения, радиационную и химическую стойкость боратов, их высокую теплопроводность, а также возможность направленного изменения спектра возбуждения, соединение $Lu_{0.945}Ce_{0.005}Tb_{0.05}BO_3$ можно рассматривать в качестве эффективного зеленого люминофора для светодиодов.

Авторы выражают благодарность Е.Ю. Постновой за исследование морфологии образцов и Н.Ф. Прокопюку за помощь в проведении экспериментов.

Список литературы

- [1] Y.H. Zhou, J. Lin, S.B. Wang, H.J. Zhang. Opt. Mater. **20**, 13 (2002).
- [2] V. Dmitriev, V. Sinisyn, R. Dilanyan, D. Machon, A. Kuznetsov, E. Ponyarovsky, G. Lucazeau, H.-P. Weber. J. Phys. Chem. Solids 64, 307 (2003).
- [3] С.З. Шмурак, А.П. Киселев, В.В. Синицын, И.М. Шмытько, А.С. Аронин, Б.С. Редькин, Е.Г. Понятовский. ФТТ 48, 48 (2006).
- [4] S.Z. Shmurak, A.P. Kiselev, N.V. Klassen, V.V. Sinitsyn, I.M. Shmyt'ko, B.S. Red'kin, S.S. Khasanov. IEEE Trans. Nucl. Sci. 55, 1128 (2008).
- [5] С.З. Шмурак, А.П. Киселев, Д.М. Курмашева, Б.С. Редькин, В.В. Синицын. ЖЭТФ 137, 867 (2010).
- [6] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.И. Зверькова. ФТТ 55, 336 (2013).
- [7] С.З. Шмурак, В.В. Кедров, А.П. Киселев, И.М. Шмытько. ФТТ 57, 19 (2015).
- [8] E. Nakazawa, S. Shianoya. J. Chem. Phys. 47, 3211 (1976).
- [9] G. Blasse, B.C. Grabmaier. Luminescent Materials. Springer-Verlag, Berlin-Heidelberg (1994). P. 233.
- [10] Z.J. Hang, H.H. Chen, X.X. Yang, J.T. Zhao. Mater. Sci. Eng. B 145, 34 (2007).
- [11] W.W. Holloway, M. Kestigian, R. Newman. Phys. Rev. Lett. 11, 458 (1963).
- [12] J. Yang, G. Li, C. Peng, C. Li, C. Zhang, Y. Fan, Z. Xu, Z. Cheng, J. Lin. J. Solid State Chem. 183, 451 (2010).

- [13] G. Garsia-Rosales, F. Mersier-Bion, R. Drot, G. Lagarde, J. Rogues, E. Simoni. J. Lumin. 132, 1299 (2012).
- [14] A. Szczeszak, T. Grzyb, S. Lis, R.J. Wiglus. Dalton Trans. 41, 5824 (2012).
- [15] J. Hälsö. Inorg. Chim. Acta 139, 257 (1987).
- [16] E.M. Levin, R.S. Roth, J.B. Martin. Am. Miner. 46, 1030 (1961).
- [17] G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, C. Cousseins. J. Solid State Chem. 128, 261 (1997).
- [18] С.З. Шмурак, В.В. Кедров, А.П. Киселев, Т.Н. Фурсова, И.М. Шмытько. ФТТ 57, 1558 (2015).
- [19] C.E. Weir, E.R. Lippincott. J. Res. Natl. Bur. Stand. A 65, 173 (1961).
- [20] D. Boyer, F. Leroux, G. Bertrand, R. Mahiou. J. Non-Cryst. Solids 306, 110 (2002).
- [21] C. Mansuy, J.M. Nedelec, C. Dujardin, R. Mahiou. Opt. Mater. 29, 697 (2007).
- [22] D. Djyer, G. Bertrand-Chaderon, R. Mahioru, L. Lon, A. Brioude, J. Mugnier. Opt. Mater. 16, 12 (2001).
- [23] M.J. Weber, S.E. Derenso, C. Dujardin. Proc. of SCINT-95 / Eds P. Dorenbos, C.W.E. van Eijk. Delft, The Netherlands (1996). P. 325.
- [24] N.V. Klassen, S.Z. Shmurak, I.M. Shmyt'ko, G.K. Strukova, S.E. Derenso, M.J. Weber. Nucl. Instrum. Meth. Phys. Res. A 537, 144 (2005).
- [25] V.V. Mikhailin, D.A. Spassky, V.N. Kolobanov, A.A. Mearishvily, D.G. Permenov, B.I. Zadneprovski. Rad. Measurements 45, 307 (2010).
- [26] Б.И. Заднепровский, В.В. Сосновцев, Д.Г. Перминов, А.А. Меотишвили, Г.И. Воронова. Письма в ЖТФ 35, 17, 64 (2009).
- [27] J. Yang, G. Zhang, L. Wang, Z. You, S. Huang, H. Lian, J. Lin. J. Solid State Chem. 181, 2672 (2008).
- [28] J.L. Bernstein, E.T. Keve, S.C. Abrahams. J. Appl. Cryst. 4, 284 (1971).
- [29] Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mu, G. Ju, Z. Yang. Physica B 436, 105 (2014).
- [30] B. Di Bartolo, G. Armagan, M. Buoncristiani. Opt. Mater. 4, 11 (1994).
- [31] M. Inokuti, F. Yirayama. J. Chem. Phys. 43, 1978 (1965).
- [32] В.М. Агранович, М.Д. Галанин. Перенос энергии электронного возбуждения в конденсированных средах. Наука, М. (1978). 383 с.
- [33] И.А. Бондарь, А.И. Бурштейн, А.В. Крутиков, Л.М. Мезенцева, В.В. Осико, В.П. Сакун, В.А. Смирнов, И.А. Щербаков. ЖЭТФ 81, 96 (1981).
- [34] С.К. Секацкий, В.С. Летохов. Письма в ЖЭТФ **63**, 311 (1996).
- [35] М.А. Ельяшевич. Спектроскопия редких земель. ГИТТЛ, М. (1953). 456 с.
- [36] М.И. Гайдук, В.Ф. Золин, Л.С. Гайгерова. Спектры люминесценции европия. Наука, М. (1974). 195 с.