Диэлектрический отклик твердых растворов SrTiO₃—SrMg_{1/3}Nb_{2/3}O₃ в терагерцевом—инфракрасном диапазоне

© Г.А. Командин¹, О.Е. Породинков¹, И.Е. Спектор¹, Л.Д. Исхакова², Е.П. Смирнова³

 ¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия
 ² Научный центр волоконной оптики РАН, Москва, Россия
 ³ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 E-mail: oporodinkov@ran.gpi.ru

(Поступила в Редакцию 29 июля 2015 г.)

Измерены спектры отражения и пропускания керамических образцов твердых растворов SrTiO₃-SrMg_{1/3}Nb_{2/3}O₃ в диапазоне частот 5-5000 сm⁻¹ в интервале температур 5-370 К. На их основе методом дисперсионного анализа смоделированы спектры действительной $\varepsilon'(\nu)$ и мнимой $\varepsilon''(\nu)$ частей комплексной диэлектрической проницаемости $\varepsilon^*(\nu)$. Установлено, что температурная эволюция диэлектрической проницаемости всецело определяется поведением мягкой моды.

В Институте общей физики им. А.М. Прохорова РАН и Научном центре волоконной оптики РАН работа поддержана программой фундаментальных исследований ОФН РАН "Современные проблемы радиофизики".

1. Введение

Титанат стронция SrTiO₃ (STO) является одним из наиболее полно изученных материалов структурного семейства перовскита с общей формулой ABO_3 . Пристальное внимание к нему определено в первую очередь тем, что, обладая простой кристаллической структурой, он имеет высокую диэлектрическую проницаемость и низкие потери в радио- и микроволновом диапазонах. В ряду перовскитов CaTiO₃, SrTiO₃ и BaTiO₃ титанат стронция при криогенных температурах находится на пределе фазовой стабильности. Однако переход в сегнетоэлектрическое состояние заблокирован квантовыми флуктуациями, стабилизирующими параэлектрическую фазу, что относит его к классу виртуальных сегнетоэлектриков [1,2].

Сегнетоэлектрический фазовый переход определяется тонким балансом между дальнодействующими кулоновскими взаимодействиями и короткодействующими силами [3,4]. Нарушение этого баланса в параэлектрической фазе может послужить причиной структурного фазового перехода и реализации сегнетоэлектрического состояния. Простым способом формирования стабильной и воспроизводимой фазы со смещенной по температуре точкой фазового перехода является допирование исходного материала изо- либо гетеровалентными ионами примесей в *А-* и/или *В*-положениях [5–8]. Концентрация примесей, необходимая для возникновения и сдвига точки фазового перехода, может быть малой и составлять единицы и даже доли процента.

Одной из практически значимых характеристик полярных материалов является величина диэлектрической проницаемости, достигающая рекордных значений. Согласно [9], в титанате стронция эта величина может составлять десятки тысяч на частотах порядка 1–100 kHz при самых низких температурах вблизи температуры жидкого гелия. В терагерцевой (THz) области величина диэлектрической проницаемости определяется преимущественно решеточным вкладом и варьируется по литературным данным от 400 до 20 000 в зависимости от температуры и морфологии образца [10].

Замещение в STO двухвалентного Sr²⁺ изовалентными ионами (Ca²⁺, Ba²⁺, Pb²⁺ и Cd²⁺) способно вызвать сегнетоэлектрический фазовый переход при малых концентрациях замещающих ионов. В то же время изовалентные примеси в позиции четырехвалентного титана Ti⁴⁺ оказывают существенно меньшее влияние на полярные свойства этих материалов.

Введение в *B*-положение решетки титаната стронция гетеровалентных ионов Mg^{2+} и Nb^{5+} в твердых растворах $SrTiO_3 - SrMg_{1/3}Nb_{2/3}O_3$ приводит к активации мощной дипольной релаксации и росту его статической диэлектрической проницаемости [11]. При концентрации ионов $1/3 Mg^{2+}$ и $2/3 Nb^{5+}$ обеспечивается условие зарядовой компенсации в целом по образцу и общий заряд примесей равен валентности замещаемого ими титана. Максимальные значения диэлектрической проницаемости, измеренные на частотах $10-10^6$ Hz при температуре 200 K и концентрации SrMg_{1/3}Nb_{2/3}O₃ (SMNO) 3%, достигают ~ 11 000, что превосходит диэлектрическую проницаемость беспримесной керамики титаната стронция [10].

Сильные релаксационные процессы, формирующие сопоставимую по величине низкочастотную диэлектрическую проницаемость, обнаружены в составах KTaO₃:Nb, KTaO₃:Nb:Li вблизи температуры сегнетоэлектрического перехода [12,13]. В этих системах непосредственное влияние на рост силы релаксато-

⁰⁶

ра оказывает фазовый переход. В твердом же растворе STO-SMNO сегнетоэлектрический переход не обнаружен.

Объяснение природы необычных полярных свойств этих твердых растворов приведено в работе [11]. Авторы предложили рассматривать в качестве возможного физического механизма релаксационных явлений в STO-SMNO дополнительную локальную компенсацию заряда гетеровалентных примесей Mg^{2+} и Nb^{5+} свободными носителями заряда или имеющимися ионными вакансиями. Существенное отличие рассматриваемой модели заключается в том, что она по сути имеет микроскопический характер, определяемый локальными искажениями исходной структуры перовскита. Эта концепция является альтернативой модели максвелл-вагнеровской релаксации, возможной в титанате стронция с примесями [14], которая в принципе тоже описывает полученные в работе [11] экспериментальные результаты. Авторы [11] отмечают, что для определения механизма этого релаксационного процесса нужны дополнительные исследования.

Диэлектрические характеристики твердого раствора STO-SMNO изучены низкочастотными импедансными методами, не дающими информации о трансформации колебательного спектра и связанных с ним полярных свойств в результате легирования исходного состава. Применение экспериментальных методов терагерцевой-инфракрасной спектроскопии позволяет одновременно определять изменения колебательного спектра и эволюцию комплексной диэлектрической проницаемости. Появляется возможность выделить ту часть поляризации образца, которая напрямую задана собственными векторами полярных оптических фононов и релаксационных процессов в THz-области.

Цель настоящей работы — определение параметров и температурной эволюции мягкой моды в твердом растворе STO–SMNO, а также величины диэлектрической проницаемости, формируемой дипольными возбуждениями в THz-диапазоне.

2. Эксперимент

2.1. Синтез образцов. Керамические образцы твердого раствора (1 - x)SrTiO₃-xSrMg_{1/3}Nb_{2/3}O₃ при x = 0.03 изготовлены по стандартной керамической технологии. Для приготовления керамики использованы карбонат стронция и оксиды титана, ниобия и магния особой чистоты. Подробно особенности технологии синтеза керамик изложены в работе [11]. Образцы для измерений представляли собой диски диаметром 7 mm и толщиной 0.365 mm с плоскопараллельными полированными поверхностями.

2.2. Аттестация образцов. Особенности микроструктуры образцов STO-SMNO исследовались с помощью сканирующего электронного микроскопа (JSM-5910LV, JEOL) в отраженных электронах в режиме Z-контраста, в котором яркость изображения увеличивается с возрастанием среднего атомного номера

Рис. 1. Микроструктура керамики STO–SMNO, полученная с помощью сканирующей электронной микроскопии (отраженные электроны, *Z*-контраст).

фазы на анализируемом участке. Анализ распределения элементов проводился методом рентгеноспектрального энергодисперсионного анализа (РСЭА) с использованием аналитической системы AZtecENERGY (Oxford Instruments).

Рентгенографическое исследование образцов в обычных условиях выполнялось с помощью порошкового рентгеновского дифрактометра Bruker D2 Phaser (Cu $K_{\alpha} = 1.54056$ Å). Параметры элементарных ячеек уточнялись с использованием программного комплекса TOPAS 4.2.0.2.

Уточненный параметр элементарной кубической ячейки (пространственная группа $Pm\bar{3}m$) образца a = 3.9087 Å близок к приведенной в литературе величине a = 3.9050 Å для титаната стронция (ISDD, Card79-174). Различие может быть связано с допированием исследуемого образца ионами магния и ниобия. В соответствии с элементным анализом (усреднение результатов по 21 измерению) состав образца (в at.%) приведен в табл. 1. Отклонение в найденном атомном соотношении Mg/Nb от указанной выше стехиометрии обусловлено погрешностями анализа. На занижение со-

Таблица 1. Состав керамики (at.%)

Sr	Ti	0	Mg	Nb
19.13(13)	19.81(20)	60.33(06)	0.15(03)	0.57(16)

держания магния при его определении методом РСЭА в керамике (1 - x) Pb $(Mg_{1/3}Nb_{2/3})O_3 \cdot x$ PbTiO₃ указывалось в [15].

Как видно из микрофотографий поверхности (рис. 1), образец представляет собой плотную керамику с дефектами микронных размеров. Обработка микрофотографий показала, что площадь этих дефектов не превышает 1.5% от всей площади образца. Характерный размер зерен керамики составляет несколько микрометров.

2.3. Спектроскопические измерения. Измерения спектров пропускания и отражения твердого раствора STO-SMNO выполнены на субмиллиметровом ЛОВ-спектрометре (ЛОВ — лампа обратной волны) "Эпсилон" [16,17] и инфракрасном Фурье-спектрометре Bruker IFS-113v. Таким образом, перекрыт частотный диапазон от 0.3 до 30 THz. Измерения на обоих спектрометрах проводились с применением оптических криостатов и термостатов в интервале температур 5–370 К с шагом ~ 50 К.

3. Экспериментальные результаты и обсуждение

Для определения базового набора дисперсионных параметров и выделения релаксационного вклада в субмиллиметровой (СБММ) области спектры отражения и пропускания образцов STO–SMNO первоначально были измерены при комнатной температуре (рис. 2).

Спектр отражения STO–SMNO, показанный на рис. 2, a, сходен со спектром нелегированного титаната стронция [18,19], за исключением резонансных линий на высокочастотной полосе отражения. Спектр пропускания (рис. 2, b) в низкочастотной области имеет типичный для диэлектриков вид. Амплитуда и период осцилляций в плоскопараллельном образце определены его оптической толщиной и коэффициентом поглощения. По ним вычислены оптические (комплексный показатель преломления) и диэлектрические (комплексная диэлектрическая проницаемость) характеристики материала.

Вид высокочастотного участка спектра пропускания определен, с одной стороны, поглощением на оптических фононах, а с другой — рассеянием на зернах керамики. Размеры зерен по данным электронной микроскопии (рис. 1) составили ~ $10\,\mu$ m. Это должно было привести к рассеянию излучения начиная с длин волн порядка десяти микрометров ($\nu \sim 1000 \, {\rm cm}^{-1}$). Мы аппроксимировали зависимость рассеяния от волнового числа ν экспоненциальным спадом пропускания ${\rm Tr}(\nu) = {\rm Tr}_0 + A \exp \left(- (\nu - \nu_0/\nu_1) \right)$, где ${\rm Tr}_0$ — коэффициент остаточного пропускания на высоких частотах.

Модельный спектр рассеяния показан на рис. 2, *b* линией *l* с полосой 20% погрешности. Расчетный спектр пропускания с учетом излучения, рассеянного на кристаллитах, показан линией *2*.

Дисперсионный анализ экспериментальных спектров отражения и пропускания выполнен одновременно по факторизованной четырехпараметрической модели [20,21]

$$\varepsilon(\nu) = \varepsilon_{\infty} \prod_{j=1}^{N} \frac{\nu_{j\text{LO}}^2 - \nu^2 + i\nu\gamma_{j\text{LO}}}{\nu_{j\text{TO}}^2 - \nu^2 + i\omega\gamma_{j\text{TO}}},$$
(1)

где ν_{jLO} , ν_{jTO} , γ_{jLO} , γ_{jTO} — собственные частоты и константы затухания продольных (LO) и поперечных (TO) оптических фононов.

Теоретико-групповой анализ предсказывает в спектре кубического перовскита три ИК-активных колебания симметрии F_{1u} . В спектре отражения керамики

Рис. 2. Спектры отражения (*a*) и пропускания (*b*) твердого раствора STO-SMNO. Символы — экспериментальные спектры, сплошные линии — спектры, рассчитанные по четырехпараметрической модели дисперсии: *1* — спектр рассеяния излучения в керамике, рассчитанный с 20% погрешностью, *2* — модельный спектр с учетом рассеяния. Линия Ph — участок модельного спектра в СБММ-диапазоне без учета вклада релаксации.

Таблица 2. Дисперсионные параметры моделирования спек-

TO1	89.6	21.3	253.4	$2\cdot 10^{6}$
LO1	781.9	22.6		
TO2	175.3	8.6	2.68	$8 \cdot 10^4$
LO2	172.6	6.97		
TO3	537.3	13.4	0.69	$2 \cdot 10^5$
LO3	475.3	9.26		
TO4	571.03	47.0	0.5	
LO4	557.8	52.7		
TO5	656.0	50.8	0.04	
LO5	651.7	50.8		
TO6	706.0	48.1	0.009	
LO6	704	46.9		
TO7	1325.8	70	0.001	
LO7	1326	70		
TO(R)	5.0	15	10.6	10 ³
LO(R)	5.1	15		
				-

STO-SMNO отчетливо видны эти три моды, параметры которых при комнатной температуре выделены жирным шрифтом в табл. 2.

Помимо основных F_{1u} мод кубического перовскита в спектре STO–SMNO наблюдались четыре дополнительные полосы на высокочастотном краю колебательного спектра (их параметры выделены курсовом в табл. 2). Собственные частоты трех из этих полос попали в область гигантского (~700 cm⁻¹) расщепления мягкой моды. Ситуация аналогична случаю с титанатом кальция, который подробно исследован нами в [22,23]. Следует отметить, что параметры последней, четвертой полосы стало возможным определить исходя из спектра пропускания, в котором заранее было учтено рассеяние в керамическом образце.

Для описания экспериментальных данных СБММизмерений рассмотрения лишь фононного вклада в дисперсию спектра пропускания недостаточно. На рис. 2 такой расчет показан линией Ph. Амплитуда интерференции в спектре пропускания, рассчитанная по параметрам только фононов, превышает экспериментальные величины. Это свидетельствует о наличии дополнительного поглощения в этой области, которое было модельно представлено переторможенным осциллятором. Применение осцилляторной модели продиктовано необходимостью описания высокочастотного участка спектра, где релаксационная модель в силу несоответствия правилу сумм дает неприемлемые расхождения с экспериментом. Дисперсионные параметры релаксационной полосы представлены в табл. 2 в строках, обозначенных LO(R)и TO(R). Резюмируя анализ данных рис. 2, можно заключить, что применение четырехпараметрической модели дисперсии и учет рассеяния в керамике позволили нам одним набором параметров одновременно описать и спектры отражения, и спектры пропускания образца STO-SMNO.

Рассчитанные спектры действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей комплексной диэлектрической проницаемости при комнатной температуре приведены на рис. 3. Вид спектра $\varepsilon'(v)$ типичен для таких перовскитов, как CaTiO₃, BaTiO₃, SrTiO₃. Доминирующий вклад сформирован низкочастотным фононом (полярная мягкая мода), и именно он определил гигантское LO-TO-расщепление, которое проявилось как широкая частотная область отрицательных величин ε' . Мягкой моде принадлежит и решающая роль в формировании диэлектрических потерь, как видно из спектра $\varepsilon''(v)$.

Релаксация, дополнительная к фононному спектру, отмечена на кривой $\varepsilon''(v)$ серой заливкой. Диэлектрический вклад релаксационной полосы составляет 4% от вклада мягкой моды, а сила осциллятора $f = \Delta \varepsilon_j v_{jTO}^2$ на три порядка меньше. Присутствие релаксации в спектре подтверждается тем, что в миллиметровом диапазоне она увеличивает диэлектрические потери на порядок относительно фононного вклада.

Природа этой полосы не может быть установлена однозначно из THz-экспериментов. Известно, что колебательный спектр структурно-неустойчивых кристаллов содержит помимо мягкой моды также и центральную компоненту [24]. Кроме того особенности морфоло-

Рис. 3. Спектры комплексной диэлектрической проницаемости твердого раствора STO–SMNO при комнатной температуре. Серый фон на кривой $\varepsilon''(v)$ — вклад релаксации.

гии керамик независимо от их структурной специфики могут вносить дополнительный вклад в потери на THz-частотах. Поэтому вполне разумно полагать, что релаксационная полоса в CБММ-диапазоне содержит вклады и перечисленных выше механизмов дипольного поглощения. А с учетом того факта, что дисперсия этих процессов расположена на низкочастотном крыле мягкой моды, выделение вклада "примесной" релаксации становится затруднительным.

Температурная эволюция спектров $\varepsilon'(v)$ и $\varepsilon''(v)$ комплексной диэлектрической проницаемости получена из расчетов спектров отражения и пропускания для соответствующих температур и представлена на рис. 4. Приведенные зависимости являются иллюстрацией классического поведения мягкой моды в параэлектрической фазе.

По мере охлаждения образца собственная частота и диэлектрический вклад мягкой моды с хорошей точностью следуют законам Кокрена и Кюри–Вейса, соответственно (рис. 5).

Светлыми кружками показан диэлектрический вклад мягкой моды, рассчитанный по модели (1) для соответствующих температур. Темными кружками обозначен суммарный диэлектрический вклад всех полярных мод с учетом THz-релаксации и высокочастотного вклада ε_{∞} .

Рис. 4. Температурная эволюция мягкой моды в спектрах $\varepsilon'(\nu)$ и $\varepsilon''(\nu)$ твердого раствора STO–SMNO.

Рис. 5. Температурная эволюция диэлектрической проницаемости и параметров мягкой моды в керамике STO–SMNO. Светлые кружки — диэлектрический вклад мягкой моды, рассчитанной по модели (1) для соответствующих температур, темные кружки — суммарный диэлектрический вклад всех полярных мод с учетом THz-релаксации и высокочастотного вклада ε_{∞} . Крестики — квадрат частоты ν^2 мягкой моды, квадраты — обратная величина ее диэлектрического вклада $(1/\Delta\varepsilon)$.

Практическое совпадение указанных вкладов во всем температурном диапазоне свидетельствует о том, что температурная эволюция диэлектрической проницаемости твердых растворов STO–SMNO определяется исключительно поведением мягкой моды.

Экстраполяция квадрата частоты v^2 мягкой моды и обратной величины ее диэлектрического вклада $(1/\Delta\varepsilon)$ к нулю дает значение температуры возможного фазового перехода. С погрешностью 10 К температура Кюри–Вейса оценивается как $T_C \approx -30$ К. Подгонкой температурной зависимости $\varepsilon(T) = C/(T - T_C)$ определена с погрешностью 10% константа Кюри $C \approx 8 \cdot 10^4$.

Таким образом, на основе анализа колебательного спектра получено, что возможный сегнетоэлектрический фазовый переход в твердых растворах STO–SMNO смещен в область отрицательных температур по сравнению с переходом в титанате стронция. Это указывает на то, что проведенное замещение способствует стабилизации параэлектрической фазы.

4. Заключение

Применение факторизованной четырехпараметрической модели дисперсии позволило определить параметры дипольных возбуждений в твердых растворах STO–SMNO в THz-диапазоне частот.

Показано, что доминирующий вклад в диэлектрическую проницаемость вносит полярная мягкая мода. Как и в случае титаната кальция, она ответственна за гигантское расщепление частот поперечной и продольной составляющих.

На основе температурных зависимостей параметров мягкой моды установлено, что аппроксимированная тем-

пература Кюри–Вейса сегнетоэлектрического фазового перехода в системе STO–SMNO понизилась на $\sim 70\,K$ по сравнению с характерной для номинально чистого титаната стронция и составила $-30\,K.$

В субмиллиметровой области спектра выявлено дипольное возбуждение релаксационного типа, повышающее диэлектрические потери на порядок относительно фононного вклада. Природа этой релаксации не может быть однозначно определена в силу керамической морфологии исследуемого образца.

Список литературы

- [1] A.S. Barker, jr, M. Tinkham. Phys. Rev. 125, 1527 (1962).
- [2] K.A. Müller, H. Burkard. Phys. Rev. B 19, 3593 (1979).
- [3] W. Zhong, R.D. King-Smith, D. Vanderbilt. Phys. Rev. Lett. 72, 3618 (1994).
- [4] R.D. King-Smith, D. Vanderbilt. Phys. Rev. B 49, 5828 (1994).
- [5] В.В. Леманов. ФТТ **39**, *9*, 1645 (1997).
- [6] V.V. Lemanov. Ferroelectrics 226, 133 (1999).
- [7] T. Ostapchuk, M. Savinov, J. Petzelt, A. Pashkin, M. Dressel, E. Smirnova, V. Lemanov, A. Sotnikov, M. Weihnacht. Ferroelectrics 353, 70 (2007).
- [8] T. Ostapchuk, J. Petzelt, P. Kuzel, S. Veljko, A. Tkach, P. Vilarino, I. Ponomareva, L. Bellaiche, E. Smirnova, V. Lemanov. A. Sotnikov, M. Weihnacht. Ferroelectrics 367, 139 (2008).
- [9] H. Uwe, T. Sakudo. Phys. Rev. B 13, 271 (1976).
- [10] J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetský, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorný, M. Savinov, V. Porokhonsyy, D. Rafaja, P. Vaněk, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, R. Wasser. Phys. Rev. B 64, 184 111 (2001).
- [11] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht. ΦΤΤ 44, 11, 1948 (2002).
- [12] G.A. Samara, L.A. Boatner. Phys. Rev. B 61, 3889 (2000).
- [13] V.A. Trepakov, M.E. Savinov, S. Kaplan, V.S. Vikhnin, L. Jastrabik, L.A. Boatner. Ferroelectrics 239, 305 (2000).
- [14] H. Neumann, G. Arlt. Ferroelectrics 69, 179 (1986).
- $\left[15\right]\,$ Z. Samardžija. Microscopy Microanalys, in press (2015).
- [16] А.А. Волков, Ю.Г. Гончаров, Г.В. Козлов, С.П. Лебедев, В.И. Мальцев. Электронная техника. Сер. Электроника СВЧ. Вып. 11(371), 38 (1984).
- [17] G.V. Kozlov, A.A. Volkov. Top. Appl. Phys. 74, 51 (1998).
- [18] W.G. Spitzer. R.S. Miller, D.A. Kleinman, L.E. Howarth. Phys. Rev. 126, 1710 (1962).
- [19] J.L. Servoin, Y. Luspin, F. Gervais. Phys. Rev. B 22, 5501 (1980).
- [20] R.H. Lyddane, R.G. Sachs, E. Teller. Phys. Rev. 59, 673 (1941).
- [21] T. Kurosawa. J. Phys. Soc. Jpn. 16, 1298 (1961).
- [22] Г.А. Командин, А.А. Волков, О.Е. Породинков, И.Е. Спектор, С.В. Чучупал. ФТТ 55, 6, 1147 (2013).
- [23] G. Komandin, O. Porodinkov, I. Spektor, A. Volkov, S. Chuchupal. Ferroelectrics 463, 1 (2014).
- [24] J. Petzelt, G.V. Kozlov, A.A. Volkov. Ferroelectrics 73, 101 (1987).