05,02

Магнитостатический механизм управления киральностью распределений намагниченности

© И.М. Нефедов^{1,2}, А.А. Фраерман^{1,2}, И.А. Шерешевский^{1,2}

¹ Институт физики микроструктур РАН, Нижний Новгород, Россия ² Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия E-mail: andr@ipmras.ru (Поступила в Редакцию 18 июня 2015 г.

В окончательной редакции 3 августа 2015 г.)

Показано, что магнитостатическое взаимодействие в неоднородной среде приводит к снятию кирального вырождения магнитных распределений. В качестве примеров рассмотрено неколлинеарное состояние двух магнитных диполей и спиральной циклоиды находящихся над сверхпроводящим полупространством. В рамках лондоновского приближения исследовано влияние конечности глубины проникновения магнитного поля на эффективность снятия кирального вырождения.

Работа выполнена при поддержке РФФИ и гранта № 02.49.21.0003 в рамках соглашения между МОН РФ и ННГУ им. Н.И. Лобачевского.

1. Введение

Известно, что в центросимметричных магнитных средах распределение намагниченности вырождено относительно направления пространственного вращения магнитного момента. Так, энергии "левой" и "правой" доменных стенок одинаковы [1]. В магнитных кристаллах без центра инверсии киральная симметрия нарушается, что приводит к гомокиральным спиральным конфигурациям, наблюдавшимся в таких кристаллах, как MnSi и $Fe_{1-x}Co_xSi$ [2,3]. Снятие кирального вырождения в этих кристаллах связано со взаимодействием Дзялошинского-Мория [4,5], которое является прямым следствием спин-орбитального взаимодействия в материалах с киральной кристаллической структурой. Альтернативным механизмом снятия кирального вырождения является магнитостатическое взаимодействие в средах с неоднородным распределением магнитной восприимчивости. Так, в работе [6] показано, что энергия магнитной циклоиды в магнитной пленке, расположенной над парамагнитной подложкой, зависит от направления вращения спирали. В [7] рассмотрена цепочка магнитных диполей, расположенных над сверхпроводящей подложкой. Основное состояние такой системы неколлинеарно, а ее магнитостатическая энергия зависит от направления киральности. В последнее время возрастает интерес к созданию неколлинеарных (скирмионных) распределений намагниченности [8] и управлению их киральностью для исследования магнитоэлектрического эффекта [9] и транспортных свойств гибридных структур ферромагнетик/сверхпроводник [10]. В настоящей работе представлено общее рассмотрение магнитостатического механизма управления киральностью магнитных распределений, приведены расчеты магнитостатической энергии в спиральной циклоиде над сверхпроводником при конечных значениях глубины проникновения магнитного поля (в работе [7] рассмотрен случай бесконечно малой глубины проникновения — идеальный диамагнетик).

2. Основное состояние двух магнитных диполей над сверхпроводником

Энергия магнитостатического взаимодействия для неоднородного распределения магнитного момента M(r) имеет вид

$$E = \frac{1}{2} \int_{V} D_{ik}(\mathbf{r}, \mathbf{r}') M_i(\mathbf{r}) M_k(\mathbf{r}') d\mathbf{r} d\mathbf{r}', \qquad (1)$$

где тензор магнитостатического взаимодействия обладает очевидным свойством

$$D_{ik}(\mathbf{r},\mathbf{r}')=D_{ki}(\mathbf{r}',\mathbf{r}).$$

В однородной и изотропной среде тензор $D_{ik}(\mathbf{r}, \mathbf{r}')$ зависит только от расстояния между точками \mathbf{r} и \mathbf{r}' и является симметричным,

$$D_{ik}(|r|) = -\nabla_i \nabla_k \frac{1}{|r|}$$

В средах с неоднородной магнитной проницаемостью антисимметричная часть магнитостатического тензора $D_{ik}^{(a)}(\mathbf{r},\mathbf{r}') = -D_{ki}^{(a)}(\mathbf{r},\mathbf{r}')$ может быть отлична от нуля. Антисимметричная часть тензора второго ранга дуальна некоторому аксиальному вектору $\boldsymbol{\eta}$ и представима в виде $D_{ik}^{(a)} = \varepsilon_{ikl}\boldsymbol{\eta}_l$, где ε_{ikl} — абсолютно антисимметричный тензор Леви–Чивита, $\boldsymbol{\eta}$ — псевдовектор. Следовательно, в магнитостатической энергии взаимодействия (1)

Рис. 1. Два диполя над идеальным парамагнетиком (штриховыми стрелками показаны диполи изображения).

Рис. 2. Два диполя над идеальным сверхпроводником (штриховыми стрелками показаны диполи изображения).

возникает слагаемое вида

$$(\boldsymbol{\eta}(\mathbf{r},\mathbf{r}'),[M(\mathbf{r})\times(M(\mathbf{r})')]).$$
 (2)

Псевдовектор η представим в виде $\eta = \eta_0 [\operatorname{grad} \mu \times \mathbf{d}],$ где $\mathbf{d} = \mathbf{r} - \mathbf{r}'$ — радиус-вектор, направленный от точки \mathbf{r} к точке r', grad μ — градиент магнитной проницаемости рассматриваемой неоднородной среды, η_0 — константа. Из приведенных формул следует, что энергия магнитостатического взаимодействия в неоднородной среде может зависеть от киральности распределения намагниченности, так как векторное произведение магнитных моментов в различных точках образца и определяет эту киральность (см. (2)). Дополнительный, киральный вклад в магнитостатическую энергию образца определяется направлением градиента магнитной восприимчивости. Простейший способ реализации среды с неоднородной магнитной восприимчивостью есть плоский контакт ферромагнитной пленки с подложкой, характеризующейся собственной магнитной проницаемостью, отличной от единицы. Это может быть парамагнитная подложка, как предложено в работе [6], или диамагнитная сверхпроводящая подложка, как предложено в работе [7]. Поскольку знак магнитной восприимчивости для диамагнетика и парамагнетика различен, эти контакты будут выделять структуры с различным знаком киральности. В рассматриваемом случае плоской границы градиент магнитной проницаемости направлен перпендикулярно этой границе и совпадает с внешней нормалью для диамагнетика и внутренней нормалью для парамагнетика. Для иллюстрации изложенного рассмотрим два магнитных диполя, расположенных над идеальным парамагнетиком ($\mu \rightarrow +\infty$, рис. 1) и идеальным диамагнетиком (сверхпроводником, $(\mu \rightarrow -\infty,$ рис. 2)). В случае парамагнетика (сверхпроводника) на границе раздела обращается в нуль тангенциальная (соответственно нормальная) компонента магнитного

поля. Удовлетворить этим граничным условиям можно, вводя диполи изображения так, как показано на рисунках. Магнитные поля, индуцированные этими диполями изображения, приводят к неколлинеарному основному состоянию. В случае парамагнетика основным является состояние с вращением магнитного момента "по часовой стрелке", а для диамагнетика знак киральности основного состояния противоположный. Различный знак киральности в ориентациях двух диполей соответствует общему утверждению об определяющем влиянии направления градиента магнитной восприимчивости.

Исследуем киральность основного состояния двух магнитных диполей, расположенных над сверхпроводящим полупространством, при конечной глубине проникновения λ магнитного поля в сверхпроводник. Энергия системы сверхпроводник/ферромагнетик в лондоновском приближении имеет вид

$$E = \int \left\{ \frac{1}{8\pi} \left[\mathbf{B}^2 + \lambda^2 (\operatorname{rot} \mathbf{B})^2 \right] - \mathbf{B} \mathbf{M} \right\} dv, \qquad (3)$$

где первое слагаемое — энергия магнитного поля, второе — энергия сверхпроводящего тока, а третье энергия ферромагнетика в магнитном поле, $\mathbf{M}(\mathbf{r})$ магнитный момент ферромагнетика. При записи (3) предполагалось, что сверхпроводник и ферромагнетик пространственно разделены. При условии достаточно быстрого спадания магнитного поля, энергия (3) преобразуется к виду [11]

$$E=-\frac{1}{2}\int \mathbf{B}\mathbf{M}dv,$$

где магнитная индукция **В** удовлетворяет уравнению Лондонов

$$\mathbf{B} + \lambda^2 \operatorname{rot} \operatorname{rot} \mathbf{B} = 4\pi \mathbf{M}.$$

Подставляя выражение для магнитной индукции $\mathbf{B} = -\nabla \varphi + 4\pi \mathbf{M}$ в (5), для скалярного потенциала φ получим уравнение

$$\Delta \varphi - \frac{1}{\lambda^2} \varphi = 4\pi \operatorname{div} \mathbf{M}.$$

Магнитное поле в точке наблюдения $\mathbf{r} = (x, y, z)$, создаваемое точечным диполем с магнитным моментом **m**, находящимся в точке с координатами $\mathbf{r}_0 = (x_0, y_0, z_0)$, дается формулой

$$H_i(\mathbf{r}) = -D_{ik}(\mathbf{r}, \mathbf{r}_0)m_k,$$

где тензор магнитостатического взаимодействия есть

$$D_{ik}(\mathbf{r},\mathbf{r}_0) = \frac{\partial^2}{\partial r_i \partial r_{0k}} G(\mathbf{r},\mathbf{r}_0),$$

а функция Грина G удовлетворяет уравнению

$$\begin{split} \Delta G(\mathbf{r},\mathbf{r}_0) &-\lambda^{-2}(z)G(\mathbf{r},\mathbf{r}_0) = -4\pi\delta(\mathbf{r}-\mathbf{r}_0),\\ \lambda^{-2}(z) &= 0, \qquad z > 0,\\ \lambda^{-2}(z) &= \lambda^{-2}, \qquad z < 0. \end{split}$$

Учитывая непрерывность функции Грина и ее нормальных производных на границе сверхпроводника z = 0, получим

$$G(\mathbf{x}, z; \mathbf{x}_0, z_0) = \frac{1}{|\mathbf{r} - \mathbf{r}_0|} - G_s \left(|\mathbf{x} - \mathbf{x}_0|, z + z_0 \right),$$

$$G_s \left(|\mathbf{x} - \mathbf{x}_0|, z + z_0 \right) = \int_0^\infty dk \frac{e^{-k(z+z_0)} J_0(k|\mathbf{x} - \mathbf{x}_0|)}{\left(\sqrt{(\lambda k)^2 + 1} + \lambda k\right)^2},$$

где *J*₀ — функция Бесселя нулевого порядка.

``

Энергия двух магнитных диполей с магнитными моментами **m**₁, **m**₂, расположенными в точках с координатами $\mathbf{r}_{1,2} = (\pm d/2, 0, h)$, примет вид

$$E = (D_0(\mathbf{r}_1 - \mathbf{r}_2)\mathbf{m}_1, \mathbf{m}_2) + \frac{1}{2} [(D_s(\mathbf{r}_1, \mathbf{r}_1)\mathbf{m}_1, \mathbf{m}_1) + (D_s(\mathbf{r}_2, \mathbf{r}_2)\mathbf{m}_2, \mathbf{m}_2)] + \frac{1}{2} [(D_s(\mathbf{r}_1, \mathbf{r}_2)\mathbf{m}_2, \mathbf{m}_1) + (D_s(\mathbf{r}_2, \mathbf{r}_1)\mathbf{m}_1, \mathbf{m}_2)], (5)$$

где

j

$$D_{0,ik}(\mathbf{r} - \mathbf{r}_0) = \frac{\delta_{ik}}{|\mathbf{r} - \mathbf{r}_0|^3} - 3 \frac{(\mathbf{r} - \mathbf{r}_0)_i (\mathbf{r} - \mathbf{r}_0)_k}{|\mathbf{r} - \mathbf{r}_0|^5}$$

есть магнитостатический тензор в свободном пространстве, а

$$D_{s,ik}(\mathbf{r},\mathbf{r}_0) = \frac{\partial^2}{\partial r_i \partial r_{0k}} G_s(\mathbf{r},\mathbf{r}_0)$$

Первое слагаемое в (5) есть энергия взаимодействия двух диполей в отсутствие сверхпроводника. Слагаемые в квадратных скобках обусловлены магнитными полями экранирующих токов в сверхпроводнике. При этом первая пара слагаемых описывает магнитную анизотропию каждого из диполей, а вторая пара слагаемых вносит вклад в их взаимодействие. Поскольку $D_s(\mathbf{r}_1, \mathbf{r}_2) \neq D_s(\mathbf{r}_2, \mathbf{r}_1)$, именно эти слагаемые ответственны за неколлинеарность основного состояния системы. Можно показать, что минимуму энергии (5) соответствует состояние (модули магнитных моментов диполей предполагаются равными)

$$\mathbf{m}_{1,2} = (\cos\theta, 0, \pm \sin\theta),$$

где θ — угол между диполем и плоскостью z = 0. Угол θ определяется компонентами дипольного тензора

$$\tan \theta = \frac{D_{22} - D_{11} - \sqrt{(D_{22} - D_{11})^2 + 4D_{12}^2}}{2D_{12}},$$

где

$$D_{11} = D_{0,xx} + D_{s,xx} + D_{s,xx}^{n},$$

$$D_{22} = -D_{0,zz} - D_{s,zz} + D_{s,zz}^{h},$$

$$D_{1,2} = -D_{s,xz}.$$

Рис. 3. Зависимость угла отклонения диполей θ от отношения расстояния до сверхпроводника (h) к расстоянию между диполями (d) в случае "идеальной" экранировки ($\lambda = 0$).

Компоненты магнитостатического тензора, определяющие угол между магнитными моментами диполей, имеют вид

2

$$\begin{split} D_{0,xx} &= -2D_{0,zz} = -\frac{1}{d^3}, \\ D_{s,zz} &= \int_0^\infty dk \frac{k^2 e^{-2kh} J_0(kd)}{\left(\sqrt{(\lambda k)^2 + 1} + \lambda k\right)^2}, \\ D_{s,xz} &= -D_{s,zx} = \int_0^\infty dk \frac{k^2 e^{-2kh} J_1(kd)}{\left(\sqrt{(\lambda k)^2 + 1} + \lambda k\right)^2}, \\ D_{s,xx} &= \frac{1}{d} \int_0^\infty dk \frac{k e^{-2kh} J_1(kd)}{\left(\sqrt{(\lambda k)^2 + 1} + \lambda k\right)^2}, \\ &- \int_0^\infty dk \frac{k^2 e^{-2kh} J_2(kd)}{\left(\sqrt{(\lambda k)^2 + 1} + \lambda k\right)^2}, \\ D_{s,zz}^h &= -\int_0^\infty dk \frac{k^2 e^{-2kh}}{\left(\sqrt{(\lambda k)^2 + 1} + \lambda k\right)^2}, \\ D_{s,xx}^h &= D_{s,yy}^h = -\frac{1}{2} D_{s,zz}^h, \end{split}$$

где *J_k* — функции Бесселя порядка *k*.

На рис. З представлена зависимость угла наклона диполей θ от отношения расстояния до сверхпроводника (h) к расстоянию между диполями (d) в случае "идеальной" экранировки ($\lambda = 0$). Угол наклона стре-

Рис. 4. Зависимость угла отклонения левого диполя от глубины проникновения магнитного поля λ при h/d = 0.2.

Рис. 5. Зависимость угла отклонения левого диполя от глубины проникновения магнитного поля λ при h/d = 0.4.

мится к нулю при больших и малых h/d. При малых высотах недиагональные компоненты магнитостатического тензора малы ($\sim h$), а при больших h влияние сверхпроводника убывает ($\sim 1/h^3$), что и объясняет наличие максимума угла отклонения при $h/d \sim 1$. Зависимость угла отклонения от глубины проникновения магнитного поля λ при фиксированных значениях hи d также немонотонна (рис. 4, 5). Уменьшение угла наклона при больших λ вполне ожидаемо. Возрастание угла между диполями при малых λ связано с эффективным увеличением расстояния от "диполя изображения" до поверхности сверхпроводника при увеличении лондоновской длины проникновения магнитного поля, что приводит к увеличению недиагональных компонент магнитостатического тензора.

Киральность спиральных распределений намагниченности в тонкой магнитной пленке над сверхпроводником

Из (2) следует, что асимметричный вклад существует только в том случае, если магнитный момент лежит в плоскости, образованной нормалью к поверхности сверхпроводника и осью, вдоль которой происходит изменение намагниченности. Рассматриваемый механизм не приводит к снятию кирального вырождения геликоидальных ("блоховских") распределений намагниченности, для которых магнитный момент перпендикулярен направлению его изменения. Поэтому мы исследуем влияние сверхпроводника на магнитостатическую энергию и киральность спиральной циклоиды, образовавшейся в ферромагнитной пленке [12]. Распределение магнитного момента имеет вид

$$\mathbf{M}_{\pm} = M_s \left(\pm \sin \frac{2\pi}{a} x, 0, \cos \frac{2\pi}{a} x \right). \tag{6}$$

Распределению \mathbf{M}_+ соответствует вращение магнитного момента вокруг оси *OY* по часовой стрелке, а \mathbf{M}_- — вращение против часовой стрелки. Покажем, что энергии этих двух распределений различны. Предполагаем, что пленка толщиной *h* достаточно тонкая, так что намагниченность не зависит от координаты *z*. Используя формулу (1) и полученные выше выражения для дипольных матриц, можно показать, что удельная (на период) энергия периодического распределения намагниченности в тонкой пленке над сверхпроводником представляется в виде суммы вкладов

$$\begin{split} E_{m,V,V} &= \frac{2\pi}{hS^2} \sum_{q} |\mathbf{q}, \mathbf{M}_{\mathbf{q}}|^2 \frac{1}{|\mathbf{q}|^2} \left(h - \frac{1}{|\mathbf{q}|} \left(1 - e^{-|\mathbf{q}|h} \right) \right), \\ & E_{m,V,\partial V} = 0, \\ E_{m,\partial V,\partial V} &= \frac{2\pi}{hS^2} \sum_{q} |M_{z,q}|^2 \frac{1}{|q|} \left(1 - e^{-|\mathbf{q}|h} \right), \\ E_{\mathrm{ind},V,V} &= \frac{\pi}{hS^2} \sum_{\mathbf{q}} |(\mathbf{q}, \mathbf{M}_{\mathbf{q}})|^2 \frac{(1 - e^{-|\mathbf{q}|h})^{2^3}}{|\mathbf{q}|} \\ & \times \left(|\mathbf{q}|\lambda + \sqrt{|\mathbf{q}|^2\lambda^2 + 1} \right)^2, \\ E_{\mathrm{ind},V,\partial V} &= -\frac{2\pi i}{hS^2} \sum_{\mathbf{q}} (\mathbf{q}, \mathbf{M}_{\mathbf{q}}) M_{z,q} \frac{(1 - e^{-|\mathbf{q}|h})^{2^2}}{|\mathbf{q}|} \\ & \times \left(|\mathbf{q}|\lambda + \sqrt{|\mathbf{q}|^2\lambda^2 + 1} \right)^2, \\ E_{\mathrm{ind},\partial V,\partial V} &= -\frac{\pi}{hS^2} \sum_{\mathbf{q}} |M_{z,\mathbf{q}}|^2 \frac{(1 - e^{-|\mathbf{q}|h})^2}{|\mathbf{q}| \left(|\mathbf{q}|\lambda + \sqrt{|\mathbf{q}|^2\lambda^2 + 1} \right)^2, \end{split}$$

где

$$\mathbf{M}(\boldsymbol{\rho}) = \frac{1}{S} \sum_{\mathbf{q}} \mathbf{M}_{\mathbf{q}} e^{i(\mathbf{q},\boldsymbol{\rho})},$$
$$\mathbf{q} \in \left\{ \left(\frac{2\pi n_x}{a_x}, \frac{2\pi n_y}{a_y} \right), n_x, n_y \in \mathbb{Z} \right\},$$
$$S = a_x a_y, \qquad \mathbf{M}_{\mathbf{q}} = \int_{S} \mathbf{M}(\boldsymbol{\rho}) e^{-i(\mathbf{q},\boldsymbol{\rho})} d\boldsymbol{\rho}.$$

Подставляя в эти формулы выражение для распределения в циклоиде (6), получим

$$E_{\pm} = \pi M_s^2 \left(1 + \frac{1 \pm 1}{2} \frac{2(1 - e^{-qh})^2}{qh} \frac{1}{\left(q\lambda + \sqrt{(q\lambda)^2 + 1}\right)^2} \right),$$
$$q = \frac{2\pi}{q}.$$

Отсюда следует, что разность энергий "правой" и "левой" спиралей равна

$$\Delta E = \pi M_s^2 \frac{2(1 - e^{-gh})^2}{gh} \frac{1}{\left(q\lambda + \sqrt{(q\lambda)^2 + 1}\right)^2}.$$
 (7)

Таким образом, энергия спирали, закрученной по часовой стрелке, больше, чем энергия спирали против часовой стрелки. Отметим, что в случае парамагнитной подложки, рассмотренной в работе [6], ситуация противоположная, что соответствует приведенным выше соображениям. Из формулы (7) следует, что разность энергий между спиральными состояниями с различной киральностью убывает с уменьшением периода спирали. Так, для спирали с периодом ~ 30 nm, существующей в пленке толщиной ~ 10 nm, относительная разность энергий не превышает 1%. Эта оценка получена для сверхпроводников (Al, Pb, Nb) с глубиной проникновения магнитного поля ~ 50 nm [13].

Список литературы

- [1] А. Хуберт. Теория доменных стенок в упорядоченных средах. Мир, М. (1977). 310 с.
- [2] Y. Ishikawa, K. Tajima, D. Bloch, M. Roth. Solid State Commun. 19, 525 (1976).
- [3] J. Beille, J. Voiron, M. Roth. Solid State Commun. 47, 399 (1983).
- [4] I. Dzyaloshinsky. J. Phys. Chem. Solids 4, 241 (1958).
- [5] T. Moriya. Phys. Rev. 120, 91 (1960).
- [6] N. Mikuszeit, S. Meckler, R. Wiesendanger, R. Miranda. Phys. Rev. B 84, 054 404 (2011).
- [7] К.Р. Мухаматчин, А.А. Фраерман. Письма в ЖЭТФ **93**, *12*, 797 (2011).
- [8] N. Nagaosa, Y. Tokura. Nature Nanotechnol. 8, 899 (2013).
- [9] А.К. Звездин, А.П. Пятаков. УФН, 182, 593 (2012).
- [10] A.I. Buzdin. Rev. Mod. Phys. 77, 935 (2005).
- [11] S. Erdin, A.F. Kayali, I.F. Lyuksyutov, V.L. Pokrovsky. Phys. Rev. B 66, 014414 2002.
- [12] S. Meckler, N. Mikuszeit, A. Pressler, E.Y. Vedmedenko, O. Pietzsch, R. Wiesendanger. Phys. Rev. Lett. 103, 157 201 (2009).
- [13] В.В. Шмидт. Введение в физику сверхпроводников. Наука, М. (1982). 240 с.