02,10

Локальные особенности кристаллической структуры сверхпроводящих халькогенидов железа Fe(TeSe)_{1-δ}

© В.Г. Иванов¹, Д.А. Чареев², А.А. Иванов¹, А.Н. Васильев³⁻⁵, А.П. Менушенков¹

¹ Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

² Институт экспериментальной минералогии РАН,

Черноголовка, Россия

³ Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

⁴ Уральский федеральный университет им. Б.Н. Ельцина,

Екатеринбург, Россия

⁵ Национальный исследовательский технологический университет "МИСиС",

Москва, Россия

E-mail: apmenushenkov@mephi.ru

(Поступила в Редакцию 12 августа 2015 г.)

Методом EXAFS-спектроскопии выше K–Se- и K–Fe-краев поглощения исследована локальная кристаллическая структура сверхпроводящих порошков халькогенидов железа FeTe_xSe_{1-x} (x = 0.1, 0.22, 0.49, 0.8, 0.9), приготовленных методом сухого синтеза (без минерализатора) в диапазоне температур 80–300 К. Получены зависимости длин межатомных связей Se–Fe, Fe–Te и Fe–Fe и степени их локального разупорядочения (факторов Дебая–Валлера) от содержания теллура и температуры. Определены температуры Эйнштейна, характеризующие жесткость каждой из этих связей. Установлена корреляция жесткости связи Se–Fe с зависимостью критической температуры сверхпроводящего перехода T_c от состава изучаемых образцов,что указывает на особую роль связи Se–Fe в образовании сверхпроводящего состояния в халькогенидах железа FeTe_xSe_{1-x}.

Авторы В.Г. Иванов и А.П. Менушенков благодарят Минобрнауки РФ за поддержку в рамках Соглашения № 14.587.21.0002, Проект № RFMEFI58714X0002; автор А.Н. Васильев благодарит Минобрнауки РФ за поддержку в рамках программы повышения конкурентоспособности Национального исследовательского технологического университета "МИСиС" (№ К2-2014-036).

1. Введение

Халькогениды железа FeSe подобно купратам имеют слоистую кристаллическую структуру и отличаются наиболее простой тетрагональной структурой типа PbO среди всех высокотемпературных сверхпроводников (ВТСП) на основе железа [1,2]. В отличие от других ВТСП на основе железа халькогениды не содержат промежуточных атомных слоев, служащих донорами свободных носителей заряда. Их источником становится небольшой дефицит атомов-халькогенов FeCh_{1- δ} (Ch = S, Se, Te; $0 < \delta < 0.18$) или избыток железа, причем минимальное значение нестехиометричности δ , приводящее к полному подавлению сверхпроводимости, определяется условиями синтеза образцов [3].

Относительно проста структура халькогенидов железа определяет их существенные преимущества при исследовании связи структурых особенностей и макроскопических (сверхпроводящих) свойств. Кроме того, недавно было заявлено о получении методом молекулярнолучевой эпитаксии ультратонких пленок FeSe толщиной в одни монослой на диэлектрических и проводящих подложках SrTiO₃ (001), в которых из-за размерных эффектов критическая температуре многократно возрастает в сравнении со значением, характерным для объ

емного образца FeSe (~ 8 K [1]), и достигает рекордных для ВТСП на основе железа значений $T_c \sim 109$ K [4–6]. Одновременно с ростом T_c наблюдается и значительный рост критического тока I_c , что существенно расширяет область потенциального применения сверхпроводящих халькогенидов железа при температурах выше азотной.

В дополнение к данным дифракции важную информацию о локальном окружении атомов получают с помощью локально-чувствительного метода — рентгеновской спектроскопии поглощения (EXAFS). Так, EXAFSспектроскопия позволяет установить неоднородность положения Se и Te в решетке халькогенидов железа FeTe_xSe_{1-x} (x = 0 и x = 0.5 [7]; x = 0.75 [8]). Кроме того, с состоянием локальных электронной и атомной структур связаны макроскопические свойства веществ, например, поведение критической температуры сверх-проводимости T_c сверхпроводящего FeSe при изменении внешнего давления [9].

При этом недостаточное, на наш взгляд, внимание уделялось исследованию процесса подавления сверхпроводимости в халькогенидах при переходе от FeSe к FeTe при последовательном замещении атомов Se на Te.

В настоящей работе данное явление рассматривается с точки зрения изменений в локальной структуре изучаемых соединений. Влияние замещения селена на теллур в FeTe_xSe_{1-x} (x = 0.1, 0.22, 0.49, 0.8, 0.9) на локальное окружение атомов железа и селена было изучено с помощью EXAFS-спектроскопии с использованием синхротронного излучения. Результаты локальных исследований обсуждены совместно с данными рентгеновской дифракции и результатами электрофизических измерений.

2. Эксперимент

2.1. Изготовление и характеризация образцов. Для синтеза порошков $Fe(TeSe)_{1-\delta}$ использовались карбонильное железо Labtex, селен и теллур, очищенные зонной плавкой.

Порошки состава Fe(Te_xSe_{1-x})_{1- δ}, где x = 0.1, 0.22, 0.49, 0.8, 0.9, были приготовлены методом сухого синтеза в вакуумированных ампулах из кварцевого стекла. Синтез проходил в два этапа.

На первом этапе элементы были взвешены в соотношении $Fe(Te_x Se_{1-x})_{0.98}$, где x = 0.1, 0.22, 0.49, 0.8, 0.9, и отожжены в кварцевых ампулах в течение трех недель. FeTe_{0.1}Se_{0.9} и FeTe_{0.22}Se_{0.78} отжигались при 400°C, в то время как образцы с большим содержанием Te — при 600°C. Температура синтеза тетрагонального Fe(TeSe) выбиралась согласно соотношению Te и Se в образце. Это связано с уменьшением температурной стабильности Fe(TeSe) при увеличении содержания Se. Tak, FeTe разлагается при 800°C, а FeSe — уже при 457°C.

После охлаждения прореагировавшие смеси были извлечены из ампул, растолчены в агатовой ступке в ацетоне и помещены в другие кварцевые ампулы для повторного отжига при тех же температурах в течение 10 дней.

Затем полученные смеси были повторно перемолоты до однородного состояния, помещены в новые ампулы с дополнительной порцией мелкодисперсного порошка Fe, который был отделен от основной фазы при помощи мембраны из каолиновой ваты (метод "сэндвича"), и отожжены при своих температурах в течение 20 дней. В результате реакции с железом из синтезированных порошков Fe(TeSe) через газовую фазу была удалена доля халькогенов δ .

Синтезированные образцы были исследованы с помощью рентгеновской порошковой дифрактометрии (DRON-7, излучение CoK_{α}, Fe-фильтр), которая подтвердила формирование типичной для FeSe тетрагональной структуры типа PbO, относящейся к пространственной группе *P4/nmm* [10]. Полученные дифрактограммы представлены на рис. 1.

2.2. Е ХА F S - с п е к т р о с к о п и я. Измерение EXAFSспектров осуществлялось на станции I811 синхротронного центра MAX-lab (Лунд, Швеция) в режиме пропускания выше *К*-краев поглощения Fe (7112 eV) и Se (12658 eV) в температурном диапазоне 80-300 K. Температура регулировалась с помощью прокачного

Рис. 1. Рентгеновские дифрактограммы порошков $Fe(Te_x Se_{1-x})_{1-\delta}$.

азотного криостата с точностью ± 1 К. Для обеспечения оптимальной толщины образца d ($1 \le \mu d \le 2$, где μ — коэффициент поглощения) для измерения в режиме пропускания порошки были спрессованы в таблетки диаметром 10 mm с применением целлюлозы в качестве связующей субстанции, не дающей вклада в поглощение.

Обработку EXAFS-спектров и моделирование EXAFSфункции $\chi(k)$ проводили с помощью программного пакета VIPER [11] в соответствии с формулой

$$\chi(k) = -S_0^2 \sum_j |f_j(k,\pi)| \frac{N_j}{kR_j^2} \sin(2kR_j + \varphi_j(k))$$
$$\times \exp(-2\sigma_j^2 k^2) \exp(-2R_j/\lambda(k)). \tag{1}$$

Здесь суммирование производится по всем координационным сферам *j* окружающих атомов, N_j и R_j координационное число и радиус *j*-й координационной сферы, $f_j(k, \pi)$ — амплитуда рассеяния назад *j*-ым атомом окружения фотоэлектрона с волновым вектором k, σ_j^2 — фактор Дебая–Валлера. Фазовый сдвиг вторичной волны складывается из геометрического набега фазы $2kR_j$, возникающего на пути до *j*-го атома и обратно и сдвига фазы $\varphi_j(k)$, приобретаемой при распространении фотоэлектрона в потенциале возбуждаемого и рассеивающего атомов. $\lambda(k)$ — длина свободного пробега фотоэлектрона. Масштабный множитель S₀² учитывает влияние многоэлектронных эффектов. Формула была получена в приближении гармонического характера колебаний атомов.

Амплитуды и фазовые сдвиги обратного рассеяния вычислялись из первых принципов на основе теории самосогласованного поля, заложенной в программный код FEFF-8.20 [12,13], при этом расчет производился на основе кристаллографических данных рентгеновской дифракции (кластер радиусом 10 Å рассчитывался в программе TkAtoms из пакета IFeffIt [14]). Области, отвечающие EXAFS-спектроскопии, выделялись из исходных спектров рентгеновского поглощения на диапазоне значений волнового вектора $k = 3.00 - 16.15 \text{ Å}^{-1}$ для *К*-края Fe и k = 3.00 - 17.00 Å⁻¹ для *К*-края Se соответственно. Из экспериментальных спектров путем моделирования были извлечены радиусы ближайших координационных сфер, координационные числа и факторы Дебая-Валлера.

3. Экспериментальные результаты и их обсуждение

Характерные зависимости модулей Фурье-преобразования ($\Phi\Pi = FT$) EXAFS-функций $\chi(k)k^2$, измеренных выше К-краев поглощения Se и Fe на образцах всех имеющихся составов при T = 80 K, показаны на рис. 2. Приведенные ФП по существу являются исходными результатами эксперимента и не подвергнуты корректировкам на фазовые сдвиги. Низкий уровень амплитуд модулей Фурье-преобразования в области малых межатомных расстояний (R < 1 Å) свидетельствует о корректной процедуре выделения EXAFS-функций. Схожесть полученных нами зависимостей с аналогичными из работ [7,8] дополнительно подтверждает правильность обработки экспериментальных данных и указывает на хорошее качество исследуемых образцов.

Представленные на рис. 2 графики модулей ФП с точностью до фазовых сдвигов дают информацию о радиальном распределении ближайших атомов вокруг Se и Fe соответственно (аналог парной функции радиального распределения атомов — ПФРРА).

Первый, хорошо выраженный, максимум локального окружения селена (а) соответствует координационной сфере из 4 атомов железа на расстоянии ~ 2.40 Å. В то же время, первый максимум локального окружения железа (нижняя панель) расщеплен на два. Это обстоятельство является следствием того, что ближайшая координационная сфера локального окружения атомов железа содержит вклады трех близкорасположенных соседних сфер: Fe-Se, Fe-Te и Fe-Fe, причем первый из этих пиков отвечает короткой связи Fe–Se (~ 2.40 Å), а второй — более длинным Fe-Te (~ 2.55 Å) и Fe-Fe $(\sim 2.65 \text{ Å}).$

·····Window 5 $|FT_{\chi}(k) \cdot k^2|$, arb. units 4 $Fe(Te_xSe_{1-x})_{1-\delta}$ 3 x = 0.90x = 0.802 x = 0.491 x = 0.22 $\breve{x} = 0.10$ 0 5 b Fe K-edge T = 80 K····· Window 4 $|FT_{\chi}(k) \cdot k^2|$, arb. units $Fe(Te_xSe_{1-x})_{1-\delta}$ x = 0.903 x = 0.802 x = 0.491 = 0.22х x = 0.100 0 2 4 6 8 *R*. Å

Рис. 2. Модули Фурье-преобразования EXAFS-функций $\chi(k)k^2$ $Fe(Te_x Se_{1-x})_{1-\delta}$, измеренных выше *K*-краев поглощения Se (*a*) и Fe (b) при T = 80 K.

Отчетливо наблюдаемое перераспределение интенсивностей составляющих максимумов первого пика в зависимости от содержания теллура указывает на изменение относительного содержания халькогенов Se и Te в первой координационной сфере локального окружения атомов железа от образца к образцу.

Обработка EXAFS-спектров проводилась сразу на обоих краях поглощения с помощью выделения в реальном пространстве областей, соответствующих первым координационным сферам окружения атомов селена и железа с использованием прямоугольной оконной функции Ханнинга (см. рис. 2), проведения обратного Фурьепреобразования и моделирования полученных фильтрованных экспериментальных функций в импульсном пространстве. Результаты моделирования представлены на рис. 3.

При обработке спектров длина и фактор Дебая-Валлера связи Se-Fe определялись по данным на К-крае поглощения Se. Полученные значения фиксировались в качестве длины и фактора Дебая-Валлера связи Fe-Se и использовались для моделирования K-Fe EXAFS-функции, в результате которого дополнительно извлекались

Рис. 3. Фильтрованные экспериментальные функции в импульсном пространстве при T = 80 К (сплошные линии) и результаты их моделирования (штриховые линии).

Рис. 4. Результаты экспериментального и модельного Фурье-преобразования (FT) EXAFS-функций $\chi(k)k^2$ Fe(Te_{0.22}Se_{0.78})_{1- δ}, измеренных выше *K*-краев поглощения Se (*a*) и Fe (*b*) при T = 80 K. (Пунктиром показана мнимая часть FT.)

длины и факторы Дебая-Валлера связей Fe-Te и Fe-Fe. Координационные числа в процессе обработки фиксировались: Se окружен четырьмя атомами Fe, а локальное окружение Fe в свою очередь состоит из четырех халькогенов (Se и Te в пропорции, соответствующей составу) и четырех атомов Fe. Пример использования описанной процедуры для моделирования EXAFS-функций состава Fe(Te_{0.22}Se_{0.78})_{1- δ} приведен на рис. 4. Полученные в результате моделирования зависимости параметров *R* и σ^2 от температуры и состава образцов приведены на рис. 5.

Анализ приведенных зависимостей длин межатомных связей Se-Fe, Fe-Te и Fe-Fe указывает на то, что связь Fe-Te оказывается немного длиннее связи Se-Fe, что свидетельствует о неоднородности положения атомов Se и Te относительно сверхпроводящих плоскостей Fe. Рентгеновская дифракция, чувствительная лишь к усредненному положению обоих атомовхалькогенов в кристаллической решетке, принципиально неспособна установить этот тип локальной структурной неоднородности. Между тем эта неоднородность играет важнейшую роль в формировании сверхпроводящего состояния в системах вида $Fe(Te_x Se_{1-x})_{1-\delta}$, так как от положения атомов-халькогенов сильно зависит топология поверхности Ферми подобных веществ [15,16], что приводит к локальной неоднородности их электронной структуры [17,18].

Рассматривая поведение длин межатомных связей в зависимости от содержания Те в образцах, можно констатировать факт наблюдения монотонного возрастания длины связи Se—Fe с увеличением содержания Те. Данное изменение кажется вполне естественным, так как в данном случае атомы Se стремятся расположиться выше над плоскостями атомов Fe, подобно замещающему его Te.

Тем не менее такая монотонность не наблюдается для более длинных межатомных связей Fe–Te и Fe–Fe. В диапазонах малого ($x \le 0.22$) и большого ($x \ge 0.8$)

Рис. 5. Температурные зависимости длин (*a*, *b*, *c*) и факторов Дебая-Валлера (*d*, *e*, *f*) межатомных связей Se-Fe, Fe-Te и Fe-Fe в Fe(Te_xSe_{1-x})_{1-\delta}. Изменения длин связей описываются линейными зависимостями, а факторов Дебая-Валлера — моделью Эйнштейна.

содержания Те в исследуемых порошках $Fe(Te_x Se_{1-x})_{1-\delta}$ обе связи растут с увеличением доли Те, в то время как в промежуточном диапазоне (0.22 < x < 0.8) имеет место релаксация, приводящая к их уменьшению.

Исследования длин связей дополнены изучением степени локального разупорядочения атомов, характеризуемой фактором Дебая—Валлера σ^2 , представляющим в EXAFS-спектроскопии средне-квадратичное отклонение длины изучаемой межатомной связи от ее среднего значения. Фактор Дебая—Валлера включает статическую σ_{stat}^2 и динамическую σ_d^2 составляющие, хорошо описываемые в рамках стандартного подхода в гармонической модели колебаний атомов [20]:

$$\sigma^2 = \sigma_{\text{stat}}^2 + \frac{\hbar^2}{2k\mu} \frac{1}{T_E} \operatorname{coth}\left[\frac{T_E}{2T}\right].$$
 (2)

 σ_{stat}^2 характеризует дефектность кристаллической структуры исследуемого образца и не зависит от температуры;

$$\sigma_d^2 = rac{\hbar^2}{2k\mu} rac{1}{T_E} \operatorname{coth}\left[rac{T_E}{2T}
ight]$$

характеризует амплитуду тепловых колебаний атомов; T_E — температура Эйнштейна, характеризующая жест-

Значения температур Эйнштейна и статических факторов Дебая-Валлера межатомных связей Se-Fe, Fe-Te и Fe-Fe в порошках $Fe(Te_x Se_{1-x})_{1-\delta}$

x	Se-Fe		Fe-Te		Fe-Fe	
	T_E, \mathbf{K}	$\sigma_{ m stat}^2,{ m \AA}^2$	T_E, \mathbf{K}	$\sigma_{ m stat}^2,{ m \AA}^2$	T_E, \mathbf{K}	$\sigma_{ m stat}^2$, Å ²
0.1	345	0.00126	385	0.000272	200	0.00137
0.22	339	0.000944	202	0.00115	243	0.000508
0.49	353	0.000474	278	0.00103	267	0.000351
0.8	357	0.00121	279	0.00333	312	0.01312
0.9	297	0.000328	264	0.00154	215	0.00405

кость межатомной связи через эффективную силовую константу k_{bond} , нормированную на приведенную массу μ : $T_E = \sqrt{k_{\text{bond}}/\mu}$ [21]; \hbar — постоянная Планка; k — постоянная Больцмана.

Полученные в результате моделирования спектров значения температур Эйнштейна и статических факторов Дебая—Валлера и приведены в таблице.

Следует отметить, что среднее значение T_E уменьшается с ростом длин межатомных связей в ряду Se–Fe, Fe–Te и Fe–Fe, свидетельствуя о снижении их жесткости.

В то же время наблюдается ярко выраженная зависимость температуры Эйнштейна от содержания теллура в образцах. Так, резкое размягчение межатомной связи Se–Fe в диапазоне содержания Te x = 0.8-0.9 совпадает со столь же резким падением величины критической температуры сверхпроводящего перехода T_c в этом диапазоне составов согласно данным работы [10] (рис. 6). Обнаруженная корреляция еще раз подтверждает роль атомов халькогенов в образовании сверхпроводящего состояния в ВТСП на основе железа.

Рис. 6. Корреляция зависимости температуры Эйнштейна T_E межатомной связи Se–Fe с зависимостью критической температуры сверхпроводящего перехода T_c [10] от стехиометрического состава порошков Fe(Te_xSe_{1-x})_{1- δ} (представленные значения T_c определены по нулю сопротивления).

4. Заключение

Проведенные исследования особенностей локальной кристаллической структуры сверхпроводящих халькогенидов $Fe(Te_x Se_{1-x})_{1-\delta}$ в зависимости от состава и температуры с помощью локально-чувствительного метода EXAFS-спектроскопии с использованием синхротронного излучения позволили установить неравнозначность позиций атомов Se и Te в кристаллической решетке, приводящей к монотонному возрастанию длины связи Se-Fe с увеличением содержания Те. Установлено, что изменение длин более длинных межатомных связей Fe-Te и Fe-Fe оказывается немонотонным при увеличении содержания Те: длины связей увеличиваются на краях диапазона составов $Fe(Te_x Se_{1-x})_{1-\delta}$ с x < 0.22 и *x* > 0.8 и релаксируют при промежуточных значениях 0.22 < x < 0.8. Обнаружена корреляция зависимости температуры Эйнштейна T_E межатомной связи Se-Fe от содержания теллура с зависимостью критической температуры перехода в сверхпроводящее состояние *T_c*, указывающая на определяющую роль этой связи в установлении сверхпроводящего состояния в изучаемых образцах. Так как температура Эйнштейна пропорциональна жесткости межатомной связи, именно резкое ее размягчение приводит к падению Т_с.

Авторы благодарны Программному комитету синхротронного центра MAX-lab за предоставленную возможность проведения экспериментов на синхротронном источнике, С. Карлсону (S. Carlson), Р.В. Черникову и А.А. Ярославцеву за помощь в эксперименте.

Список литературы

- F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, M.-K. Wu. Proc. Nature Acad. Sci. 105, 14 262 (2008).
- [2] Y. Mizuguchi, Y. Takano. J. Phys. Soc. Jpn. 79, 102 001 (2010).
- [3] E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, R. Khasanov. Phys. Rev. B 80, 024 517 (2009).
- [4] W.-H. Zhang, Y. Sun, J.-S. Zhang, F.-S. Li, M.-H. Guo, Y.-F. Zhao, H.-M. Zhang, J.-P. Peng, Y. Xing, H.-C. Wang, T. Fujita, A. Hirata, Z. Li, H. Ding, C.-J. Tang, M. Wang, Q.-Y. Wang, K. He, S.-H. Ji, X. Chen, J.-F. Wang, Z.-C. Xia, L. Li, Y.-Y. Wang, J. Wang, L.-L. Wang, M.-W. Chen, Q.-K. Xue, X.-C. Ma. Chin. Phys. Lett. **31**, 017 401 (2014).
- [5] Y. Sun, W. Zhang, Y. Xing, F. Li, Y. Zhao, Z. Xia, L. Wang, X. Ma, Q.-K. Xue, J. Wang. Sci. Rep. 4, 06 040 (2014).
- [6] J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia. Nature Mater. 14, 285 (2015).
- [7] B. Joseph, A. Iadecola, A. Puri, L. Simonelli, Y. Mizuguchi, Y. Takano, N.L. Saini. Phys. Rev. B 82, 020 502(R) (2010).
- [8] A. Iadecola, B. Joseph, L. Simonelli, Y. Mizuguchi, Y. Takano, N.L. Saini. Europhys. Lett. 90, 67 008 (2010).
- [9] M. Bendele, C. Marini, B. Joseph, L. Simonelli, P. Dore, S. Pascarelli, M. Chikovani, E. Pomjakushina, K. Conder, N.L. Saini, P. Postorino. J. Phys.: Condens. Matter 25, 425 704 (2013).

- [10] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano. J. Phys. Soc. Jpn. 78, 074712 (2009).
- [11] K.V. Klementev. J. Phys. D 34, 209 (2001).
- [12] J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, R.C. Albers. J. Am. Chem. Soc. 113, 5135 (1991).
- [13] A.L. Ankudinov, C.E. Bouldin, J.J. Rehr, J. Sims, H. Hung. Phys. Rev. B 65, 104 107 (2002).
- [14] M. Newville. J. Synchrotron Rad. 8, 322 (2001).
- [15] C.-Y. Moon, H.J. Choi. Phys. Rev. Lett. 104, 057 003 (2010).
- [16] T. Miyake, K. Nakamura, R. Arita, M. Imada. J. Phys. Soc. Jpn. 79, 044705 (2010).
- [17] L. Simonelli, N.L. Saini, Y. Mizuguchi, Y. Takano, T. Mizokawa, G. Baldi, G. Monaco. J. Phys.: Condens. Matter 24, 415 501 (2012).
- [18] D.F. Mulato-Gómez, J. Mustre de León, N.L. Saini. J. Supercond. Nov. Magn. 27, 1035 (2014).
- [19] S. Margadonna, Y. Takabayashi, M.T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A.N. Fitch, E. Suarde, K. Prassides. Chem. Commun. 43, 5607 (2008).
- [20] G. Dalba, P. Fornasini. J. Synchrotron Rad. 4, 243 (1997).
- [21] W. Chu, J. Cheng, S. Chu, T. Hu, A. Marcelli, X. Chen, Z. Wu. Sci. Rep. 3, 1750 (2013).