Поверхностный фотогальванический эффект в многодолинном полупроводнике во внешнем магнитном поле

© В.Р. Расулов, Р.Я. Расулов

Ферганский государственный университет, 713000 Фергана, Узбекистан

¶E-mail: r_rasulov@mail.ru

(Получена 15 января 2015 г. Принята к печати 10 апреля 2015 г.)

Построена теория фотогальванического эффекта в полубесконечном многодолинном полупроводнике, возникающего при поглощении поляризованного света на свободных носителях, вызываемого при зеркальном и диффузном рассеяниях электронов на поверхности пленки. Использован метод кинетического уравнения Больцмана в приближении времени релаксации и граничных условий, определяющих связь между функцией распределения отраженных от поверхности полубесконечного кристалла электронов и функцией распределения электронов, падающих на поверхность как при зеркальном, так и при диффузном рассеянии, где учтено, что функция распределения диффузно рассеянных от поверхности электронов зависит только от их энергии и определяется из условия обращения в нуль полного потока электронов на поверхности. Получены соотношения, с помощью которых можно анализировать спектральную зависимость тока, линейно зависящего от напряженности магнитного поля.

1. Введение

При исследовании фотонно-кинетических явлений в ограниченных металлах и полупроводниковых образцах особую роль играет природа рассеяния электронов поверхностями [1-5]. В случае "гладких" поверхностей (когда размер шероховатостей является самой малой длиной) природа рассеяния может быть определена граничными условиями для неравновесных функций распределения. При этом диффузность означает полностью изотропное рассеяние, а зеркальность — рассеяние с сохранением касательных по отношению к нормали поверхности компонент импульса, где процесс со стенкой считается упругим. Граничное условие (ГУ) заключается в требовании отсутствия нормального к поверхности потока электронов. В силу уравнения непрерывности это требование должно выполняться в произвольной точке образца.

Рассмотрим многодолинный полупроводник и проанализируем в однозонном приближении с учетом разности продольной и поперечной эффективных масс электронов тока поверхностного фотогальванического эффекта (ПФГЭ) при зеркальном отражении электронов с поверхности. При зеркальном рассеянии, согласно законам сохранения энергии и импульса, нормальные к поверхностям образца проекции скоростей падающих и отраженных электронов равны и противоположно направлены. Поэтому: а) в сферическом приближении энергетического спектра в силу взаимной компенсации потоков электронов, движущихся к поверхности и от нее, сами поверхности ничем не выделены, т.е. граничное условие может быть выполнено без пространственного изменения функции распределения и создания неоднородного нормального к поверхности электрического поля; б) в случае эллипсоидальной изоэнергетической поверхности ситуация иная, т.е. взаимная компенсация потоков

электронов, движущихся к поверхности и от нее, как при зеркальном, так и диффузном рассеянии связана с пространственным изменением функции распределения и создания нормального электрического поля. Поэтому в силу взаимной компенсации потоков электронов, движущихся к поверхности и от нее, сами поверхности ничем не выделены, т.е. граничное условие может быть выполнено без пространственного изменения функции распределения и создания неоднородного нормального к поверхности электрического поля.

Иная ситуация имеет место при диффузном рассеянии: отраженные от поверхности электроны распределены совсем не так, как в объемном полупроводнике. Поэтому должны возникнуть неоднородное поле и пространственная зависимость функции распределения, а вместе с ней и пространственная зависимость всех величин, описывающих кинетические свойства образца.

В многодолинных полупроводниках типа n-Ge или n-Si долины разнесены в импульсном пространстве на большие по сравнению с их размерами расстояния. Вследствие этого времена междолинных переходов (τ_{iw}) гораздо больше времени внутридолинной релаксации (τ) . Такое соотношение можно ожидать и для вероятностей междолинного и внутридолинного (в том числе диффузного) рассеяния на поверхности. Если междолинными переходами на поверхности можно пренебречь, тогда ГУ, требующее обращение в нуль полного нормального потока, распадается на условия равенства нулю потоков электронов в отдельных долинах, не трансформирующихся друг в друга при столкновении с поверхностью. Этим условиям можно удовлетворить только при учете пространственного изменения концентраций электронов в долинах. Вследствие градиентов концентраций должны возникать диффузные вклады в потоки. Учет последнего требует, как нам кажется, отдельного рассмотрения, и ему будет посвящена отдельная работа.

Отметим, что в случае "гладких" поверхностей, когда геометрические размеры шероховатостей являются самой малой величиной, физическая природа рассеяния математически описывается в виде граничных условий для функций распределения $f(\mathbf{r}, \mathbf{v}, t)$ (или кратко f) в виде зеркального рассеяния (когда сохраняются касательные к поверхности компоненты импульса) и диффузного (полностью изотропного) рассеяния. При этом требуется отсутствие нормального к поверхности потока электронов и, в силу уравнения непрерывности, эти требования должны выполняться в произвольной точке поверхности.

В [7] теоретически исследован ток поверхностного фотогальванического эффекта (ПФГЭ) в полубесконечном полупроводнике, а в [8] экспериментально исследован и в сферическом приближении в энергетическом спектре носителей заряда рассчитан ток ПФГЭ в GaAs при межзонных переходах. В многодолинных полупроводниках типа n-Ge и n-Si поперечный ток ПФГЭ, возникающий при нормальном падении света в случае межзонных оптических переходах, связан в основном с эффектом Дембера, а не с рассеянием на поверхности [8,9]. При этом ток возникает за счет селективного возбуждения, зависящего от степени поляризации света, или в результате перезаселения долин при диффузии неравновесных фотовозбужденных носителей заряда. Влияние магнитного поля на поверхностный фотогальванический эффект в полупроводниковой тонкой пленке исследовано в [2]. Рассмотрен ток, возникающий в однодолинном полупроводнике при межзонных оптических переходах.

В данной работе мы изучим влияние внешнего магнитного поля на ток ПФГЭ, возникающий в пластине многодолинного полупроводника кубической симметрии, обусловленный поглощением света на свободных носителях тока и рассеянием электронов на поверхности.

2. Общие соотношения

Пусть на полупроводниковую пластину толщиной $d(-d/2 \le z \le +d/2)$ перпендикулярно к поверхности падает световая волна частотой ω , и на носители тока действует электрическое поле с напряженностью

$$\tilde{\varepsilon} = 2 \operatorname{Re} \varepsilon \exp(-i\omega t),$$
 (1)

и постоянное внешнее магнитное поле с напряженностью **H**, где ось z направим по внутренней нормали к поверхности z=+d/2.

В общем случае, по соображениям симметрии, поверхностную плотность тока ПФГЭ \mathbf{J}_H в линейном по напряженности внешнего магнитного поля \mathbf{H} приближении можно представить в виде

$$\mathbf{j}_{H} = a_{1}\mathbf{H}(\mathbf{n}(\boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}^{*})) + a_{2}(\mathbf{n} \times \mathbf{H})|\boldsymbol{\varepsilon}|^{2} + a_{2}(\boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}^{*})(\mathbf{H}\mathbf{n})$$
$$+ a_{4}((\boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}^{*})\mathbf{H})\mathbf{n} + a_{5}\operatorname{Re}[(\mathbf{n} \times \boldsymbol{\varepsilon})(\mathbf{H}\boldsymbol{\varepsilon}^{*})]$$
$$+ a_{6}\operatorname{Re}((\mathbf{H} \times \boldsymbol{\varepsilon})(\mathbf{n}\boldsymbol{\varepsilon}^{*})),$$

который в случае $\mathbf{H} \perp \mathbf{n}$ принимает вид $(\mathbf{H} \parallel Ox, \mathbf{n} \parallel Oz)$:

$$\mathbf{j} = a_1' (\boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}_*)_z \mathbf{H}$$

$$+ a_2 (\mathbf{n} \times \mathbf{H})^2 + a_2' \operatorname{Re} (\mathbf{n} \times \boldsymbol{\varepsilon}) (\mathbf{H} \boldsymbol{\varepsilon}^*)$$

$$+ b_1 \mathbf{n} (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^*) + b_2 \operatorname{Re} (\boldsymbol{\varepsilon} (\mathbf{n} \boldsymbol{\varepsilon}^*)) + b_3 (\mathbf{n} \times (\boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}^*)).$$

В последнем соотношении слагаемые, пропорциональные векторному произведению ($\varepsilon \times \varepsilon^*$), описывают циркулярный ПФГЭ, а остальные — линейные ПФГЭ в магнитном поле. Эти эффекты возникают при возбуждении циркулярно и линейно поляризованным светом. Здесь обычным холловским током является компонента, пропорциональная на $|\varepsilon_x|^2 H_x$; a_i, a_i', b_i — коэффициенты пропорциональности, зависящие от зонных параметров кристалла и от частоты и интенсивности возбуждающего света. Отметим также, что наряду с током циркулярного ПФГЭ, определяемого соотношением $\mathbf{j}_{\mathrm{apc}} = a\left(n_x\left(\mathbf{H}\times(\varepsilon\times\varepsilon^*)\right)\right)$ должен возникать и циркулярный ток эффекта увлечения электронов фотонами $j_{\mathrm{PDE}} = a_{\mathrm{PDE}}\left(\mathbf{q}(\varepsilon\times\varepsilon^*)\right)H$, который не отмечен в литературе, \mathbf{q} — волновой вектор фотона.

Теперь обсудим вопрос о функции распределения электронов, с помощью которой определяется фототок. Неравновесная функция распределения электронов f удовлетворяет кинетическому уравнению

$$\frac{\partial f}{\partial t} + \mathbf{v} \nabla_{\mathbf{r}} f - e \tilde{\varepsilon} \nabla_{\mathbf{p}} f - \frac{e}{c} (\mathbf{v} \times \mathbf{H}) \nabla_{\mathbf{p}} f = \frac{f - f_0}{\tau}, \quad (2)$$

которое решаем в τ -приближении (τ — время релаксации импульса) методом итерации. Функцию $f(\mathbf{r},t)$ неудобно раскладывать по шаровым функциям по параметру $l|\nabla f/f|$, так как в приповерхностной области f меняется на длине l (или $l(\omega\tau)^{-1}$, где l — длина свободного пробега электрона. По этой причине интеграл столкновения напишем как $-(f-f_0)/\tau$, где f_0 — равновесная функция распределения электронов. В дальнейшем рассмотрим два механизма рассеяния носителей тока на поверхности: зеркальное отражение (3O) и диффузное рассеяние (ДР). Считаем, что энергетический спектр носителей эллипсоидальный. Тогда при 3O тангенциальные компоненты импульса сохраняются, а нормальные — меняют знак.

Направив ось x в плоскости zz' (z' направлена по главной оси эллипсоидальной изоэнергетической поверхности), а ось y — нормально к этой плоскости, энергетический спектр запишем в виде

$$E = \sum_{\alpha,\beta} A_{\alpha,\beta} v_{\alpha} v_{\beta} \tag{3}$$

или

$$E = \sum_{\alpha,\beta} B_{\alpha,\beta} p_{\alpha} p_{\beta}, \tag{4}$$

где

$$lpha, eta = x, y, z, 2A_{xx} = m_{xx} = m_{\perp} \cos^2 \theta_0 + m_{\parallel} \sin^2 \theta_0,$$
 $2A_{yy} = m_{yy} = m_{\perp},$
 $2A_{zz} = m_{zz} = m_{\parallel} \cos^2 \theta_0 + m_{\perp} \sin^2 \theta_0,$
 $2A_{xz} = m_{xz} = m_{\parallel} - m_{\perp} \cos^2 \theta_0 + m_{\parallel} \sin^2 \theta_0;$
 $B_{xx} = A_z/(m_{\perp}m_{\parallel}), \quad B_{yy} = A_y/m_{\perp}^2,$
 $B_{zz} = A_x(m_{\perp}m_{\parallel}), \quad B_{xz} = -A_{xz}/(m_{\parallel}m_{\perp})$

 p_i и $v_i = \partial E/\partial p_i$ — *i*-компоненты импульса и скорости соответственно, θ_0 — угол между осями z и z'.¹

3. Расчет фототока

Заметим, что при зеркальном отражении нормальные проекции скоростей падающих и отраженных электронов равны и противоположно направлены. Поэтому: а) в сферическом приближении энергетического спектра в смысле взаимной компенсации потоков электронов, движущихся к поверхности и от нее, сами поверхности поистине ничем не выделены; b) в случае эллипсоидальной поверхности ситуация иная, т.е. взаимная компенсация потоков электронов, движущихся к поверхности и от нее, как в зеркальном отражении, так и в диффузном рассеянии зависит от пространственного изменения функции распределения и создания нормального электрического поля. При зеркальном отражении электроны, падающие на поверхность, могут иметь как положительные, так и отрицательные значения нормальной компоненты импульса, определяемые из закона сохранения энергии.

Связь между функциями распределения падающих на поверхность z=+d/2 $f_-^{(+)}(z;{\bf v})$ и зеркально отраженных от нее $f_+^{(+)}(z;{\bf v})$ электронов описывается соотношением

$$f_{-}^{+}(z; v_{x}, v_{y}, v_{z}) = f_{-}^{+}(z; v_{x} + 2\eta v_{z}, v_{y}, -v_{z}),$$
 (5)

где $\eta = A_{xz}/A_{xx}$ — параметр эллипсоидальности энергетического спектра, и учтено, что компоненты скорости отраженного от поверхности электрона и компоненты скорости падающего на нее электрона взаимно связаны. В дальнейшем будем учитывать пространственную зависимость электрического поля световой волны, а также учтем, что в полупроводниках кубической симметрии $\varepsilon_z=0$. Тогда решение (1) ищем в виде

$$f(\mathbf{r}, \mathbf{V}, t) = f_0(E) + f_{11} + f_{12} + f_{22},$$
 (6)

где $f_{11,12,22}$ — добавки к равновесной функции распределения носителей тока $f_0(E)$.

При решении кинетического уравнения

$$-i\omega f_{11} + \vartheta_z \frac{\partial f_{11}}{\partial z} - e(\varepsilon \mathbf{v}) \frac{\partial f_0}{\partial t} = -\frac{f_{11}}{\tau}$$
 (7)

воспользуемся методом линейной по ε итерацией. Тогда решение (7) имеет вид

$$f_{11^{-}} = f_{11^{+}} = \frac{e}{v} (\varepsilon v) \frac{\partial f_0}{\partial E}$$
 (8)

для случая зеркального рассеяния и

$$f_{11^{-}} = f_{11^{+}} = \frac{e}{\nu} (\varepsilon v) \frac{\partial f_{0}}{\partial E} (1 - e^{-\gamma z/v_{z}})$$
 (9)

для диффузного рассеяния, где $\varepsilon=\{\varepsilon_x,\varepsilon_y,0\}$ — напряженность электрического поля электромагнитной волны $\gamma=\frac{1}{\tau}-i\omega$, знак "+" соответствует $\vartheta_z>0$, а знак "-" соответствует $\vartheta_z<0$. Тогда уравнение

$$\gamma f_{12} + v_z \frac{\partial f_{12}}{\partial z} - \frac{e}{m} \left(\mathbf{v} \times \mathbf{H} \right) \nabla_{\mathbf{v}} f_{11} = 0 \qquad (10)$$

имеет решение: в случае $v_z < 0$

$$f_{12^{-}} = \frac{e^2}{mv^2} \frac{\partial f_0}{\partial E} H_x \varepsilon_y v_z, \tag{11}$$

где считалось, что напряженность постоянного внешнего магнитного поля ${\bf H}$ направлена вдоль поверхности и ради простоты выбрана геометрия: ${\bf H}=\{H_x,0,0\}$ и учтено, что

$$(\mathbf{v} \times \mathbf{H}) \nabla_{\mathbf{v}} (\boldsymbol{\varepsilon} \mathbf{v}) \frac{\partial f_0}{\partial E} = \frac{\partial f_0}{\partial E} \mathbf{v} (\mathbf{H} \times \boldsymbol{\varepsilon}),$$
$$(\mathbf{v} \times \mathbf{H}) \nabla_{\mathbf{v}} \left[\exp \left(-\frac{\gamma z}{v_z} \right) \right] = \frac{\gamma z}{v_z^2} (\mathbf{v} \times \mathbf{H})_z e^{-\gamma z/v_z}. \quad (12)$$

Для случая зеркального отражения электронов, т.е.

$$f_{12}(z=0;v_z) = f_{12}(z=0;-v_z),$$
 (13)

имеем

$$f_{12} = \frac{e^2}{mv^2} \frac{\partial f_0}{\partial E} H_x \varepsilon_y v_z \tag{14}$$

или

$$f_{12^{+}} = f_{12^{-}} (1 - 2e^{-\gamma z/v_z}), \tag{15}$$

а для диффузного отражения

$$f_{12^{+}} = f_{12^{-}} - \left[1 - e^{-\gamma z/v_{z}} \left(1 + \frac{2}{3} \frac{v}{v_{z}} \right) \right] + \frac{e^{2}}{mv^{2}} \frac{\partial f_{0}}{\partial E} \frac{1}{2} (\mathbf{v}\varepsilon) v_{y} H_{x} \frac{\gamma^{2} z^{2}}{v_{z}^{3}} e^{-\gamma z/v_{z}}.$$
(16)

В квадратичном по ε приближении решение кинетического уравнения ищем в виде

$$f_{mn} = e^{-z/l_z} \left(C_{mn} + \frac{1}{v_z} \int_{z}^{\infty} e^{z/l_z} F_n(z) dz \right), \tag{17}$$

$$F_1(z) = -\frac{e}{m} \operatorname{Re}(\boldsymbol{\varepsilon}^* \boldsymbol{\nabla}_v f_{11}), \tag{18}$$

$$F_2(z) = -\frac{e}{m} (\boldsymbol{\vartheta} \mathbf{H}) \nabla_{\mathbf{v}} f_{21}, \tag{19}$$

где m=2; $l_z=\tau v_z;$ n=1, 2. Отметим здесь, что в дальнейших расчетах фототока, пропорционального **H**, в f_{21}

 $^{^{1}}$ Остальные компоненты $A_{\alpha\beta}$ и $B_{\alpha\beta}$ равны нулю.

надо учесть только не зависящие от напряженности магнитного поля слагаемые. Также надо учитывать вклад в фототок, связанный с электрическим полем с напряженностью $\varepsilon_0(z) \equiv \varepsilon_{0z}(z)$, определяемым из обращения в нуль поперечной компоненты фототока. Последний вклад в функцию распределения неравновесных электронов определяется по формуле (17) с m=2, n=0

$$f_{20} = e^{-z/l_z} \left(C_{20} + \frac{1}{v_z} \int_{0}^{\infty} e^{-z'/l_z} F_{20}(z') dz' \right), \qquad (20)$$

где

$$F_{20}(z) = -e(\varepsilon_0 \mathbf{v}) \frac{\partial f_0}{\partial E} = -e\varepsilon_0 \vartheta_z \frac{\partial f_0}{\partial E}.$$
 (21)

Например, ток ПФГЭ, направленный по нормали к поверхности кристалла, определяется разностью

$$f_{12^{+}} - f_{12^{-}} = -\frac{2e^{2}v_{z}}{m\omega^{2}} \exp\left(\frac{z}{l_{z}}\right)$$

$$\times \left\{ \begin{bmatrix} |\varepsilon|^{2} \frac{\partial f_{0}}{\partial E} + (\varepsilon^{*}\mathbf{v})(\varepsilon\mathbf{v})m\left(\frac{\partial^{2}f_{0}}{\partial E^{2}}\right) \end{bmatrix} + 2\sin^{2}\left(\frac{\omega z}{2v_{z}}\right) \\ \times \left(1 - \frac{1}{\omega\tau}\cos\left(\frac{\omega z}{v_{z}}\right)\right) + (\varepsilon^{*}\mathbf{v})(\varepsilon\mathbf{v})m \\ \times \frac{z}{l_{z}}\left(\frac{\partial f_{0}}{\partial E}\right) \frac{\partial \ln\tau}{\partial E}\left(\cos\left(\frac{\omega z}{v_{z}}\right) + \frac{1}{\omega\tau}\sin\left(\frac{\omega z}{v_{z}}\right)\right) \right\}.$$
(22)

Тогда для линейной поляризации возбуждающего света плотность тока в одной долине определяется соотношением

$$j_{z} = -\frac{eN}{\frac{4\pi}{3}\vartheta_{F}^{3}}$$

$$\times \int_{0}^{\infty} dv \int_{0}^{\pi} d\vartheta \int_{0}^{2\pi} d\varphi \int_{0}^{a} dz (f_{12^{+}} - f_{12^{-}})v_{z}v^{2} \sin\vartheta \quad (23)$$

или

$$\begin{split} j_z &= \frac{3e^2N|\varepsilon|^2}{2m^2\omega^2} \int\limits_0^2 \xi^2 d\xi \int\limits_0^\infty dv \int\limits_0^a e^{-z/(\tau v\xi)} dz \\ &\times \left[(-3+5\xi^2) - \frac{1-\xi^2}{\xi} \frac{z}{\tau v} (1+2\Theta) + \sin\frac{\omega z}{v\xi} \right. \\ &\times \left. \left(3-5\xi^2 + \frac{z}{\tau v\xi} (1-\xi^2) \times (1-\omega\tau + 2\Theta) \right) \right], \\ &+ \cos\frac{\omega z}{v\xi} \left(3-5\xi^2 + 4\frac{z}{\tau v\xi} (1-\xi^2)\Theta \right) \end{split}$$

где $\Theta = \partial \ln \tau / \partial \ln E$, N — число электронов в одной долине. Как и в [7], в дальнейшем будем учитывать лишь первые неисчезающие слагаемые по параметру $(\omega \tau)^{-1}$,

т.е. ограничимся случаем $\omega \tau \gg 1$. Для вычисления фототока необходимо рассчитать выражения

$$E_{11^{-}} = -\frac{2e^{2}}{m\omega^{2}\tau}$$

$$\times \left[|\varepsilon|^{2} \frac{\partial f_{0}}{\partial E} + (\varepsilon^{*}\mathbf{v})(\varepsilon\mathbf{v})m \left(\frac{\partial^{2} f_{0}}{\partial E^{2}} - \frac{\partial f_{0}}{\partial E} \frac{\partial \ln \tau}{\partial E} \right) \right], \quad (25)$$

отсюда для зеркального отражения

$$F_{11^+} = F_{11^-}, (26)$$

а для диффузного рассеяния

$$\tilde{F}_{11^{+}} = F_{11^{-}} + \frac{2e^{2}}{m} \operatorname{Re} \left[\boldsymbol{\varepsilon}^{*} \boldsymbol{\nabla}_{\mathbf{v}} (\boldsymbol{\varepsilon} \mathbf{v}) \frac{\partial f_{0}}{\partial E} \frac{1}{\gamma} e^{-\gamma \tau / \upsilon_{z}} \right]. \quad (27)$$

Таким образом, нетрудно получить следующее полезное соотношение для диффузного рассеяния в случае линейной поляризации света, с помощью которого можно определить плотность фототока:

$$\begin{split} \tilde{f}_{21^{+}} - \tilde{f}_{21^{-}} &= \frac{2e^{2}}{m} \frac{v_{z}}{\omega^{2}} e^{-z/l_{z}} \\ &\times \left\{ \left(|\boldsymbol{\varepsilon}|^{2} \frac{\partial f_{0}}{\partial E} + m(\boldsymbol{\varepsilon}^{*} \mathbf{v}) (\mathbf{E} \mathbf{v}) \frac{\partial^{2} f_{0}}{\partial E^{2}} \right) \right. \\ &\times \left(1 - \cos \omega \tau \frac{z}{l_{z}} - \frac{1}{\omega \tau} \sin \omega \tau \frac{z}{l_{z}} \right) + m(\boldsymbol{\varepsilon}^{*} \mathbf{v}) \\ &\times (\boldsymbol{\varepsilon} \mathbf{v}) \frac{\partial f_{0}}{\partial E} \frac{z}{l_{z}} \frac{\partial \ln \tau}{\partial E} \left(\cos \omega \tau \frac{z}{l_{z}} \right) + \frac{1}{\omega \tau} \sin \omega \tau \frac{z}{l_{z}} \right\}. \end{split}$$

Подставляя (28) в (23), нетрудно убедиться в том, что ток ПФГЭ состоит из двух вкладов, один из которых является осциллирующей функцией частоты света, а второй не содержит осцилляций.²

Линейный по напряженности внешнего магнитного поля (\mathbf{H}) фототок запишем в виде

$$j_{y} = -\frac{eN}{\frac{4\pi}{3}v_{F}^{3}} \int_{0}^{\infty} dz \int_{v} dv v_{y}(f_{22^{+}} - f_{22^{-}}), \qquad (29)$$

где f_{22} определяется по формуле (11) с m=n=2. При этом

$$F_{22^{-}}(z) = -\frac{e}{m} (\mathbf{v} \times \mathbf{H}) \nabla \mathbf{v} (f_{21}^{+} - f_{21}^{-})$$

$$= \frac{2e^{3}}{m^{2}\omega^{3}} H_{x} \left[|\varepsilon|^{2} \frac{\partial f_{0}}{\partial E} + m(\varepsilon \mathbf{v}) (\varepsilon^{*} \mathbf{v}) \frac{\partial^{2} f_{0}}{\partial E^{2}} \right]$$

$$\times \left(1 + \frac{z}{l_{z}} \right) v_{y} \exp\left(-\frac{z}{l_{z}} \right). \tag{30}$$

 $^{^2}$ Исследование каждого вклада в фототок (см. формулы (17а) и (21)) для экспериментально интересного случая требует, как нам кажется, отдельного рассмотрения, чему и будут посвящены следующие работы.

Уместно отметить, что, кроме (29), надо учитывать вклад в фототок от $\varepsilon_0(z)$. При этом в случае зеркального рассеяния имеем

$$f_{20^{-}} = -ee^{-z/l_z} \frac{\partial f_0}{\partial E} \int_{0}^{\infty} e^{-z'/l_z} v_z \varepsilon_0(z') dz'$$
 (31)

И

$$f_{20^+} = -e \frac{\partial f_0}{\partial E} \left[\int\limits_0^z \varepsilon_0(z') e^{z'/l_z} dz' \right]$$

$$+2\int_{-1}^{0} \xi d\xi \int_{0}^{+\infty} e^{z'/(\xi l_{z})} \varepsilon_{0}(z') dz' \left[\exp(-z/l_{z}). \right]$$
(32)

Пусть $\varepsilon_0(z)=\mathrm{const}\cdot e^{iqz}$. Тогда из (29–32) нетрудно убедиться в том, что фототок состоит из двух слагаемых: зависящих и не зависящих от **q**, которые описывают токи линейного (или циркулярного) фотогальванического эффекта и эффекта увлечения фотонами. Из качественного анализа последних соотношений видно, что эти фототоки отличаются друг от друга как по спектральной и температурной зависимостям, так и по зависимости от степени поляризации, а также от геометрии опыта обнаружения рассматриваемых эффектов.

4. Заключение

- 1. Развита теория поверхностного фотогальванического эффекта в многодолинных полупроводниковых пленках, обусловленного рассеянием носителей тока на поверхности кристалла и зависящего от степени поляризации света.
- 2. Исследовано влияние внешнего магнитного поля на ПФГЭ в полубесконечном и ограниченном много-долинном полупроводнике с учетом анизотропии энергетического спектра при поглощении поляризованного излучения свободными носителями заряда.
- 3. Отмечено что взаимная компенсация потоков электронов, движущихся к поверхности и от нее, в полупроводниках с анизотропным спектром как при зеркальном отражении, так и диффузном рассеянии связана с пространственным изменением функции распределения и созданием нормального электрического поля.

Один из авторов (Расулов Р.Я.) выражает благодарность С.Е Тарасенко за просмотр рукописи и ценные замечания.

Список литературы

- [1] Р.Ф. Грин. Новое в исследовании поверхностного твердого тела (М., Мир, 1977) гл. 2, с. 104.
- [2] М.В. Энтин. Автореф. канд. дис. (Новосибирск, Ин-т полупроводников, 2005) гл. 2, с. 64.

- [3] Z. Zhang, X. Zhang, W. Xie et al. Sol. St. Commun., 149, 1004 (2009).
- [4] Г.М. Михеев, В.А. Александров, А.С. Саушин. Письма ЖЭТФ, **37**, 16 (2011).
- [5] В.И. Орбух, Н.Н. Лебедев, Б.Г. Саламов. ФТП, 43, 1329 (2009).
- [6] M. Reid, I.V. Gravetchi, I. Fedesejevs. Phys. Rev. B, 72, 035 201(1) (2005).
- [7] Э. Нормантас, Г.Е. Пикус. ФТТ, 27, 3017 (1985); ФТТ, 28, 1665 (1986); ФТТ, 30, 16652, (1988).
- [8] В.Л. Альперович, В.И. Белиничер, В.Н. Новиков, А.С. Терехов. ЖЭТФ, 80, 2298 (1986).
- [9] В.И. Белиничер. ФТТ, 24, 798 (1982).

Редактор Т.А. Полянская

Surface photovoltaic effect in much value semiconductor in an external magnetic field

V. Rasulov, R.Y. Rasulov

Ferghana State University, 713000 Ferghana, Uzbekistan

Abstract The theory of photovoltaic effect in semi-infinite much value semiconductor originating at absorption of polarized light on free carriers, called is built at reflecting and diffuse scatterings of electrons on a films surface. The method of the kinetic Boltzman equation in approximation of a relaxation time and boundary conditions defining link between a cumulative distribution function reflected from a surface of a semi-infinite crystal of electrons with a cumulative distribution function of electrons incident on surface as at utilised reflecting and at diffuse dispersion, where is taken into discounted, that the cumulative distribution function diffusely dissipated from a surface of electrons depends only on their energy and is determined from a condition of call in a zero of a resulting electrons current on a surface. The relations are btained, with the help which one are possible are to parsed by spectral dependence of a current linearly depending on magnetic density.