05

Определение магнитных характеристик наночастиц MgFe₂O₄, полученных глицин-нитратным синтезом

© А.И. Жерновой, А.А. Комлев, С.В. Дьяченко

Санкт-Петербургский государственный технологический институт (технический университет), 190013 Санкт-Петербург, Россия e-mail: samyon2008@yandex.ru

(Поступило в Редакцию 12 февраля 2015 г. В окончательной редакции 21 мая 2015 г.)

Для исследования магнитных свойств порошка наночастиц магний-железистой шпинели (MgFe₂O₄), полученной методом глицин-нитратного синтеза, применялись рентгенофазовый анализ и метод ЯМР. Средний размер кристаллической части наночастиц исследуемого порошка по данным рентгенофазового анализа составил 45 ± 4 nm. Получена кривая намагничивания порошка наночастиц и определены магнитные моменты этих наночастиц. Намагниченность *J* определялась по формуле $J = (B/\mu_0) - H$, где *B* и *H* индукция и напряженность магнитного поля внутри образца, измеряемые методом ЯМР. Значения магнитных характеристик MgFe₂O₄ составили: удельная намагниченность насыщения $J_{sat} = 17.52 \text{ A} \cdot \text{m}^2/\text{kg}$, удельная остаточная намагниченность $J_r = 5.73 \text{ A} \cdot \text{m}^2/\text{kg}$, коэрцитивная сила $H_c = 4600 \text{ A/m}$, магнитный момент в состоянии намагниченности насыщения $P_{sat} = 371 \cdot 10^{-20} \text{ A} \cdot \text{m}^2$, в состоянии остаточной намагниченности $P_r = 121 \cdot 10^{-20} \text{ A} \cdot \text{m}^2$.

Введение

Магнитные наночастицы имеют широкие перспективы практического применения в металлургии, микроэлектронике, производстве катализаторов, смазочных материалов, для транспортировки лекарств внутри организма [1], для лечения гипертермией [2,3], для повышения контрастности ЯМР томограмм, для индикации локализации биологически активных веществ, бактерицидных и противоопухолевых препаратов [4-6]. Как правило, магнитные наночастицы получают в виде порошков [7], в связи с этим их магнитные свойства нужно уметь оценивать в образцах порошка. Основная магнитная характеристика порошка наночастиц — его петля гистерезиса, контрольными точками которой являются намагниченность насыщения, остаточная намагниченность и коэрцитивная сила. Наряду с этим важной магнитной характеристикой наночастицы является ее магнитный момент.

Магний-железистая шпинель, относящаяся к классу ферримагнитных материалов, имеет обращенную структуру $Mg_{1-\delta}Fe_{\delta}[Mg_{\delta}Fe_{2-\delta}]O_4$. Степень обращения — δ , зависящая от способа получения шпинели, определяет долю атомов Fe^{3+} в окта- и тетрапозиции, что в свою очередь влияет на магнитные свойства материала. Также магнитные характеристики данной шпинели напрямую зависят от размера частиц и могут изменяться в широком интервале. Так, например, в работе [8] было показано, что с уменьшением размера кристаллитов от 135 до 8 nm намагниченность насыщения уменьшается с 39 до 31 A · m²/kg, в то время как коэрцитивная сила возрастает с 32 до 45835 A/m.

Такое многообразие магнитных свойств магнийжелезистой шпинели обусловило широкое практическое применение порошков на ее основе, а изучение частиц в наноразмерном состоянии требует точного метода измерения ее магнитных параметров. Для измерения магнитных характеристик порошков наиболее часто применяется вибрационный магнетометр [9,10]. В настоящей работе для их определения применен метод ЯМР.

1. Экспериментальная часть

1.1. Получение наночастиц магний-железистой шпинели

Порошок магний-железистой шпинели был получен методом глицин- нитратного горения в соответствии с методикой, описанной в [11]. Были приготовлены водные растворы глицина и нитратов магния и железа. В качестве исходных компонентов использовали Mg(NO₃)₂ · 6H₂O (ГОСТ 11088-75), Fe(NO₃)₃ · 9H₂O (ТУ 6-09-02-553-96), глицин (ГОСТ 5860-75), дистиллированную воду (ГОСТ 6709-72). Полученные растворы сливались в металлическую емкость в соотношении Mg²⁺/Fe³⁺ = 1/2 и доводились до кипения. После выкипания всей воды в системе инициировалась реакция самоподдерживаемого горения. Расчет соотношения Mg²⁺ : Fe³⁺ : Gly производился в соответствие с реакцией:

$$\begin{split} Mg(NO_3)_2 + 2Fe(NO_3)_3 + \frac{40}{9}C_2H_5O_2N \\ &= MgFe_2O_4 + \frac{56}{9}N_2 + \frac{80}{9}CO_2 + \frac{100}{9}H_2O. \end{split}$$

Полученный продукт представлял собой высокодисперсный порошок коричневого цвета.

1.2. Исследование фазового состава наночастиц

Фазовый состав полученных образцов определялся методом рентгенофазового анализа (РФА). Съемку дифрактограмм проводили на порошковом рентгеновском дифрактометре Shimadzu XRD-7000 на Cu K_{α} -излучении ($\lambda = 1.5046$ Å) в интервале углов $2\theta^{\circ}$, равном $30-80^{\circ}$ с шагом сканирования 0.02° , время съемки в точке — 1.5 s. Условия съемки: ускоряющее напряжение — 35 kV, ток — 30 mA. Обработка производилась в программном комплексе PDWin с базой данных порошковых дифрактограмм PDF 2. Расчет размера области когерентного рассеяния (ОКР) производился по величине уширения дифракционного максимума на половине высоты пика с использованием формулы Шеррера.

1.3. Исследование магнитных свойств наночастиц

Объемная намагниченность J_p порошка наночастиц MgFe₂O₄ определялась по классической формуле

$$J_p = (B/\mu_0) - H,$$
 (1)

где *В* и *H* — индукция и напряженность магнитного поля внутри образца. Для измерения *B* и *H* был применен метод нутации [12] (разновидность метода ЯМР). Схема экспериментальной установки и принцип работы приведены в [13]. Ранее данная установка была апробирована для измерения магнитных параметров магнитной жидкости [14].

2. Результаты

2.1. Рентгенофазовый анализ

На дифрактограмме полученного образца присутствуют рефлексы, характерные только для феррита магния (рис. 1), что свидетельствует о полном протекании реакции горения и формировании однофазного продукта.

Рис. 1. Рентгеновская дифрактограмма образца MgFe₂O₄, полученного методом глицин-нитратного горения.

Рис. 2. Кривая намагничивания порошка наночастиц MgFe₂O₄.

Значение размера ОКР, рассчитанное как среднее по всем имеющимся рефлексам, для полученной магнийжелезистой шпинели составляет 45 ± 4 nm. Небольшой разброс в значениях свидетельствует о формировании частиц, форма которых близка к изометрической.

2.2. Получение кривой намагничивания

Кривая намагничивания образца шпинели. полученная при комнатной температуре, представлена на рис. 2. Из нее следует, что для данного порошка в единицах системы СИ намагниченность насыщения порошка $J_{sat.p} = 5500 \text{ A/m}$, остаточная намагниченность $J_{r,p} = 1800 \text{ A/m}$, коэрцитивная сила $H_c = 4600 \,\text{A/m}$. Зная насыпную плотность порошка в образце $\rho_p = 314 \, \text{kg/m}^3$, находим значения удельной намагниченности вещества магниево-железистой шпинели $J_{sp} = J_p / \rho_p$. В единицах системы СИ: $J_{sp.sat} =$ $= J_{sat.p}/\rho_p = 5500/314 = 17.52 \,\mathrm{A} \cdot \mathrm{m}^2/\mathrm{kg}, J_{sp.r} = J_{r.p}/\rho_p =$ $= 5.73 \,\mathrm{A} \cdot \mathrm{m}^2/\mathrm{kg}$. Численно такие же значения получаются в единицах системы СГС: $J_{sp.sat} = 17.52 \text{ emu/g}$, намагниченность $J_{sp.r} = 5.73 \,\mathrm{emu/g}.$ Объемная вещества $J = J_{sp} \cdot \rho$, где $\rho = 4600 \text{ kg/m}^3$ — плотность шпинели. магниево-железистой Намагниченность насыщения $J_{sat} = J_{sp.sat} \cdot \rho = 17.52 \cdot 4600 = 80\,600$ A/m, остаточная намагниченность $J_r = J_{sp.r} \cdot \rho = 26\,360\,\text{A/m}.$

2.3. Расчет магнитного момента наночастиц

Представив наночастицу шаром с диаметром 45 nm, находим ее средний объем $V = \pi d^3/6 = (45)^3 \cdot \pi \cdot 10^{-27}/6 = 4.6 \cdot 10^{-23} \text{ m}^3$. Умножив намагниченность вещества на объем наночастицы, находим ее средний магнитный момент $P = J \cdot V$. В нулевом внешнем поле, когда $J = J_r$, получаем $P_r = J_r \cdot V = 26360 \cdot 4.6 \cdot 10^{-23} = 121.2 \cdot 10^{-20} \text{ A} \cdot \text{m}^2$, в состоянии насыщения, когда $J = J_{sat}$, получаем $P_{sat} = J_{sat} \cdot V = 371 \cdot 10^{-20} \text{ A} \cdot \text{m}^2$. По результатам исследования можно сделать вывод, что при комнатной температуре исследуемое вещество не является суперпарамагнетиком и что наночастицы неоднодоменные, так как при $H_0 = 0 P_r \neq 0$.

<i>d</i> , nm	J_r , A/m	P_r , A · m ²	J_{sat} , A/m	$P_{sat}, \mathbf{A} \cdot \mathbf{m}^2$	H_c , A/m	Метод синтеза*
45 100 270	26360 12282 16100	$\begin{array}{r} 121\cdot 10^{-20} \\ 610\cdot 10^{-20} \\ 16600\cdot 10^{-20} \end{array}$	80600 31280 111780	$\begin{array}{r} 371 \cdot 10^{-20} \\ 1500 \cdot 10^{-20} \\ 115000 \cdot 10^{-20} \end{array}$	4600 8756 3025	1 2 3

Магнитные характеристики и размеры наночастиц, полученные различными методами

Примечание. *1 — глицин-нитратное горение, 2 — гидротермальный метод, 3 — цитратное горение.

3. Обсуждение результатов

Сравним полученные результаты с магнитными характеристиками магниево-железистой шпинели, приведенными в других работах. В работе [15] для порошка наночастиц феррита магния, синтезированных методом цитратного горения, имеющих размер d = 270 nm, были получены следующие магнитные характеристики, измеренные при 300 К: удельная намагниченность насыщения $J_{sp,sat} = 24.3 \text{ emu/g} = 24.3 \text{ A} \cdot \text{m}^2/\text{kg}$, удельная остаточная намагниченность $J_{sp.r} = 3.5 \,\text{emu/g} = 3.5 \,\text{A} \cdot \text{m}^2/\text{kg}$, коэрцитивная сила $H_c = 38 \text{ Oe} = 3025 \text{ A/m}$. Зная плотность вещества наночастицы $\rho = 4600 \, \text{kg/m}^3$, нанамагниченности ходим объемные вешества $J_r = 16\,100\,\text{A/m}.$ $J_{sat} = 111\,780\,\mathrm{A/m},$ Приняв наночастицу шаром, получаем объем ee $V = 1.03 \cdot 10^{-20} \,\mathrm{m}^3$, и находим магнитные моменты $P_r = 1.66 \cdot 10^{-16} \,\mathrm{A \cdot m^2}, P_{sat} = 11.5 \cdot 10^{-16} \,\mathrm{A \cdot m^2}.$

В работе [16] для порошка наночастиц феррита магния, синтезированных гидротермальным методом при той же температуре, имеющих размер d = 100 nm, были получены значения удельных намагниченностей вещества наночастиц $J_{sp.sat} = 6.8 \text{ emu/g} = 6.8 \text{ A} \cdot \text{m}^2/\text{kg}$, $J_{sp.r} = 2.67 \text{ emu/g} = 2.67 \text{ A} \cdot \text{m}^2/\text{kg}$, $H_c = 110 \text{ Oe} = 8756 \text{ A/m}$. Зная плотность вещества наночастицы $\rho = 4600 \text{ kg/m}^3$, находим объемные намагниченности $J_{sat} = 31\,280 \text{ A/m}$, $J_r = 12\,282 \text{ A/m}$. Приняв наночастицу шаром, получаем ее объем $V = 5 \cdot 10^{-22} \text{ m}^3$, находим магнитные моменты $P_{sat} = 15 \cdot 10^{-18} \text{ A/m}$, $P_r = 6.1 \cdot 10^{-18} \text{ A/m}$.

Полученные в этих работах различия значений магнитных моментов наночастиц можно объяснить различием размеров наночастиц, связанным с методом синтеза. Различие магнитных моментов в слабом и сильном магнитных полях свидетельствует о многодоменном строении наночастиц. Для удобства сравнения магнитные свойства и размеры наночастиц, полученные разными методами, сведены в таблицу. Из нее следует корреляция магнитных моментов с размером наночастиц и их зависимость от метода синтеза.

Заключение

В результате проделанного исследования можно заключить, что в зависимости от метода приготовления магниево-железистой шпинели можно получать наночастицы с требуемыми магнитными характеристиками, необходимыми для определенного назначения. Применение магнитных наночастиц в качестве носителей лекарственных препаратов требует большого размера наночастиц для гипертермии опухолей с большой коэрцитивной силой, поэтому для изготовления таких наночастиц оптимальным является гидротермальный метод. Для изготовления магнитных жидкостей, работающих в слабых магнитных полях, оптимальными являются наночастицы с большой остаточной намагниченностью. Такие наночастицы могут применяться в приборах на основе магнитных жидкостей: датчики угла наклона, акселерометры, печатающие устройства и др., их получают при использовании метода глицин-нитратного горения. Для изготовления магнитных жидкостей, работающих в сильных магнитных полях (сепараторы немагнитных материалов, герметизаторы, уплотнители и др.), оптимальными являются наночастицы с большой намагниченностью насыщения. Такие наночастицы получаются методом цитратного горения.

Список литературы

- [1] Shekoufeh L. et al. // Pharmazie. 2012. Vol. 67. N 10. P. 817–821.
- [2] Laurent S. et al. // Adv. Colloid and Interface Sci. 2011.
- [3] Shokuhfar A. et al. // Nanoscale Res. Lett. 2013. Vol. 8. N 1. P. 540.
- [4] *Губин С.П.* и др. // Успехи химии. 2005. № 74(6). С. 539-574.
- [5] Karimi Z. et al. // Mater. Sci. Eng.: C. 2013.
- [6] Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. // J. Physics D: Appl. Phys. 2003. Vol. 36. P. R167–R181.
- [7] Баранов Д.А., Губин С.П. // Наносистемы. 2009. Т. 1. № 1-2. С. 127-149.
- [8] Rabanal M.E., Varez A., Levenfeld B., Torralba J.M. // J. Materials Processing Technology. 2003. Vol. 143–144. P. 470–474.
- [9] Zieba A., Foner S. // Rev. Sci. Instrum. 1982. Vol. 53. P. 1344–1354.
- [10] Nizhankovskii V.I., Lugansky I.B. // Measurement Science and Technology. 2007. № 18. P. 1533–1537.
- [11] Khot V.M., Salunkhe A.B., Phadatare M.R., Pawar S.H. // Materials Chemistry and Physics. 2012. Vol. 132. P. 782–787.
- [12] Жерновой А.И. Измерение магнитных полей методом нутации. Л.: Энергия, 1979. 104 с.
- [13] Жерновой А.И., Дьяченко С.В. // ЖТФ. 2015. Т. 85. Вып. 4. С. 118–122.
- [14] *Жерновой А.И.* и др. // Научное приборостроение. 2009. Т. 19. № 3. С. 57-61.
- [15] Ghelev Ch. // J. Physics: Conference Series. 2012. Vol. 356.
 P. 012 048. IOP Publishing, P. 1–5.
- [16] Комлев А.А., Семенова А.С. // Наносистемы: физика, химия, математика. 2012. Vol. 3. N 6. С. 105–111.