18,12

Вклад *л*-связей в эффективные заряды, энергию когезии и силовые константы графеноподобных соединений

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 26 мая 2015 г. В окончательной редакции 29 июня 2015 г.)

> Для 14 двумерных гексагональных соединений IV–IV и III–V методом связывающих орбиталей Харрисона получены аналитические выражения для вклада *π*-взаимодействия в полярность межатомных связей, эффективные атомные и динамические поперечные заряды и их зависимости от деформации, энергии связи и когезии, центральные и нецентральные силовые константы.

1. Введение

Уникальные свойства графена [1] вызвали интерес к другим возможным двумерным (2D) соединениям, (см. обзорные статьи [2–5] и ссылки, приведенные там). Среди таковых выделяются 2D-аналоги тетраэдрических полупроводников $A_N B_{8-N}$ — графеноподобные структуры IV–IV, III–V, свойства которых исследовались в работах [6–14]. В этих работах путем расчетов в рамках различных вариантов метода функционала плотности было показано, что такие графеноподобные соединения (ГПС) энергетически устойчивы, т.е. теоретически могут существовать, хотя до сих пор еще не реализованы практически.

В работах [15,16] мы рассмотрели упругие и диэлектрические характеристики двумерных соединений A_NB_{8-N}, использовав метод связывающих орбиталей (МСО) Харрисона [17-20], включающий в качестве исходных параметров только межатомные расстояния d и энергии ε_s и ε_p атомных s- и p-уровней. При этом, однако, учитывались только σ -связи, образованные sp^2 -орбиталями, что соответствует чисто двумерной плоской структуре. Возможность присутствия построенных на sp^3 -орбиталях σ -связей, приводящая к образованию реконструированной ("измятой", не плоской) гегсагональной структуры [6,10,11–13], а также вероятность образования тетрагональной структуры [11-13] в соединениях III-V (см. далее), нами не рассматривалась. Здесь мы обсудим эти обстоятельства, но главная цель работы состоит в том, чтобы выяснить, как учет π -связей влияет на различные физические характеристики ГПС *А*_N*B*_{8-N}.

2. Полярность *о*-и *л*-связей

Важными характеристиками МСО являются ковалентность α_c и полярность α_p связи *AB*, определяемые как $\alpha_c = V_2/R$ и $\alpha_p = V_3/R$, где $R = (V_2^2 + V_3^2)^{1/2}$ ($\alpha_c^2 + \alpha_p^2 = 1$), ковалентная энергия $V_2 = \eta_2 \hbar^2/md^2$ (\hbar — приведенная постоянная Планка, *m* — масса свободного электрона, $\eta_2 = 3.26$ и 3.22 для sp^2 - и sp^3 -гибридизации [18,20]), полярная энергия $V_3 = |\varepsilon_h^A - \varepsilon_h^B|/2$ (энергия гибридизованной орбитали $\varepsilon_h^k = (\varepsilon_s + k\varepsilon_p)/(k+1)$ для случая sp^k -гибридизации). Значения α_c и α_p определяют распределение электронной плотности вдоль связи AB: для одной σ -связи доля электронов, относящейся к катиону A, есть $1 - \alpha_p$, аниону B принадлежат $1 + \alpha_p$ электронов. В табл. 1 и 2 приведены значения полярности σ -связей, образованной sp^2 -орбиталями, что соответствует чисто двумерной плоской структуре (flat structure—FS). Здесь и ниже значения межатомных расстояний d брались из работ [6,10], энергии s- и p-состояний — из таблиц Манна [19,20].

Имеются, однако, теоретические работы (см., например, [6,10,11–13]), в которых установлено, что некоторые III–V соединения имеют не плоскую, а определенным образом перестроенную структуру, где атомы, чередуясь, располагаются не в одной, а в двух достаточно близко (по сравнению с d) расположенных плоскостях. Такую структуру иногда называют измятой (rumpling, buckling), но по-прежнему считают как бы двумерной. При этом вместо sp^2 -гибридизации логично ввести суперпозицию sp^2 - и sp^3 -орбиталей. В настоящей работе мы для простоты рассмотрим предельный случай измятой структуры, а именно тетраэдрическую структуру (TS), которой отвечают σ -связи, образованные

Таблица 1. Гексагональные 2D-соединения IV-IV и II-VI: полярности связей и эффективные заряды

Соединение	SiC	GeC	GeSi	ZnS	ZnSe
α_p, σ, FS	0.24	0.25	0	0.71	0.68
α_p, σ, TS	0.24	0.25	0.01	0.68	0.65
$\bar{\alpha}_p, \pi$	0.89	0.91	0.24	0.99	0.99
δ_p	0.45	0.47	0	0.70	0.72
$\bar{\delta}_p$	0.64	0.59	0.27	0.12	0.15
Z_C^* , FS	1.48	1.54	0.14	1.10	1.00
e_T^* , FS	2.48	2.54	0.28	1.16	1.08
e_T^* , 3D-эксперимент [17]	2.57	_	—	2.15	2.03

Соединение	BN	BP	BAs	AlN	AlP	AlAs	GaN	GaP	GaAs
α_p, σ, FS	0.32	0.18	0.16	0.56	0.49	0.47	0.57	0.46	0.44
α_p, σ, TS	0.29	0.16	0.13	0.54	0.46	0.44	0.55	0.43	0.41
\bar{lpha}_p,π	0.90	0.57	0.35	0.98	0.96	0.96	0.98	0.96	0.95
δ_p	0.58	0.35	0.31	0.77	0.74	0.73	0.77	0.73	0.71
$ar{\delta}_p$	0.62	0.66	0.40	0.23	0.60	0.39	0.20	0.36	0.42
Z_C^* , FS	0.72	-0.08	-0.39	1.62	1.25	1.29	1.65	1.27	1.19
e_T^* , FS	1.90	0.78	0.28	2.89	2.66	2.58	2.91	2.55	2.47
e_T^* , 3D-эксперимент [17]	2.47	—	—	2.75	2.28	2.3	3.2	2.04	2.16

Таблица 2. Гексагональные 2D-соединения III-V: полярности связей и эффективные заряды

 sp^3 -гибридами. Значения полярностей связей для ГПС с такой структурой приведены в табл. 1 и 2. Сравнение полярностей σ -связей α_p показывает, что их значения для FS- и TS-структур достаточно близки, что связано с малым различием параметров η_2 для sp^2 - и sp^3 -орбиталей. На этом же основании мы не рассматриваем здесь возможную тетрагональную структуру соединений III–V [11–13] и в дальнейшем приводим только результаты для ГПС, расположенных в плоскости (x, y).

Рассмотрим теперь π -связи, образованные p_z -орбиталями ближайших соседей, и введем характеризующие их ковалентность $\bar{\alpha}_c = \bar{V}_2/\bar{R}$ и полярность $\bar{\alpha}_p = \bar{V}_3/\bar{R}$, где $\bar{R} = (\bar{V}_2^2 + \bar{V}_3^2)^{1/2}$, $\bar{V}_2 = \eta_{pp\pi}(\hbar^2/md^2)$, $\eta_{pp\pi} = 0.63$ [18] и $\bar{V}_3 = |\varepsilon_p^A - \varepsilon_p^B|/2$. Отметим, что значения $\bar{\alpha}_p$, одинаковые для FS- и TS-структур, приведены в табл. 1 и 2. Полярности π -связей $\bar{\alpha}_p$ значительно превосходят соответствующие значения α_p для σ -связей, что, в первую очередь,

Рис. 1. Отношения $v_{p(c)} = \delta_{p(c)}/\bar{\delta}_{p(c)}$ (c) для ГПС. N: I — SiC, 2 — GeC, 3 — GeSi, 4 — BN, 5 — BP, 6 — BAs, 7 — AlN, 8 — AlP, 9 — AlAs, 10 — GaN, 11 — GaP, 12 — GaAs, 13 — ZnS, 14 — ZnSe.

объясняется малой величиной параметра $\eta_{pp\pi}$ по сравнению с η_2 . Если вообще пренебречь π -взаимодействием, получим $\bar{\alpha}_p = 1$.

Перейдем к исследованию влияния деформации на ковалентность и полярность связи. Рассмотрим для начала, как на величины α_c и α_p влияют всестороннее растяжение или сжатие в плоскости (x, y). Так как такая деформация изменяет только длину связи, оставляя углы между связями неизменными, рассмотрим зависимость $\partial \alpha_{c,p}/\partial d$. Введем относительные параметры $\delta_{c,p}$, определив их как

$$\begin{split} \delta_c &= d_0 \left(\frac{\partial \alpha_c}{\partial d} \right)_{d_0} = -2\alpha_c \alpha_p^2, \\ \delta_p &= d_0 \left(\frac{\partial \alpha_p}{\partial d} \right)_{d_0} = 2\alpha_p \alpha_c^2, \end{split}$$
(1)

где d_0 есть равновесное значение d (далее в конечных выражениях индекс 0 будем, как правило, опускать). Так как $\delta_c < 0$ и $\delta_p > 0$ растяжение связи увеличивает ее полярность и снижает ковалентность. При этом максимум распределения электронной плотности смещается к аниону. Легко показать, что максимальные значения функций $|\delta_c(\alpha_c)|$ и $\delta_p(\alpha_p)$, равные $|\delta_c^{max}| = \delta_p^{max} = 4/3\sqrt{3}$, реализуются при $\alpha_c^* = \alpha_p^* = 1/\sqrt{3}$. Выражения (1) справедливы и для реакции π -связей на изменения их длины: заменив в (1) величины $\alpha_{c,p}$ на $\bar{\alpha}_{c,p}$, получим $\bar{\delta}_c$ и $\bar{\delta}_p$.

Как следует из табл. 1 и 2, наибольшими значениями δ_p обладают соединения Al и Ga и Zn, а наименьшим (нулевым) — GeSi. Максимальными значениями $\bar{\delta}_p$ характеризуются карбиды Si и Ge, фосфиды B и Al и BN, минимальными — соединения Zn. На рис. 1 представлены значения отношения $v_{p(c)} = \delta_{p(c)}/\bar{\delta}_{p(c)}$ для структур FS, которые понадобятся нам в дальнейшем.

Рассмотрим теперь, как на величины α_c и α_p влияют чисто сдвиговые деформации. В МСО таким деформациям отвечает жесткий поворот трех sp^2 -орбиталей в плоскости 2D-листа относительно оси z, перпендикулярной листу и проходящей через рассматриваемый атом. Если угол разориентации двух орбиталей, образующих σ -связь, равен ϑ , то изменение ковалентной энергии $\Delta V_2 = -\lambda V_2 \vartheta^2$ [17,18,20], причем для FS-структур $\lambda = 0.66$ [21],¹ а для TS-структур $\lambda = 0.88$ [18,20]. Тогда легко показать, что

где индекс 0 означает отсутствие разориентации орбиталей. Таким образом, $\tau_c = \lambda \delta_c$ и $\tau_p = \lambda \delta_p$. Легко показать, что для π -связей $\bar{\tau}_{c,p} = (\partial^2 \alpha_{c,p}/\partial \partial^2)_0 = 0$, так как вращение p_z -орбиталей вокруг оси z не изменяет энергии π -связи.

3. Эффективный атомный заряд

Для тетраэдрических полупроводников в рамках МСО эффективный атомный заряд катиона (аниона) равен $Z^*_{C(A)} = Z_{C(A)} = 4 \pm 4\alpha_p$, где $Z_{C(A)}$ — номер столбца периодической системы, к которому принадлежит катион (анион). В случае ГПС следует записать

$$Z^*_{C(A)} = Z_{C(A)} - 4 \pm 3\alpha_p \pm \bar{\alpha}_p,$$
(3)

где, как и выше, α_p и $\bar{\alpha}_p$ отвечают σ - и π -связям. Здесь учтено, что на три π -связи приходится только одна электронная пара (резонансная связь по Полингу (см. подробнее [18]).

Значения Z_C^* приведены в табл. 1 и 2, откуда следует, что значения эффективных зарядов атомов ГСП несколько превосходят (в среднем) величины атомных зарядов соответствующих объемных соединений [17] (см. табл. 9.4). Отметим, что $Z_C^* < 0$ как для двумерных, так и для объемных соединений ВР и ВАs.

Зависимость эффективного атомного заряда от изменения длины связи равна

$$\xi_{C(A)} = \left(\frac{\partial Z^*_{C(A)}}{\partial d}\right)_{d_0} = \pm 3\delta_p \pm \bar{\delta}_p.$$
 (5)

Отсюда следует, что с растяжением связей величины зарядов катиона и аниона растут. Результаты расчета ξ_C представлены на рис. 2. Как следует из рис. 2, наименьшими значениями ξ_C обладают соединения GeSi и BAs, что определяется малой полярностью связей; наибольшим значениям ξ_C отвечают соединения Al, затем по степени убывания следуют соединения Ga, Zn и C. Из выражения (5) и рис. 1 следует, что вклады σ -связей значительно превосходят вклады π -связей для ГПС алюминия, галлия и цинка. Для соединений бора и IV–IV вклады σ - и π -связей сравнимы по величине.

Рис. 2. Значения функций ξ_C и ξ . Нумерация ГПС та же, что и на рис. 1.

Рис. 3. Кристаллическая структура ГПС.

В случае угловой разориентации орбиталей, образующих σ -связь, аналогично (3) получим

$$\left(\frac{\partial^2 Z^*_{C(A)}}{\partial \vartheta^2}\right)_0 = \pm 3\lambda \delta_p,\tag{6}$$

где учтено, что $\bar{\tau}_p = 0$. Характер изменений этой производной в ряду ГПС легко усмотреть из табл. 1 и 2.

Перейдем к изучению влияния одноосных деформаций на эффективный атомный заряд. Будем следовать работе [21] и рассмотрим растяжение структуры, изображенной на рис. 3, вдоль оси x, полагая, что атомы с координатами x_i испытывают смещения $u_i = \varepsilon x_i$, где ε — постоянная деформация. Предположим, что "светлые" атомы 1 и 2 смещаются в противоположные стороны и те же смещения испытывают ближайшие "темные" соседи атома 3, находящиеся на рис. 3 ниже атома 3. При этом атомы 0 и 3 горизонтальных смещений не испытывают, но вследствие растяжения смещаются вертикально (атом 0 вверх, атом 3 вниз) на величину $v = \varepsilon \xi d/2$, где ξ — параметр относительных смещений Клейнмана. Можно показать [21], что при такой деформации растяжение связей 01 и 02

¹ Отметим, что в работе [21] мы рассматривали только σ -связи, образованные sp^2 -орбиталями. Поворот тройки таких орбиталей, принадлежащих одному атому, приводит к разориентации на угол ϑ орбиталей ближайших соседей, образующих σ -связи, но не затрагивает π -связи. Таким образом, матричный элемент $V_{pp\pi}$ остается неизменным. Следовательно, учет π -связей не меняет значения λ , вычисленного в работе [21].

равно $\Delta d^{(1)} = \varepsilon [u(\sqrt{3}/2) - v/2] = (\varepsilon d/4)(3 - \xi)$, а растяжение связи 03 есть $\Delta d^{(2)} = v$. С учетом (1) изменение полярности σ - и π -связей равно соответственно $\Delta \alpha_p^{(1,2)} = \delta_p (\Delta d^{(1,2)}/d)$ и $\Delta \bar{\alpha}_p^{(1,2)} = \bar{\delta}_p (\Delta d^{(1,2)}/d)$. Вызванное деформацией относительное смещение атомов 0 и 3, которые для определенности будем считать катионом и анионом, эквивалентно затравочному дипольному моменту, пропорциональному $Z_c^* \varepsilon \xi d$. Однако вследствие растяжения связей 01 и 02 их полярность возрастает, что приводит к увеличению заряда Z_c^* . Пренебрегая, как и в [17],² разориентацией образующих σ -связь орбиталей, получим выражение для эффективного атомного заряда при растяжении вдоль оси в виде

$$\tilde{Z}_{CX}^* = Z_C^* + \left(\delta_p + \frac{1}{3}\,\bar{\delta}_p\right) \frac{3-\xi}{2\xi},\tag{7}$$

где вновь учтен резонансный характер *л*-связей в ГПС.

Рассмотрим теперь растяжение вдоль оси *y*, совпадающей с направлением связи *30*, характеризующееся смещениями $v_i = \varepsilon y_i$. Легко показать [21], что в $v^{(1)} = \varepsilon d/2$ и направлено вверх для атомов *1* и *2*, $v^{(2)} = \varepsilon d$ и направлено вниз для атома *3*. При этом удлинение связей *01* и *02* равно $\Delta d^{(1)} = \varepsilon d/4$, удлинение связи *03* есть $\Delta d^{(2)} = \varepsilon d$. Отсюда находим

$$\tilde{Z}_{CY}^* = Z_C^* + \frac{1}{2} \left(\delta_p + \frac{1}{3} \,\overline{\delta}_p \right). \tag{8}$$

Если полностью пренебречь угловыми деформациями, то параметр Клейнмана $\xi = 1$. Для графена, силицена и германена с учетом нецентральных сил имеем $\xi = (1 - \lambda)/(1 + \lambda)$, откуда получаем $\xi = 0.2$ [21]. Следует отметить, однако, что при нахождении параметра ξ путем минимизации упругой энергии в [17,20,21] допускается известная непоследовательность: при записи упругой энергии рассматриваются изменения углов между sp^3 - или sp^2 -орбиталями, принадлежащими одному атому, тогда как при расчете λ эти углы считаются неизменными, а деформация сводится к разориентации орбиталей, принадлежащих ближайшим соседям. Не усложняя на данном этапе задачу, будем просто считать установленным, что изменения атомных зарядов под действием одноосных деформаций $\Delta Z_{CX}^* = (Z_{CX}^* - Z_C^*)$ и $\Delta Z_{CY}^* = (\tilde{Z}_{CY}^* - Z_C^*)$ пропорциональны (v + 1/3), причем $\Delta Z_{CX}^* > \Delta Z_{CY}^*$. Таким образом, из выражений (7), (8) и рис. 1 следует, что соотношение деформационных вкладов σ - и π -связей такое же, как и в случае ζ_C .

4. Динамический поперечный заряд

Перейдем к расчету динамического поперечного заряда e_T^* (или эффективного заряда Борна), определяющего различие продольной ω_{LO} и поперечной ω_{TO} оптических частот в точке Г зоны Бриллюэна [17,20]. Этот заряд называется поперечным, так как определяет связь между поперечными колебаниями решетки и световыми волнами.

Рассмотрим взаимное смещение и подрешеток "темных" и "светлых" атомов вдоль оси х (рис. 3). Если бы при таком смещении отсутствовал перенос заряда, вызванный деформацией связей, то возникшая поляризация была бы пропорциональна $Z_C^* u$, а заряд e_T^* был бы равен заряду Z^{*}_C. Учет деформации связей, однако, увеличивает значение заряда. Действительно, смещение уменьшает длину связи 02 и увеличивает длину связи 01 на величину $\Delta d = u\sqrt{3}/2$. В соответствии с (1) растяжение связи увеличивает ее полярность, а сжатие уменьшает. Изменение полярности σ - и π -связей в обоих случаях равно соответственно $\Delta \alpha_p = \delta_p(u\sqrt{3}/2d)$ и $\Delta \bar{\alpha}_p = \bar{\delta}_p (u\sqrt{3}/2d)$. Если атом *0* является катионом, то можно считать, что части $\Delta \alpha_p$ и $\Delta \bar{\alpha}_p/3$ соответственно σ - и π -электронов аниона 2 переходят на него. Одновременно та же часть электронов с катиона О переходит на анион 1. Таким образом, имеет место перенос $\Delta \alpha_p$ электронов с аниона 2 на анион 1, расстояние между которыми $a_{12} = d\sqrt{3}$. Возникает диполь, величина которого пропорциональна $(\Delta \alpha_p + \Delta \bar{\alpha}_p/3)a_{12}$. Этот дипольный момент складывается с дипольным моментом, возникающим от смещения катиона О как целого. Учтем далее, что вертикальные дипольные моменты взаимно компенсируются, так как деформацией связи 03 можно пренебречь. Тогда получим

$$e_T^* = Z_C^* + \frac{3}{2} \left(\delta_p + \frac{1}{3} \,\overline{\delta}_p \right),\tag{9}$$

откуда следует, что $e_T^* = Z_C^* + \xi_C/2$. Так как $(e_T^* - Z_C^*) \propto (v + \frac{1}{3})$, из выражения (9) и рис. 1 следует, что соотношение деформационных вкладов σ - и π -связей такое же, как и в случае атомного эффективного заряда (см. (7) и (8)).

Легко показать, что при смещении v катиона θ вдоль оси y также получим выражение (5). Действительно, при этом имеет место растяжение связи 3θ на v, сжатие связей θI и $\theta 2$ на v/2, а перенос заряда осуществляется на расстояние 3d/2. Можно показать также, что, как и в случае тетраэдрических кристаллов [17], разориентации sp^2 -орбиталей рассматриваемых атомов не приводят к возникновению дипольного момента. Отметим, что при смещении атома перпендикулярно плоскости ГПС асимметрии зарядов у ближайших соседей не возникает, так что $e_T^* = Z_C^*$.

Результаты расчета e_T^* приведены в табл. 1 и 2 и сопоставлены с экспериментальными данными для объемных соединений (см. табл. 9.4 в [17] или [22]). Сопоставление показывает, что, за исключением соединений цинка, вычисленные значения e_T^* достаточно хорошо согласуются с экспериментальными данными.

² Здесь имеется в виду, что при рассмотрении задач о перераспределении электронной плотности под действием деформации в [17] учитывается явно только центральное взаимодействие, всегда превосходящее по величине взаимодействие нецентральное. Вклад нецентральных сил, однако, учитывается в параметре Клейнмана.

Из выражения (9) следует, что $2(e_T^* - Z_C^*)/3 = \bar{\delta}_p(v+1/3)$. Воспользовавшись данными табл. 1 и 2, легко оценить значения ΔZ_{CX}^* и ΔZ_{CY}^* для ГПС.

Рассмотрим, как изменение длины связи влияет на поперечный заряд, определив параметр

$$\xi = d_0 \left(\frac{\partial e_T^*}{\partial d}\right)_{d_0} = \xi_C + 3\delta_p (1 - 3\alpha_p^2) + \bar{\delta}_p (1 - 3\bar{\alpha}_p^2).$$
(10)

Результаты расчета ξ представлены на рис. 2, откуда следует, во-первых, что наибольшие значения ξ имеют ВN и ВР, а наименьшие — GeSi, ZnS и ZnSe. Во-вторых, наблюдается соответствие между функциями $\xi_C(N)$ и $\xi(N)$, за исключением арсенида бора и нитрида алюминия.

5. Энергия связи и силовые константы

Энергию E_b , приходящуюся на одну σ -связь и одну π -связь, представим в виде

$$E_b = -2R - \frac{2}{\sqrt{3}}\bar{R} - \frac{4}{3}\alpha_c^3 \frac{V_1^2}{V_2} + 2S\left(V_2 + \frac{\bar{V}_2}{\sqrt{3}}\right) + \Delta E_{rep}.$$
(11)

Здесь первые два слагаемых представляют выигрыш в энергии при образовании σ - и π -связей; третье слагаемое описывает металлизацию σ-связи [15], причем $V_1 = \sqrt{[(V_1^A)^2 + (V_1^B)^2]/2}$ и $V_1^{A,B} = (\varepsilon_p^{A,B} - \varepsilon_s^{A,B})/3,^3$ S — интеграл перекрытия. Множитель 2 в первом слагаемом отвечает двухэлектронной *о*-связи. Множитель $2/\sqrt{3}$ во втором слагаемом учитывает резонансный характер л-связи в ГПС, так что необходимо учесть следующее: 1) на три л-связи приходится одна электронная пара, что дает множитель 2/3, 2) эффективный матричный элемент резонансного л-взаимодействия равен $\sqrt{3}V_{pp\pi}$ (см. подробнее [18]). Последнее слагаемое в выражении (1) отвечает короткодействующему отталкиванию вида $\Delta E_{rep} = C(d_0/d)^{12}$, предложенному в [23–25] для тетраэдрических полупроводниковых соединений. Для простоты примем C = 0.20 eV [24,25].

Полагая $S \propto d^{-1}$ [18,20], из условия равновесия $(\partial E_b/\partial d)_{d_0} = 0$ получим

$$S = S_{\sigma} + S_{\pi},$$

$$S_{\sigma} = \frac{2\alpha_c}{3(1+\mu)} \left(1 - 6\frac{C}{\alpha_c V_2} - \frac{2}{3}\alpha_c^2 (1 - 3\alpha_p^2)\frac{V_1^2}{V_2^2} \right),$$

$$S_{\pi} = \frac{2\mu\bar{\alpha}_c}{3(1+\mu)},$$
(12)

где S_{σ} и S_{π} — интегралы перекрытия для σ - и π -связей, $\mu = \bar{V}_2/V_2\sqrt{3} = \eta_{pp\pi}/\eta_2\sqrt{3}$. Значения S_{σ} и S_{π} представлены на рис. 4.

Рис. 4. Интегралы перекрытия S_{σ} и S_{π} для σ - и π -связей. *N*: -2 — графен (Gr), -1 — силицен (Sl), 0 — германен (Gm); остальные номера те же, что и на рис. 1.

Подставляя (12) в (11), найдем

$$E_{b} = E_{b\sigma} + E_{b\pi},$$

$$E_{b\sigma} = -\frac{2V_{2}}{\alpha_{c}} \left(1 - \frac{2}{3}\alpha_{c}^{2} + 3\alpha_{c}\frac{C}{V_{2}} + \frac{2}{9}\alpha_{c}^{4}(6\alpha_{c}^{2} - 1)\frac{V_{1}^{2}}{V_{2}^{2}}\right),$$

$$E_{b\pi} = -\frac{2\bar{V}_{2}}{\bar{\alpha}_{c}\sqrt{3}} \left(1 - \frac{2}{3}\bar{\alpha}_{c}^{2}\right).$$
(13)

Отметим, что здесь, так же как и в [15], мы используем точное выражение для вклада металлизации в энергию E_b , а не приближенное, как в [25].

Для дальнейшего анализа перейдем от энергии связи E_b , приходящейся на одну σ - и π -связь, к энергии когезии E_{coh} (на два атома), которую можно представить как

$$-E_{coh} = E_{pro} + 3E_b,$$

$$E_{pro} = \varepsilon_p^c - \varepsilon_s^c + \varepsilon_p^a - \varepsilon_s^a + (Z_A - 4)(\varepsilon_p^A - \varepsilon_p^a), \quad (14)$$

где E_{pro} — энергия перевода (promotion) электрона из *s*в *p*-состояние, индексы *a* и *c* обозначают соответственно анион и катион, Z_A — номер столбца аниона [23,24].

Результаты расчета энергий связи и когезии по формулам (13), (14) с использованием атомных термов Манна [18,20] представлены в табл. 3 и 4. Там же приведены результаты численных расчетов из первых принципов для ГПС [6], а также результаты [24], полученные в рамках МСО для объемных тетраэдрических соединений. Сопоставление показывает вполне удовлетворительное согласие между нашими значениями E_{coh} и энергиями когезии, вычисленными в [6], наблюдается также корреляция с данными [24].

³ В МСО поправка на металлизацию рассматривается по теории возмущений в предположении $(V_1/R) \ll 1$. Поэтому в [15] и более ранних работах мы использовали те же матричные элементы $V_1^{A,B}$, что и для тетраэдрических кристаллов. Здесь $V_1^{A,B}$ учитываются точно, но во внимание принимается только металлизация σ -связей.

Таблица 3. Гексагональные 2D-соединения IV–IV и II–VI: межатомные расстояния (d, Å); ковалентные энергии для σ и π -связей, полярные энергии $(V_2 \ u \ \bar{V}_2, V_3, eV)$, энергии металлизации, связи и когезии $(V_1, E_b \ u \ E_{coh}, eV)$; отношения центральных $K_0 = k_0(AB)/k_0$ (Gr) и нецентральных $K_1 = k_1(AB)/k_1$ (Gr) силовых констант, модулей сжатия b = B(AB)/B(C), b' = B'(AB)/B'(C), модулей сдвига $s = C_s(AB)/C_s$ (Gr), g = G(AB)/G(C) и Юнга y = Y(AB)/Y(C)

	G	CI	G	a:a	0.0	a a	7.0	7.0
Соединение	Gr	SI	Gm	SiC	GeC	GeSi	ZnS	ZnSe
d	1.42	2.23	2.31	1.79	1.83	2.28	(2.19)	(2.21)
V_2	12.32	5.00	4.66	7.75	7.42	4.78	5.18	5.09
$ar{V}_2$	2.38	0.97	0.90	1.50	1.43	0.92	5.22	4.72
V_3	0	0	0	1.93	1.95	0.03	5.22	4.72
V_1	2.77	2.40	2.61	2.80	2.69	2.51	3.08	3.01
$-E_b$	11.73	7.47	7.89	10.94	10.74	7.69	16.14	14.65
<i>E</i> _{coh} , на 2 атома, настоящая работа	18.56	8.02	8.01	17.37	16.07	8.05	18.77	14.39
<i>E</i> _{coh} , на 2 атома, 3D-эксперимент [24]	14.72 (алмаз)	9.28 (Si)	7.74 (Ge)	12.68	_	_	6.36	5.16
<i>E</i> _{coh} , на 2 атома, 2D-теория [6]	20.08	10.32	8.30	15.25	13.23	9.62	_	_
Ко, настоящая работа	1	0.23	0.19	0.43	0.41	0.19	0.23	0.24
b, 3D-эксперимент	1[26]	0.21 [26]	0.17 [26]	0.56 [26]	—	—	0.18 [17]	0.13 [17]
<i>b</i> ′, 2D-теория [6]	1	0.31	0.29	0.80	0.85	0.32	_	_
y, 2D-теория [6]	1	0.19	0.14	0.50	0.42	0.17	_	_
К1, настоящая работа	1	0.05	-0.01	0.24	0.22	0.014	-0.03	-0.03
s, 3D-эксперимент	1 [26]	0.11 [26]	0.08 [26]	0.26 [26]	—	—	0.04 [17]	0.03 [17]
g, 2D-теория [6]	1	0.17	0.12	0.45	0.37	0.15	_	_

Примечание. Gr. — графен, Sl. — силицен, Gm. — германен; значения длин связи d, стоящие вне скобок, взяты из работы [6], значения в скобках. — из [10].

Таблица 4. Гексагональные 2D-соединения III—V: межатомные расстояния (d, Å); ковалентные энергии для σ - и π -связей, полярные энергии $(V_2$ и \bar{V}_2 , V_3 , eV), энергии металлизации, связи и когезии $(V_1, E_b$ и E_{coh} , eV); отношения центральных $K_0 = k_0(AB)/k_0$ (Gr) и нецентральных $K_1 = k_1(AB)/k_1$ (Gr) силовых констант, модулей сжатия b = B(AB)/B(C), b' = B'(AB)/B'(C), модулей сдвига $s = C_s(AB)/C_s$ (Gr), g = G(AB)/G(C) и Юнга y = Y(AB)/Y(C)

Соединение	BN	BP	BAs	AlN	AlP	AlAs	GaN	GaP	GaAs
d	1.45	1.87	1.93	(1.78)	2.28	2.34	(1.82)	2.23	2.29
V_2	11.82	7.10	6.67	7.84	4.78	4.54	7.50	5.00	4.74
$ar{V}_2$	3.93	1.31	1.09	5.30	2.70	2.46	5.17	2.5	2.33
V_3	2.28	1.37	1.29	1.52	0.92	0.88	1.45	0.9	0.92
V_1	3.15	2.57	2.63	3.15	2.57	2.63	3.23	2.67	2.72
$-E_b$	14.76	7.82	8.62	16.96	8.15	9.75	17.07	10.32	9.82
<i>E</i> _{coh} , на 2 атома, настоящая работа	21.52	13.20	10.39	25.36	9.55	11.05	24.77	11.54	10.33
<i>E</i> _{coh} , на 2 атома, 3D-эксперимент [24]	13.36	-	—	—	8.52	7.56	—	7.12	6.52
<i>E</i> _{coh} , на 2 атома, 2D-теория [6]	17.65	13.26	11.02	14.30	—	-	12.74	8.49	8.48
<i>K</i> ₀ , настоящая работа	0.80	0.37	0.36	0.40	0.24	0.22	0.38	0.25	0.23
b, 3D-эксперимент	0.90 [27]	0.39 [28]	—	0.47 [27]	—	0.18 [28]	—	0.20 [17]	0.17 [28]
b', 2D-теория [6]	0.93	0.62	0.58	2.94	—	-	5.58	0.40	0.32
y, 2D-теория [6]	0.80	0.40	0.36	0.35	_	-	0.33	0.18	0.14
<i>K</i> ₁ , настоящая работа	0.65	0.21	0.16	0.07	0.01	-0.00	0.05	0.01	-0.00
s, 3D-эксперимент	0.66 [27]	0.23 [28]	—	0.15 [29]	—	0.07 [28]	—	0.08 [28]	0.07 [28]
g, 2D-теория [6]	0.76	0.37	0.32	0.28	—	—	0.26	0.15	0.12

Примечание. Значения длин связи d, стоящие вне скобок, взяты из работы [6], значения в скобках — из [10].

Нумерация ГПС та же, что и на рис. 4.

Для центральной силовой константы $k_0 = (\partial^2 E_b / \partial d^2)_{d_0}$ из выражения (11) с учетом (12) получим

$$k_{0} = k_{0\sigma} + k_{0\pi},$$

$$k_{0\sigma} = \frac{4}{d^{2}} \alpha_{c} V_{2}$$

$$\times \left[1 - 2\alpha_{p}^{2} + 54 \frac{C}{\alpha_{c} V_{2}} - \frac{10}{3} \alpha_{c}^{2} \left(1 - 6\alpha_{c}^{2} \alpha_{p}^{2} - \frac{3}{5} \alpha_{p}^{2} \right) \frac{V_{1}^{2}}{V_{2}^{2}} \right],$$

$$k_{0\pi} = \frac{4}{d^{2} \sqrt{3}} \bar{\alpha}_{c} \bar{V}_{2} (1 - 2\bar{\alpha}_{p}^{2}).$$
(15)

Для сопоставления σ - и π -вкладов в энергию связи E_b и силовую константу центрального взаимодействия k_0 введем отношения $e = E_{b\pi}/E_{b\sigma}$ и $\kappa_0 = k_{0\pi}/k_{0\sigma}$. Результаты расчетов e и κ_0 для ГПС представлены на рис. 5. Максимальные значения e характерны для GaN, AlN и соединений цинка. В то же время именно эти соединения характеризуются малыми (причем отрицательными) значениями κ_0 . То же наблюдается для боридов V группы, SiC, GeC и GeSi: малым значениям соответствуют большие значения κ_0 и наоборот (можно считать, что e и κ_0 находятся в "противофазе"). В ряду графен-силицен-германен, однако, e и κ_0 изменяются "синфазно".

Как следует из выражений (14) и (15), для чисто ковалентного соединения ($\alpha_c = \bar{\alpha}_c = 1$, $\alpha_p = \bar{\alpha}_p = 0$) получим

$$e = \mu \left(1 + 9 \frac{C}{V_2} + \frac{10}{3} \frac{V_1^2}{V_2^2} \right)^{-1},$$

$$\kappa_0 = \mu \left(1 + \frac{54C}{V_2} - \frac{10}{3} \frac{V_1^2}{V_2^2} \right)^{-1}.$$
 (16)

В случае графена, пренебрегая в (16) последними слагаемыми в скобках (см. табл. 3), получаем $e \sim \mu$, $\kappa_0 \sim \mu/2$. Для преимущественно ионного соединения $(\alpha_c \ll 1, \alpha_p \rightarrow 1, \bar{\alpha}_c \ll 1, \bar{\alpha}_p \rightarrow 1)$ имеем

$$e \approx \mu \frac{\alpha_c}{\bar{\alpha}_c}, \quad \kappa_0 \approx -\frac{\bar{\alpha}_c \bar{V}_2}{54C\sqrt{3}}.$$
 (17)

Так как $\alpha_c/\bar{\alpha}_c = \sqrt{(1-\alpha_p^2)/(1-\bar{\alpha}_p^2)}$, из табл. 1 и 2 следует, что отношение $\alpha_c/\bar{\alpha}_c$ максимально для ZnS, ZnSe, GaN и AlN, что и проявляется на рис. 5. Из (16) следует, что $|\kappa_0| \ll 1$, а из (14) получаем, что $\kappa_0 < 0$ для соединений с полярностью $\bar{\alpha}_p > 1/\sqrt{2}$.

То, что для ряда ионных ГПС константа $\kappa_{0\pi} < 0$, требует пояснений. По нашему мнению, такой результат связан с неучетом металлизации π -связей, что следует из сравнения выражений для $\kappa_{0\pi}$ и $\kappa_{0\sigma}$ в (15). Это, однако, нельзя рассматривать как нефизический результат, так как структура характеризуется силовой константой k_0 , а не ее составляющими. Следует добавить, что благодаря малости вклада π -электронов в энергию связи графита, эти электроны называют несвязывающими [17].

Так как в МСО нецентральное взаимодействие не изменяет длины связи, то, исходя из (13), можно показать, что константа нецентрального взаимодействия $k_1 = d_0^{-2} (\partial^2 E_b / \partial \vartheta^2)_0$ есть

$$k_{1} = k_{1\sigma} + k_{1\pi},$$

$$k_{1\sigma} = \frac{4\lambda}{3d^{2}} \alpha_{c} V_{2} \left[1 - 2\alpha_{p}^{2} - \frac{2}{3} \alpha_{c}^{2} (6\alpha_{c}^{4} + 3\alpha_{p}^{2} - 1) \frac{V_{1}^{2}}{V_{2}^{2}} \right],$$

$$k_{1\pi} = 0.$$
(18)

В табл. 3 и 4 представлены результаты расчета отношений $K_{0,1} = k_{0,1}(AB)/k_{0,1}(Gr)$. Там же для соответствующих кубических 3D-соединений приведены экспериментальные значения отношений объемных модулей сжатия b = B(AB)/B(C), где C обозначает алмаз, $B = (C_{11} + 2C_{12})/3$ и B(C) = 442 GPa [23], и модулей сдвига $s = C_s(AB)/C_s(C)$, где $C_s = (C_{11} - C_{12})/2$ и $C_s = 478$ GPa [23]⁴ (C_{ij} — упругие постоянные второго порядка). Использованы также результаты расчетов [6] для модулей Юнга Y (в [6] модуль Юнга обозначен как C) и отношений Пуассона ν , по которым с помощью формул для изотропной среды [30]

$$B = \frac{Y}{3(1-2\nu)}, \quad G = \frac{Y}{2(1+\nu)}$$
(19)

вычислены отношения модулей сжатия b' = B'(AB)/B'(C) и сдвига g = G(AB)/G(C), где штрих у модуля сжатия означает его отношение к работе [6]. Приведены и относительные модули Юнга y = Y(AB)/Y(C).

⁴ Исключение составляют данные для нитрида алюминия: использованы значения экспериментального объемного модуля сжатия для гексагональной структуры [27] и теоретическое значение модуля сдвига для кубической структуры [30].

Сравнение полученных нами значений K_0 с экспериментальными значениями *b* для объемных соединений показывает вполне удовлетворительное соответствие, тогда как теоретические значения *b'* заметно превышают полученные нами. Тут следует указать на аномально высокие *b'* для нитридов галлия и алюминия, для которых в [6] получены отношения Пуассона v = 0.48 и 0.46. Интересно отметить, что наши значения K_0 близки к значениям *y*. Согласно (18), B = Y при v = 1/3, что приблизительно и наблюдается для целого ряда ГПС в [6].

Как показано в [17], модуль сдвига C_s однозначно определяется нецентральной силовой константой k_1 . Сопоставление K_1 с экспериментальным отношениями *s* достаточно хорошо согласуются для SiC, BN и BP. В остальных случаях K_1 значительно ниже *s*. Более того, для германена, арсенидов галлия и алюминия, а также соединений цинка наш расчет дает $k_1 < 0$, что свидетельствует об упругой неустойчивости таких соединений (расхождение вычисленных здесь и в [15] значений k_1 объясняется различием матричных элементов V_1 , о чем указывалось выше). Отметим, что неустойчивость ZnS и ZnSe отмечалась в [15,16]. Сравнение с результатами работы [6] показывает, что, за исключением BN, значения K_1 гораздо ниже *g*.

6. Заключение

Итак, мы установили, что полярности σ -связей α_p для FS и TS структур достаточно близки, что связано с малым различием ковалентных энергий V_2 для sp^2 - и sp^3 -орбиталей. В то же время полярности π -связей $\bar{\alpha}_p$ значительно превосходят соответствующие значения α_p , что объясняется большим различием матричных элементов V_2 и $V_{pp\pi}$. Наибольшие изменения полярностей α_p и $\bar{\alpha}_p$ при вариации межатомного расстояния, описываемые величинами δ_p и $\bar{\delta}_p$, проявляют соединения AIN, GaN (σ -связи) и BP, SiC (π -связи). Отношения $v_{p(c)} = \delta_{p(c)}/\bar{\delta}_{p(c)}$ максимальны для ZnS и ZnSe.

Максимальной реакцией эффективного атомного заряда Z_C^* на изменение межатомного расстояния, описываемой функцией ξ_C , обладают соединения Al. При этом вклады σ -связей значительно превосходят вклады π -связей. Результаты расчета функции ξ , описывающей реакцию поперечного заряда e_T^* на изменение длины связи AB, показывают, что наибольшие значения ξ имеют BN и BP. Сами величины Z_C^* и e_T^* для ГПС того же порядка, что и соответствующие характеристики для объемных соединений.

Исследование отношений вкладов π - и σ -взаимодействий в энергию связи и центральную силовую константу, определяемых величинами *е* и κ_0 , показывает, что для гетерополярных ГПС максимальным значениям *e* (GaN, AlN, ZnS, ZnSe) соответствуют минимальные и отрицательные значения κ_0 , тогда как малым значениям *e* (бориды V группы, SiC, GeC и GeSi) отвечают большие значения κ_0 . Сравнение полученных нами отношений

модулей сжатия K_0 и сдвига K_1 с соответствующими экспериментальными значениями показывает вполне удовлетворительное соответствие только для K_0 . Отсюда следует, что в рамках принятой здесь схемы расчета нецентральной силовой константы k_1 такие ГПС, как Gm, AlAs, GaAs, ZnS, ZnSe неустойчивы, a Sl, AlP, GaN, GaP находятся на границе устойчивости. В отсутствии данных эксперимента остается неясным, связан ли этот результат исключительно с принятой схемой расчета, хотя необходимо подчеркнуть, что вопрос о нецентральных силах является дискуссионным и для объемных соединений [22,31–34].

Добавим несколько замечаний о соединениях III-N. Как следует из проведенного анализа, *π*-связи AlN и GaN обладают близкой к 1 полярностью $\bar{\alpha}_p$, их σ -связи "острее" всех других реагируют на изменение межатомного расстояния (максимальные значения δ_p). Этим соединениям присущи максимальные значения эффективного поперечного заряда e_T^* , наибольший вклад *п*-взаимодействия в энергию связи (*e*) и наименьший вклад этого взаимодействия в центральную силовую константу (κ_0). Гексагональный нитрид бора характеризуется вторыми по величине (после графена) энергией когезии и упругостью (а также интегралом перекрытия) и максимально высоким откликом поперечного заряда на вариацию длины межатомной связи. В связи с этим следует отметить во многом аналогичные исследования для объемных соединений III-N [35-41].

Подводя итог, следует сказать, что МСО, являясь по сравеннию с формализмом функционала плотности методом полуэмпирическим, весьма удобен для решения поставленной нами здесь задачи анализа сравнительных вкладов σ - и π -связей. Подчеркнем также, что этот метод позволил выявить тенденции изменения многих физических характеристик в ряду тетраэдрических полупроводников [17–20].

Список литературы

- A.H. Castro Neto, F. Guinea, N.M.R. Peres, R.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2009).
- [2] A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou. Surf. Sci. Rep. 67. 1 (2012).
- [3] A.H. Castro Neto, K. Novoselov. Rep. Prog. Phys. 74, 082 501 (2011).
- [4] A.K. Geim, I.V. Grigorieva. Nature **499**, 419 (2013).
- [5] M. Xu, T. Liang, H. Cheng. Chem. Rev. 113, 3766 (2013).
- [6] H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci. Phys. Rev. B 80, 155453 (2009).
- [7] M. Topsakal, S. Ciraci. Phys. Rev. B 81, 024 107 (2010).
- [8] T. Suzuki, Y. Yokomizo. Physica E 40, 2810 (2010).
- [9] S. Wang. J. Phys. Soc. Japan 79, 064602 (2010).
- [10] G. Mukhopadhyay, H. Behera. World J. Eng. 10, 39 (2013).
- [11] H.L. Zhuang, A.K. Singh, R.G. Hennig. Phys. Rev. B 87, 165 415 (2013).

- [12] A.K. Singh, H.L. Zhuang, R.G. Henning. Phys. Rev. B 89, 245 431 (2014).
- [13] C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, L.-M. Liu, J. Mater. Chem. A 2, 17 971 (2014).
- [14] V. Zoliomi, J.R. Wallbank, V.I. Fal'ko. 2D Materials 1, 011 005 (2014).
- [15] С.Ю. Давыдов. ФТП 47, 1065 (2013).
- [16] С.Ю. Давыдов, О.В. Посредник. ФТТ 57, 819 (2015).
- [17] У. Харрисон. Электронная структура и свойства твердых тел. Т. 1. Мир, М. (1983). 382 с.
- [18] W.A. Harrison. Phys. Rev. B 27, 3592 (1983).
- [19] W.A. Harrison. Phys. Rev. B 31, 2121 (1985).
- [20] С.Ю. Давыдов, О.В. Посредник. Метод связывающих орбиталей в теории полупроводников. Изд-во СПбГЭТУ "ЛЭТИ", СПб. (2007). Электронный адрес: twirpx.com/file/1014608/
- [21] С.Ю. Давыдов. ФТТ 52, 172 (2010).
- [22] M. Kitamura, W.A. Harrison. Phys. Rev. B 44, 7941 (1991).
- [23] W.A. Harrison, E.A. Kraut. Phys. Rev. B 37, 8244 (1988).
- [24] F. Bechstedt, W.A. Harrison. Phys. Rev. B 38, 5041 (1989).
- [25] С.Ю. Давыдов. ФТТ 54, 821 (2012).
- [26] С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. Наука, М. (1985). 254 с.
- [27] M. Levinshtein, S. Rumyantsev, M. Shur. Handbook Series on Semiconductor Parameters. V. 1, 2. World Scientific, London (1999). 88 p.
- [28] T. Azuhata, T. Sota, K. Suzuki. J. Phys.: Condens. Matter 8, 3111 (1996).
- [29] A.F. Wright. J. Appl. Phys. 82, 2833 (1997).
- [30] Л.Д. Ландау, Е.М. Лифшиц. Теория упругости. Наука, М. (1987). 248 с.
- [31] W.A. Harrison. Phys. Rev. B 41, 6008 (1990).
- [32] R. Osgood III, W.A. Harrison. Phys. Rev. B 43, 14255 (1991).
- [33] M. Kitamura, R. Muramatsu, W.A. Harrison. Phys. Rev. B 46, 1351 (1992).
- [34] S.-G. Shen. J. Phys.: Condens. Matter 6, 8733 (1994).
- [35] S.Q. Wang, H.Q. Ye. J. Phys.: Condens. Matter 17, 4475 (2005).
- [35] G. Bester, X. Wu, D. Vanderbilt, A. Zunger. Phys. Rev. Lett. 96, 187602 (2006).
- [37] G. Bester, A. Zunger, X. Wu, D. Vanderbilt. Phys. Rev. B 74, 081 305(R) (2006).
- [38] M.A. Migliorato, D. Powell, A.G. Cullis, T. Hammerschmidt, G.P. Srivastava. Phys. Rev. B 74, 245 332 (2006).
- [39] С.Ю. Давыдов. ФТТ 51, 1161 (2009).
- [40] L.C. Lew Yan Voon, M. Willatzen. J. Appl. Phys. 109, 031 101 (2011).
- [41] M.A. Caro, S. Schultz, E.P. O'Reilly. arXiv: 1502.05489.