05,04

Особенности магнитных свойств наночастиц ферригидрита бактериального происхождения: смещение петли гистерезиса

© Д.А. Балаев^{1,2}, А.А. Красиков², А.А. Дубровский^{1,3}, С.В. Семенов^{1,2}, С.И. Попков^{1,2}, С.В. Столяр^{1,2}, Р.С. Исхаков¹, В.П. Ладыгина⁴, Р.Н. Ярославцев²

 ¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
 ² Сибирский федеральный университет, Красноярск, Россия
 ³ Международная лаборатория сильных магнитных полей и низких температур, Вроцлав, Польша
 ⁴ Международный научный центр исследований экстремальных состояний организма при президиуме КНЦ СО РАН, Красноярск, Россия

E-mail: dabalaev@iph.krasn.ru

(Поступила в Редакцию 9 июля 2015 г.)

Представлены результаты экспериментального исследования магнитного гистерезиса систем суперпарамагнитных наночастиц ферригидрита бактериального происхождения. Гистерезисные свойства определяются наличием нескомпенсированного магнитного момента в антиферромагнитных наноразмерных частицах. При условиях охлаждения во внешнем поле наблюдается смещение петли гистерезиса относительно начала координат. Указанные особенности являются следствием как обменной связи нескомпенсированного магнитного момента и антиферромагнитного "ядра" частиц, а также вызваны процессами, аналогичными поведению частных петель гистерезиса, обусловленными большими величинами значений локальных полей анизотропии наночастиц ферригидрита.

Работа выполнена в рамках государственного задания Министерства образования и науки РФ на 2014-2016 гг.

1. Введение

Интерес, проявляемый к антиферромагнитным (AF) наночастицам, вызван их необычными магнитными свойствами, которые кардинально отличаются от свойств аналогичных объемных АF-материалов [1]. Основное отличие — это появление у наноразмерной частицы нескомпенсированного магнитного момента μ_{unc} , вызванное наличием дефектов и поверхностными эффектами, например, нечетным количеством AF-подрешеток. Как оказалось, величина μ_{unc} для частиц порядка нескольких nm может составлять сотни магнетон Бора, что уже сравнимо с магнитным моментом ферримагнитных частиц такого же размера [1,2]. Для практических приложений магнитоактивных наночастиц, таких как, например, адресная доставка лекарственных средств в организме, АF-наночастицы могут успешно "конкурировать" с ферримагнитными "аналогами". Наличие нескомпенсированного магнитного момента приводит к суперпарамагнитному (SP) поведению системы АF-наночастиц с характерной температурой блокировки T_B, гистерезисными петлями намагниченности при $T < T_B$. Также в этих системах наблюдается смещение петли магнитного гистерезиса при условиях охлаждения во внешнем поле.

Смещение петли магнитного гистерезиса характерно для объектов, содержащих интерфейсы ферромагнитной (FM) и AF-фаз, и вызвано обменной связью между ними. И хотя обменное смещение было обнаружено в 50-е годы прошлого века [3] и исследовалось как на пленочных слоистых структурах, так и в объемных гетерофазных материалах [4], в последнее время, ввиду возможных практических применений, в этом ключе активно изучаются магнитные наночастицы [5]. В них, даже при химической однородности частиц, поверхностные атомы могут обладать отличными от "ядра" частицы магнитными характеристиками, и здесь также возможна реализация механизма обменной связи между "ядром" и поверхностью [6–8].

Далеко не все особенности поведения магнитных свойств АF-наночастиц поняты к настоящему времени [1,9]. В данной работе приводятся результаты исследования гистерезисного поведения магнитного момента наночастиц ферригидрита, которые, обладая АF-порядком [10,11], также демонстрируют эффект смещения петли магнитного гистерезиса [9,10,12,13]. Номинальная химическая формула этого гидрооксида железа — 5Fe₂O₃ · 9H₂O, содержание "воды" может меняться. Ферригидрит может быть получен как путем химического синтеза, так и извлечен из продуктов жизнедеятельности организмов. Наиболее известен коммерческий продукт — ферритин, извлекаемый из селезенки лошади (horse spleen ferritin), который представляет собой частицу ферригидрита внутри белковой оболочки с внутренним диаметром 5-8 nm. В цикле работ [14-18] было показано, что наночастицы ферригидрита, размерами несколько nm при общем количестве атомов железа $N_{\rm Fe} \sim 2000-2500$ могут быть также получены и путем извлечения из продуктов жизнедеятельности бактерий, культивированных в определенных условиях. В работах [19,20] было показано, что средний размер (или количество $N_{\rm Fe}$) и соответствующие температуры блокировки ансамбля наночастиц такого ферригидрита бактериального происхождения могут быть изменены в сторону увеличения путем низкотемпературной термообработки. Это позволило в данной работе сопоставить величины, характеризующие смещение петли магнитного гистерезиса для частиц ферригидрита, различающих-ся средним размером.

2. Эксперимент

Образцы. Штамм Klebsiella охутоса был выделен из сапропеля озера Боровое в Красноярском крае. Микроорганизмы выращивались в анаэробных условиях. Путем многократной ультразвуковой обработки бактериальных осадков, их промывания и центрифугирования получался устойчивый золь наночастиц в водном растворе, который в дальнейшем высушивался. Описанный способ [14,15,18] позволяет воспроизводимо получать наночастицы ферригидрита, что надежно идентифицируется из анализа мессбауэровских спектров.

Исследовались как исходные порошки магнитных наночастиц ферригидрита различных партий приготовления, так и образцы, прошедшие низкотемпературную обработку в воздушной атмосфере при 150°C в течение различного времени (до 240 h). Как было показано [20], проводимый отжиг не приводит к образованию других фаз оксида железа, но вследствие укрупнения частиц увеличивается их температура блокировки. В данной работе образцы ферригидрита (FHYD) обозначены в соответствии с этой величиной — FHYD-X, где X значение температуры, при которой температурная зависимость магнитного момента M(T) во внешнем поле H = 1 kOe (в условиях охлаждения в нулевом внешнем поле) демонстрирует максимум.

Магнитные измерения. Магнитные измерения проводились на вибрационном магнетометре [21]. Исследуемый порошок фиксировался в измерительной капсуле в парафине. Данные корректировались на диамагнитный сигнал от капсулы с парафином и приведены ниже в единицах ети на единицу массы исследуемого порошка. Использовались режимы охлаждения без поля (ZFC zero field cooling) и в поле (FC — field cooling). Сдвиг петли магнитного гистерезиса исследован после охлаждения в условиях FC при $H = 30 \, \mathrm{kOe}$ до температуры 4.2 К, после чего зависимость M(H) измерялась при циклировании внешнего поля в диапазоне ±30 kOe. Охлаждение в поле проводилось от температуры 120 К, что заведомо превышает температуру максимума зависимости M(T) и температуру необратимого поведения зависимостей M(T) в условиях ZFC и FC. В условиях ZFC петли гистерезиса измерялись до различных максимальных значений приложенного поля H_{max} .

3. Результаты и обсуждение

На рис. 1, а приведены гистерезисные зависимости M(H) образца FHYD26 в условиях ZFC ($H_{\text{max}} =$ = 30 kOe) и FC. Сдвиг петли гистерезиса в условиях FC как по горизонтальной оси (H), так и по вертикальной оси (M) отчетливо виден из этих данных. Рис. 1, b иллюстрирует указанное поведение в увеличенном масштабе, на этом рисунке также приведен участок петли гистерезиса при значении $H_{\text{max}} = 60 \,\text{kOe}$. Для условий FC обозначим величины "коэрцитивной силы" H_{CL}(FC) и $H_{\rm CR}({\rm FC})$ как значения поля, при которых соответственно спадающая и возрастающая ветви петли гистерезиса пересекают ось абсцисс — Н. Эти обозначения, так же как и значения коэрцитивной силы Н_С при значениях $H_{\rm max} = 30 \, {\rm kOe}$ и 60 kOe, указаны на рис. 1, *b*. Видно, что значение $H_{\rm CL}({\rm FC})$ превышает величину H_C как при $H_{\text{max}} = 30 \text{ kOe}$, так и при $H_{\text{max}} = 60 \text{ kOe}$, а сдвиг возрастающей части петли гистерезиса в условиях FC значительно меньше (значение H_{CR}(FC) достаточно близко к величине $H_C(H_{\text{max}} = 30 \text{ kOe})).$

Рис. 1. Петли гистерезиса образца FHYD26 в режимах FC $(H_{\rm FC} = 30 \, {\rm kOe})$ и ZFC (при значениях максимально приложенного поля $H_{\rm max} = 30$ и 60 kOe) при $T = 4.2 \, {\rm K}$. На (b) эти зависимости показаны в увеличенном масштабе в окрестности начала координат и даны примеры определения значений H_C , $H_{\rm CL}({\rm FC})$, $H_{\rm CR}({\rm FC})$.

Рис. 2. Детали петель гистерезиса при T = 4.2 К образца FHYD78 в режимах FC ($H_{FC} = 30$ kOe) и ZFC (при значениях поля $H_{max} = 30$ и 90 kOe) в окрестности начала координат.

Рис. 3. Зависимости величины смещения петли гистерезиса $H_{\rm SH}$ для режима FC ($H_{\rm FC} = 30$ kOe) и коэрцитивной силы H_C в условиях ZFC (при $H_{\rm max} = 60$ kOe, T = 4.2 K) от температур блокировки для исследованных образцов. Прямая линия — аппроксимация данных $H_{\rm SH}(T_B)$ линейной зависимостью.

Описанное поведение характерно и для образцов с большей температурой блокировки. Рис. 2 представляет данные для образца FHYD78 ($T_B \approx 78$ K); на этом рисунке в увеличенном масштабе зависимость M(H) в режиме FC при H = 30 kOe приведена вместе с петлями гистерезиса, полученными при значениях $H_{\text{max}} = 30$ kOe и 90 kOe.

Для количественной характеристики смещения петли магнитного гистерезиса используется величина, характеризующая, сдвиг зависимости M(H) по оси абсцисс относительно начала координат [4,5]. В обозначениях, введенных выше, она выражается следующим образом: $H_{\rm SH} = \{|H_{\rm CL}({\rm FC})| + |H_{\rm CR}({\rm FC})|\}/2$. Из анализа данных рис. 1, 2 можно получить, что значение $H_{\rm SH}$ составляет ≈ 3.0 kOe и 7.6 kOe для образцов FHYD26 и FHYD78 соответственно, т.е. сдвиг петли гистерезиса возрастает

с увеличением T_B , или с увеличением размера частиц. Такая тенденция имеет место для всех исследованных образцов, рис. 3 иллюстрирует зависимость $H_{SH}(T_B)$.

Возможны по крайней мере две причины такого поведения. Первая связана с механизмом обменной связи AF- и FM-фаз в частицах. Другой возможной причиной может быть то, что зависимости M(H) в режиме FC отражают поведение частных петель гистерезиса. Рассмотрим указанные механизмы подробнее.

Обменное смещение. Классический механизм обменной связи в структуре FM/AF подразумевает, что дополнительный источник однонаправленной магнитной анизотропии, приводящий к смещению петли магнитного гистерезиса, возникает при охлаждении структуры FM/AF во внешнем магнитном поле от температуры, превышающей температуру Нееля антиферромагнетика [4,5]. Применительно к магнитным наночастицам рассматривается взаимодействие между магнитными моментами поверхности и "ядра" частицы. Если "ядро" ферро- или ферримагнитное, поверхностные спины могут проявлять поведение типа спинового стекла [4-6]. Для АF-частиц нескомпенсированный магнитный момент, во многих случаях формируется поверхностными атомами, которым также присуще спин-стекольное поведение. Для таких систем обменное взаимодействие приводит к смещению петли магнитного гистерезиса при охлаждении во внешнем поле от температуры, превышающей температуру блокировки.

Величина поля обменного смещения $H_{\rm EB}$ для FM/AFструктур определяется соотношением между параметрами антиферромагнетика (обменной константой $A_{\rm AF}$, константой анизотропии $K_{\rm AF}$), и ферромагнетика (намагниченностью насыщения $M_{\rm FM}$ и толщиной FM-слоя $d_{\rm FM}$ [4,5])

$$H_{\rm EB} = 2(A_{\rm AF}K_{\rm AF})^{1/2}/M_{\rm FM}d_{\rm FM}.$$
 (1)

Для исследуемых образцов точно определяется температура блокировки, поэтому здесь получим зависимость $H_{\rm EB}$ от этой величины.

Ферригидрит упорядочен антиферромагнитно и обладает нескомпенсированным магнитным моментом, и в результате кривая намагничивания определяется суперпозицией двух вкладов: FM-вклад (гистерезис при $T < T_B$) с признаками стремления к насыщению в больших полях и линейный по полю вклад, связанный с магнитной восприимчивостью антиферромагнетика [1,7,12,18,19], см. также рис. 1, *а*. Ясно, что FM-вклад связан с нескомпенсированным магнитных моментом μ_{unc} , причем исследования магнитных свойств наночастиц ферритина и ферригидрита [1,10,12,18,19,22] показали, что

$$\mu_{\rm unc} \sim N_{\rm Fe}^{1/2},\tag{2}$$

где $N_{\rm Fe}$ — количество атомов железа в частице. Поскольку $M_{\rm FM} = \mu_{\rm unc}/V$, где V — объем частицы, и $V \sim N_{\rm Fe}$, получаем $M_{\rm FM} \sim N_{\rm Fe}^{-1/2} \sim V^{-1/2}$.

Что касается возможного варьирования величины $d_{\rm FM}$ в (1) для исследуемых образцов, то можно считать,

что $d_{\rm FM} \approx$ const. Действительно, согласно классическому рассмотрению Нееля, если для АF-частицы выполняется соотношение (2), то причиной FM-вклада являются дефекты AF-упорядочения на поверхности и в объеме частицы. Для исследуемых образцов со значением $T_B \sim 20$ К количество $N_{\rm Fe}$ составляет $\sim 2.5-3 \cdot 10^3$ [17,18], следовательно, количество FM-упорядоченных атомов ~ 50 , что соответствует $\sim 2\%$ от $N_{\rm Fe}$ и $\sim 4\%$ от количества поверхностных атомов (для кубической формы). При увеличении $N_{\rm Fe}$ доля FM-упорядоченных атомов будет уменышаться, и мало вероятно, что при этом толщина FM-слоя кардинально изменится.

Объем частиц связан с температурой блокировки *T_B* на основании соотношения Нееля–Брауна (Néel–Brown) [1]

$$T_B \approx K_{\rm AF} V / 25k. \tag{3}$$

В этом выражении k — константа Больцмана, множитель ≈ 25 в знаменателе соответствует логарифму отношения характерных времен статических магнитных измерений и SP релаксации частицы. При выполнении условия (2), и, следовательно, соотношения $M_{\rm FM} \sim V^{-1/2}$, из выражений (1) и (3) легко получить, что $H_{\rm EB} \sim T_B^{1/2}$.

Для полученных данных, представленных на рис. 3, зависимость $H_{SH}(T_B)$ наилучшим образом описывается линейной зависимостью $H_{SH} \sim T_B^a$ (при $a \approx 0.8-1.0$), т. е., несмотря на некоторый разброс экспериментальных точек для образцов различных партий приготовления, можно утверждать, что сдвиг петли гистерезиса с ростом T_B увеличивается быстрее, чем можно ожидать для механизма обменного смещения. Последнее может свидетельствовать о дополнительном вкладе в наблюдаемый эффект, который, скорее всего, вызван так называемым "эффектом частной петли гистерезиса" (minor loop effect) [23].

Эффект частной петли гистерезиса. Если величина поля, в котором проводятся измерения в режиме FC меньше величины поля необратимого поведения зависимости M(H), то условия FC являются некоторым аналогом условий ZFC, а наблюдаемый сдвиг петли гистерезиса в этом случае может отражать поведение частных петель. И действительно, петли магнитного гистерезиса наночастиц ферригидрита при низких температурах обычно характеризуются очень высокими значениями полей необратимости [9,19], и при значениях H_{max} порядка 60-90 kOe петли остаются открытыми [9,19], что имеет место и для исследованных в данной работе образцов. Как следствие, значение H_C зависит от величины Н_{max}, что видно из данных рис. 1, 2. Рис. 4 иллюстрирует зависимость H_C от H_{max} образца FHYD78 при T = 4.2 K.

В свою очередь, значения H_C при фиксированной величине H_{max} зависят от температуры блокировки образцов, т.е. от размера частиц. На рис. 3 совместно с данными $H_{\text{SH}}(T_B)$ приведены значения $H_C(_{\text{max}} = 60 \text{ kOe})$

Рис. 4. Зависимости коэрцитивной силы H_C в условиях ZFC при T = 4.2 K от величины максимально приложенного поля H_{max} для образца FHYD78. Горизонтальная штриховая прямая соответствует значению $H_{\text{CL}}(\text{FC})$ (при $H_{\text{FC}} = 30$ kOe) для этого образца.

для исследованных образцов. Видно, что зависимости $H_{SH}(T_B)$ и $H_C(T_B)$ коррелируют между собой. Следовательно, при увеличении T_B возрастает также и значение коэрцитивной силы предельной петли гистерезиса H_C^* . Тогда для образцов с большей температурой блокировки измерения в режиме FC проводятся при меньшем значении H_{FC}/H_C^* , и для них влияние "эффекта частной петли гистерезиса" будет проявляться сильнее. Таким образом, наблюдаемый сдвиг петли гистерезиса и достаточно сильная зависимость $H_{SH} \sim T_B$ могут быть связаны с поведением, аналогичным поведению частных петель гистерезиса.

Следует отметить, что нельзя проводить полную аналогию поведения частных петель гистерезиса ферромагнетика, которые определяются движением доменных стенок, с исследуемой системой. Для ансамбля AF-наночастиц гистерезисное поведение вызвано процессами перескока вектора магнитного момента частицы (μ_{unc}) через энергетические барьеры, вызванные магнитной анизотропией [9], хотя и условия FC можно считать некоторым аналогом приложения значительно большего по величине поля в условия ZFC.

Обратимся к соотношению наблюдаемой величины $H_{CL}(FC)$ и зависимости $H_C(H_{max})$ — рис. 4. Экспериментальная зависимость $H_C(H_{max})$ имеет вид S-образной кривой с признаками стремления к насыщению в больших полях. Видно, что величина $H_{CL}(FC)$ при $H_{FC} = 30$ kOe значительно превышает данные $H_C(H_{max})$ в области больших полей, хотя экстраполировать эту зависимость в область полей до нескольких сотен kOe для оценки значения H_C^* весьма затруднительно. Следовательно, соотносить наблюдаемое смещение петли гистерезиса в условиях FC только с эффектами, связанными с частными петлями гистерезиса, не следует. Видимо, оба рассмотренных механизма дают вклад в наблюдаемое в эксперименте смещение петли гистерезиса.

4. Заключение

Наночастицы ферригидрита, проявляющие суперпарамагнитное поведение, демонстрируют эффект смещения петли магнитного гистерезиса при охлаждении во внешнем поле от температуры, превышающем температуру блокировки. Величина, характеризующая смещение петли гистерезиса относительно начала координат ($H_{\rm SH}$), возрастает при увеличении температуры блокировки частиц, причем, при одинаковых значениях $H_{\rm FC} = 30$ kOe, зависимость $H_{\rm SH}(T_B)$ — практически линейная функция.

Анализ полученных данных показал, что наблюдаемое смещение петли гистерезиса может быть связано с двумя механизмами: (1) процессами, аналогичным поведению частных петель гистерезиса и (2) обменной связью между ферромагнитной фазой (нескомпенсированным магнитным моментом, обусловливающим суперпарамагнитное поведение) и антиферромагнитным "ядром" частиц. По-видимому, оба механизма сосуществуют, и для выявления их вкладов необходимы дальнейшие исследования.

Список литературы

- S. Mørup, D.E. Madsen, C. Fradsen, C.R.H. Bahl, M.F. Hansen. J. Phys.: Condens. Matter. 19, 213 202 (2007).
- [2] Ю.Л. Райхер, В.И. Степанов. ЖЭТФ 134, 514 (2008).
- [3] W.P. Meiklejohn, C.P. Bean. Phys. Rev. 102, 1413 (1956).
- [4] J. Nogués, I.K. Schuller. JMMM 192, 203 (1999).
- [5] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S Suriñach, J.S. Muñoz, M.D. Baró. Phys. Rep. 422, 65 (2005).
- [6] R.H. Kodama, A.E. Berkowitz. Phys. Rev. B 59, 6321 (1999).
- [7] S.A. Makhlouf, H. Al-Attar, R.H. Kodama. Solid State Commun. 145, 1 (2008).
- [8] A. Punnoose, M.S. Seehra. Appl. Phys. 91, 10, 7766 (2002).
- [9] N.J.O. Silva, V.S. Amaral, A. Urtizberea, R. Bustamante, A. Millan, F. Palacio, E. Kampert, U. Zeitler, S. de Brion, O. Iglesias, A. Labarta. Phys. Rev. B 84, 104427 (2011).
- [10] S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz. J. Appl. Phys. 81, 8, 5561 (1997).
- [11] M.S. Seehra, V.S. Babu, A. Manivannan, J.W. Lynn. Phys. Rev. B 61, 3513 (2000).
- [12] A. Punnoose, T. Phanthavady, M.S. Seehra, N. Shah, G.P. Huffman. Phys. Rev. B 69, 054425 (2004).
- [13] T.S. Berquó, J.J. Erbs, A. Lindquist, R.L. Penn, S.K. Banerjee.
 J. Phys.: Condens. Matter 21, 176 005 (2009).
- [14] С.В. Столяр, О.А. Баюков, Ю.Л. Гуревич, В.П. Ладыгина, Р.С. Исхаков, П.П. Пустошилов. Неорган. материалы 42, 763 (2006).
- [15] С.В. Столяр, О.А. Баюков, Ю.Л. Гуревич, Е.А. Денисова, Р.С. Исхаков, В.П. Ладыгина, А.П. Пузырь, П.П. Пустошилов, М.А. Бихетина. Неорган. материалы 41, 1 (2007).
- [16] Ю.Л. Райхер, В.И. Степанов, С.В. Столяр, В.П. Ладыгина, Д.А. Балаев, Л.А. Ищенко, М. Балашою. ФТТ 52, 277 (2010).
- [17] M. Balasoiu, S.V. Stolyar, R.S. Iskhakov, L.A. Ischenko, Y.L. Raikher, A.I. Kuklin, O.L. Orelovich, Yu.S. Kovalev, T.S. Kurkin. Rom. J. Phys. 55, 7–8, 782 (2010).

- [18] Д.А. Балаев, А.А. Дубровский, А.А. Красиков, С.В. Столяр, Р.С. Исхаков, В.П. Ладыгина, Е.Д. Хилажева. Письма ЖЭТФ 98, 3, 160 (2013).
- [19] Д.А. Балаев, А.А. Красиков, А.А. Дубровский, С.В. Семенов, О.А. Баюков, С.В. Столяр, Р.С. Исхаков, В.П. Ладыгина, Л.А. Ищенко. ЖЭТФ 146, 546 (2014).
- [20] Д.А. Балаев, А.А. Красиков, А.А. Дубровский, О.А. Баюков, С.В. Столяр, Р.С. Исхаков, В.П. Ладыгина, Р.Н. Ярославцев. Письма ЖТФ 41, 14, 88 (2015).
- [21] А.Д. Балаев, Ю.В. Бояршинов, М.М. Карпенко, Б.П. Хрусталев. ПТЭ 3, 167 (1985).
- [22] J.G.E. Harris, J.E. Grimaldi, D.D. Awschalom, A. Chilero, D. Loss. Phys. Rev. B 60, 3513 (1999).
- [23] S. Giri, M. Patra, S. Majumdar. J. Phys.: Condens. Matter 23, 073 201 (2011).