06;07

Гетеропереходная фотовольтаическая ячейка на основе смеси сополимера силана с производным фуллерена С₇₀

© С.В. Костромин¹, В.В. Малов², А.Р. Тамеев², С.В. Бронников¹, L. Sacarescu³

¹ Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия ² Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия ³ "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Iaşi, Romania E-mail: k-serg-v.mail.ru

Поступило в Редакцию 29 июня 2015 г.

Изготовлены гетеропереходные фотовольтаические ячейки с использованием в качестве фотоактивного слоя смеси силанового сополимера с производным фуллерена PC₇₀BM и измерены их рабочие характеристики. На основании данных, полученных методом циклической вольтамперометрии, построена диаграмма энергетических уровней компонентов ячейки. Анализ диаграммы и фотоэлектрических характеристик фотовольтаической ячейки позволил найти пути увеличения ее эффективности.

В настоящее время актуальной проблемой является получение экологически чистой энергии из возобновляемых источников. Решением проблемы является, в частности, создание фотопреобразователей световой энергии в электрическую. Неорганические солнечные батареи на основе кремния уже получили широкое распространение, а их КПД в лучших образцах из кристаллического кремния составляет более 20%. Однако они имеют ряд недостатков: высокая стоимость, большой вес, значительные энергозатраты и загрязнение окружающей среды при производстве и очистке кремния. По этой причине большой интерес вызывают новые фотоактивные материалы и структуры, в частности гетеропереходные полимерные солнечные батареи (ГПСБ) [1]. Типичный фотоактивный слой ячейки ГПСБ представляет собой тонкую

49

пленку, содержащую полимер (донор электрона) и фуллерен или его производные (акцептор электрона). Достоинствами ГПСБ являются простота получения, низкая стоимость, малый вес и гибкость.

Наиболее подробно исследованы органические ГПСБ, в которых парой донор-акцептор является поли-3-гексилтиофен (РЗНТ) и [6,6]-фенил-С₆₁-метиловый эфир масляной кислоты (РС₆₀ВМ) соответственно [2]. Эффективность преобразования солнечной энергии в такой системе не превышает 5% [3]. В многослойных органических ГПСБ КПД устройств достигают 9.6% [4], а в органонеорганических ГПСБ на основе тетраметиламмония тригалогенида свинца со структурой перовскита — в диапазоне от 12 до 20% [5]. Для увеличения эффективности органических ГПСБ ведутся активные работы по поиску новых донорных и акцепторных фотоактивных материалов.

Цель данной работы заключалась в изготовлении ячейки ГПСБ на основе нового силанового сополимера и производного фуллерена C_{70} и определении ее рабочих характеристик. Химическое строение компонентов рабочего слоя ячейки ГПСБ показано на рис. 1, *a*, *b*. В качестве донора использован сополимер метилсилана с дифенилсиланом (PSHDF) [6], а в качестве акцептора — производное фуллерена C_{70} : [6,6]-фенил- C_{70} -метиловый эфир масляной кислоты (PC₇₀BM), SES Research Co. Ltd. Схема ячейки ГПСБ и химическое строение компонентов активного слоя показаны на рис. 1, *c*.

Как видно из рис. 1, *c*, фотовольтаическая ячейка состоит из нескольких слоев: glass — стеклянная подложка; ITO — смешанный оксид индия—олова — фотоанод ячейки; PEDOT:PSS — комплекс поли-*3*,*4*-этилендиокситиофена с полистиролсульфонатом — буферный слой, который обеспечивает транспорт дырок, препятствуя электронам, к фотоаноду; PSHDF:PC₇₀BM — смесь PSHDF и PC₇₀BM; LiF/Al — фотокатод ячейки. Смесь PSHDF и PC₇₀BM растворяли в хлороформе и путем центрифугирования подложки получали на ней тонкие пленки толщиной от 300 до 500 nm.

Измерение вольт-амперной характеристики (ВАХ) — зависимости плотности тока J от напряжения V — фотовольтаических ячеек проводили в атмосфере аргона с использованием источника-измерителя Keithley 2400 (Keithley Instruments, Inc.) и имитатора солнечного света Oriel 96000 (Newport Corp.) при интенсивности излучения $P_{in} = 100 \text{ mW/cm}^2$ (стандарт AM 1.5G). На рис. 2 показана ВАХ ячейки, состоящей из смеси PSHDF с PC₇₀BM в массовом соотношении 1:1,

51

Рис. 1. Химическое строение компонентов рабочего слоя PSHDF (m = 7, n = 1) (a) и PC₇₀BM (b), и схематическое изображение фотовольтаической ячейки (c).

без освещения и при освещении. Из зависимости плотности светового тока от напряжения (кривая 2) определили следующие характеристики ячейки: ток короткого замыкания $J_{sc} = 1.32 \cdot 10^{-2} \text{ mA/cm}^2$, напряжение разомкнутой цепи $V_{oc} = 0.643 \text{ V}$ и коэффициент заполнения FF = 0.272. В разных образцах значения тока короткого замыкания J_{sc}

Рис. 2. Зависимость плотности темнового (1) и светового (2) токов от напряжения для ячейки ГПСБ на основе смеси PSHDF:PC₇₀BM (1:1).

лежали в пределах от 0.01 до 0.02 mA/cm^2 , а напряжения разомкнутой цепи V_{oc} — между 0.60 и 0.76 V в зависимости от толщины рабочего слоя.

КПД преобразования мощности падающего света в электрическую в изготовленных ячейках определяли по стандартной формуле

$$\mu = \frac{J_{sc}V_{oc}FF \cdot 100\%}{P_{in}}$$

Значения КПД оказались относительно низкими (порядка 0.003%), что является следствием низких значений J_{sc} и *FF*. Однако величина напряжения открытой цепи V_{oc} превысила таковую для стандартных фотовольтаических гетеропереходных ячеек на основе РЗНТ и РС₆₀ВМ. Полагаем, что это является следствием увеличения поглощения света ГПСБ в видимой области (400–640 nm) в связи с образованием комплекса с переносом заряда (КПЗ), а также значительным повышением квантового выхода фотогенерации свободных носителей заряда. К примеру, как установлено в работе [7], время переноса электрона с

53

Рис. 3. Диаграмма энергетических уровней компонентов ГПСБ.

полифениленвинилена на фуллерен не превышает 50 fs при фотовозбуждении донорно-акцепторной системы.

Ранее для изучения взаимодействия между донором и допантом в качестве модельной системы ГПСБ мы исследовали смесь PSHDF с фуллереном C_{60} . Методами УФ- и люминесцентной спектроскопии было показано, что компоненты смеси формируют КПЗ [6]. Обнаруженный эффект может быть использован при изготовлении ГПСБ, где система полисилан—фуллерен будет выполнять роль фотоактивного слоя. В отличие от фуллерена C_{60} , PC₇₀BM обладает хорошей растворимостью в различных растворителях и значительно более широкой областью поглощения в видимой части спектра (400—640 nm), что положительно сказывается на эффективности преобразования солнечной энергии в фотовольтаических материалах.

На рис. З приведена диаграмма энергетических уровней: высших заполненных молекулярных орбиталей (НОМО) и низших незаполненных молекулярных орбиталей (LUMO) для компонентов ГПСБ. Значения энергий энергетических уровней для PSHDF и PC₇₀BM были определены методом циклической вольтамперометрии, а для остальных компонентов ячейки взяты из литературы [2,3]. Разность энергий LUMO_D – HOMO_D и LUMO_A – HOMO_A обозначена стрелками.

Для анализа эффективности работы ГПСБ используют следующие показатели диаграммы энергетических уровней [2]: $\Delta E_1 =$ = LUMO_D – LUMO_A определяет движущую силу диссоциации экситонов на полимере (донор) для преодоления энергии связи в экситоне и движение электрона к фотоаноду; $\Delta E_2 =$ LUMO_A – HOMO_D определяет величину V_{oc} и $\Delta E_3 =$ HOMO_D – HOMO_A определяет движущую силу диссоциации экситонов на PC₇₀BM (акцептор) и движение дырок к фотокатоду.

Как видно из диаграммы, ΔE_3 невелика (0.64 eV), что обеспечивает успешную диссоциацию экситонов на акцепторе и движение дырок к катоду, а ΔE_2 , напротив, велика (1.36 eV), что положительно сказывается на величине напряжения открытой цепи V_{oc} и соответственно КПД ячейки. В то же время ΔE_1 достаточно велика ($\sim 2 \text{ eV}$), что вызывает большие потери энергии при диссоциации экситонов (для сравнения: энергия связи дырки и электрона в экситоне порядка 0.3–0.5 eV [2]). Следовательно, для повышения эффективности диссоциации экситона, сформированного на полимере, необходимо понизить значение LUMO_D.

Полимер прямым образом не участвует в поглощении света в видимой области, но способствует образованию КПЗ от экситонов $PC_{70}BM$. Действительно, перенос заряда происходит, вероятно, вследствие поглощения света $PC_{70}BM$ и последующего переноса заряда к полимеру, поскольку уровни НОМО_A и LUMO_A выше, чем уровни НОМО_D и LUMO_D соответственно (рис. 3). Подобная роль широкой энергетической зоны полимера обсуждалась в работе [8].

Таким образом, создана фотовольтаическая ячейка ГПСБ на основе силанового сополимера PSHDF (донор) и производного фуллерена $PC_{70}BM$ (акцептор). Полученная ячейка демонстрирует достаточно высокое значение напряжения разомкнутой цепи V_{oc} , что делает ее перспективной для дальнейших исследований. Предполагается улучшить параметры ячейки путем оптимизации состава (соотношение донор/акцептор и/или добавление третьего компонента) и толщины рабочего слоя, а также изменением состава буферного слоя.

Авторы выражают благодарность М.Г. Тедорадзе и Д.А. Лыпенко за помощь в приготовлении пленочных образцов.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 15-13-00170) и Российского фонда фундаментальных исследований (проект № 13-03-00033).

Список литературы

- [1] Wright M., Uddin A. // Solar Energy Mater. Solar Cells. 2012. V. 107. P. 87-111.
- [2] He Y., Li Y. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 1970-1983.
- [3] Ma W., Yang C., Gong X. et al. // Adv. Funct. Mater. 2005. V. 15. P. 1617–1622.
- [4] Li W., Furlan A., Hendriks K.H. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 5529-5532.
- [5] Green M.A., Emery K., Hishikawa Y. et al. // Prog. Photovolt.: Res. Appl. 2014. V. 23. P. 1–9.
- [6] Sacarescu L., Kostromin S., Bronnikov S. // Mater. Chem. Phys. 2015.
 V. 149–150. P. 430–436.
- [7] Brabec C.J., Zerza G., Cerullo G. et al. // Chem. Phys. Lett. 2001. V. 340.
 P. 232-236.
- [8] Mizuno T., Akasaka Y., Tachibana H. // Jpn. J. Appl. Phys. 2012. V. 51. P. 10NE31.