15

Вращательные релаксационные процессы в тонких свободно подвешенных SmC-пленках

© А.В. Захаров, А.А. Вакуленко

Институт проблем машиноведения РАН, Санкт-Петербург, Россия E-mail: avak2vale@mail.ru

(Поступила в Редакцию 22 июня 2015 г.)

Предложено теоретическое описание процесса переориентации с-директора и тангенциальной компоненты вектора скорости в гибридно ориентированной SmC-пленке, натянутой между вращающейся внутренней и неподвижной внешней рамками. В рамках нелинейного обобщения классической теории Эриксена—Лесли на случай смектических фаз показано, что на величину и характер переориентации поля с-директора и формирование гидродинамических течений в таких SmC-пленках сильное влияние оказывают как кривизна, так и направление вращения внутренней рамки.

1. Введение

Тонкие свободно подвешенные смектические пленки являются очень привлекательными объектами для изучения, поскольку, с одной стороны, представляют собой образцы практически идеальных квазидвумерных анизотропных жидкостей [1-5], а с другой стороны, широко используются в жидкокристаллических (ЖК)-дисплеях и оптоэлектронике, а также при создании различных сенсоров, термоиндикаторов и детекторов давления, применяемых в медицинской диагностике и биологических лабораториях на чипах (Lab-on-a-chip) [6,7]. Основным элементом таких сенсоров и датчиков являются тонкие смектические С (SmC)-пленки, поверхность которых служит эффективным манипулятором как структурных, так динамических и оптических свойств этих приборов. На формирование течений в этих SmC-пленках, возникающих в процессе переориентации поля директора, оказывают сильное влияние внешние силы, такие как электрические поля или механические воздействия. Не менее важным фактором, который оказывает влияние на переориентацию поля директора является геометрия ЖК-пленки [1,2,5]. В свою очередь, инициируемые в SmC-пленках гидродинамические течения также искажают ориентацию поля директора, и тем самым влияют на оптические, диэлектрические и структурные свойства этих смектических пленок. Для того, чтобы создать механическим способом ориентационное искажение поля директора смектическую пленку натягивают между двумя жесткими рамками круговой формы радиусов R₁ (внутренняя рамка) и R_2 (внешняя рамка), причем радиус внутренней рамки R1 часто выбирают значительно меньше радиуса внешней рамки R₂. Затем внутреннюю круговую рамку заставляют вращаться с угловой скоростью ω , в то время как внешнюю рамку оставляют неподвижной (см. рис. 1, а). При этом были экспериментально исследованы различные условия сцепления ЖК-молекул как с вращающейся, так и неподвижной рамками, а также было изучено влияние скорости вращения внутренней круговой рамки на характер переориентации поля директора смектической пленки [1,5]. Также было изучено влияние скорости вращения и радиуса круговой рамки на величину и направление гидродинамических потоков, формирующихся в этих смектических пленках [1,5].

При этом было показано, что основным физическим механизмом, ответственным за возникновение гидродинамических потоков в свободно подвешенных смектических пленках, является взаимодействие градиентов поля **с**-директора и тангенциальной компоненты вектора скорости [1,5]. Следует отметить, что текстура такой SmC-пленки полностью описывается единичным вектором $\hat{\mathbf{c}}(t, \mathbf{r})$ (**с**-директором), представляющим собой проекцию директора $\hat{\mathbf{n}}(t, \mathbf{r})$ на плоскость *XOY*, в которой лежит смектическая пленка (см. рис. 1, *b*). При этом следует отметить, что локальная ориентация поля **с**-директора $\hat{\mathbf{c}}(t, \mathbf{r})$ задает направление азимутальной оптической оси и может быть зафиксирована с помощью поляризационного микроскопа [5]. Искажения

Рис. 1. (*a*) Схематическое представление свободно подвешенной SmC-пленки. (*b*) Система координат, используемая при вычислениях.

поля **с**-директора, вызванные гидродинамическими потоками, в свою очередь, создают дополнительные упругие напряжения. Поэтому всесторонние исследования динамических режимов релаксации поля **с**-директора и гидродинамических потоков, возникающих в свободно подвешенных смектических пленках, позволят улучшить как оптические, так и динамические характеристики сенсоров, термоиндикаторов и датчиков, применяемых, например, в медицинской диагностике и биологических лабораториях на чипах.

Целью нашего исследования является описание эволюции как поля с-директора $\hat{c}(t, \mathbf{r})$, так и поля скорости $\mathbf{v}(t, \mathbf{r})$, возникающих в свободно подвешенных SmC-пленках, натянутых между двумя рамками круговой формы микрометровых размеров и инициируемых вращением внутренней круговой рамки с угловой скоростью ω . Это будет осуществлено в рамках классической теории Эриксена-Лесли [8,9] с учетом балансов массы, импульсов и угловых моментов, действующих на единицу объема ЖК-материала [10].

Численные исследования характера переориентации поля с-директора и формирования гидродинамических потоков в свободно подвешенных SmC-пленках микрометровых размеров будут проведены для различных режимов вращения и размеров внутренней круговой рамки.

2. Основные уравнения

Рассмотрим SmC-пленку шириной d, натянутую между двумя круговыми рамками радиусов R₁ и R₂ $(R_1 \ll R_2)$ (см. рис. 1, *a*). В нашем случае радиус внутренней круговой рамки значительно меньше радиуса внешней рамки и директор $\hat{\mathbf{n}}(t, \mathbf{r})$ смектической пленки образует фиксированный угол θ с осью Z и нормалью $\hat{\mathbf{e}}_z$ к SmC-пленке (см. рис. 1, b). В цилиндрической системе координат выражение для поля директора n̂ может быть записано в виде $\hat{\mathbf{n}}(t, \mathbf{r}) = \hat{\mathbf{a}} \cos \theta + \hat{\mathbf{c}}(t, \mathbf{r}) \sin \theta$. Здесь $\hat{\mathbf{c}}(t, \mathbf{r}) - \mathbf{c}$ -директор, а единичный вектор â совпадает с нормалью к поверхности смектической пленки, т.е. $\hat{\mathbf{a}} \parallel \hat{\mathbf{e}}_z$. Эволюция **с**-директора $\hat{\mathbf{c}}(t, \mathbf{r}) = \cos \Phi(t, \mathbf{r}) \hat{\mathbf{e}}_r + \sin \Phi(t, \mathbf{r}) \hat{\mathbf{e}}_{\varphi}$ описывается азимутальным углом $\Phi(t, \mathbf{r})$ (см. рис. 1, *b*), где $\hat{\mathbf{e}}_{\varphi} = \hat{\mathbf{e}}_z imes \hat{\mathbf{e}}_r$, а $\hat{\mathbf{e}}_z$ и $\hat{\mathbf{e}}_r$ — единичные орты. Поскольку переориентация **с**-директора $\hat{\mathbf{c}}(t, \mathbf{r})$ и вектора скорости осуществляется в плоскости SmC-пленки, то выражение для вектора скорости может быть записано в виде $\mathbf{v} = v_r(t, \mathbf{r})\hat{\mathbf{e}}_r + v_{\varphi}(t, \mathbf{r})\hat{\mathbf{e}}_{\varphi}$. Таким образом формирующееся в смектической пленке гидродинамическое течение $\mathbf{v}(t, \mathbf{r})$, обусловленное вращением внутренней круговой рамки радиуса R₁, с последующей переориентацией с-директора $\hat{\mathbf{c}}(t, \mathbf{r})$, может быть описано в рамках обобщенной теории Эриксена-Лесли [8,9], которая учитывает баланс массы, импульсов и угловых моментов, действующих на единицу объема ЖК-образца. Принимая во внимание микроскопические размеры SmC-пленки,

Физика твердого тела, 2016, том 58, вып. 1

мы можем предположить, что плотность ЖК-системы постоянна и, таким образом, мы имеем дело с несжимаемой жидкостью. Это позволяет нам записать уравнения сохранения в виде [10]

$$\nabla \cdot \mathbf{v} = \mathbf{0},\tag{1}$$

$$\mathbf{T}_{\rm el}^i + \mathbf{T}_{\rm vis}^i = \mathbf{0},\tag{2}$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \tilde{p} + \nabla \cdot \sigma^{\text{vis}} + \nabla \hat{\mathbf{c}} \cdot \mathbf{g}^c, \qquad (3)$$

где \mathbf{T}_{el}^{i} и \mathbf{T}_{vis}^{i} — упругие и вязкие вклады в баланс моментов, действующих на единицу объема ЖК-фазы, относительно векторов $\hat{\mathbf{c}}$ (i = c) и $\hat{\mathbf{a}}$ (i = a) соответственно. Детали вычислений импульсов и моментов, действующих на единицу объема ЖК-фазы, приведены в Приложении (см. уравнения (П1)–(П4)), ρ плотность ЖК-фазы, σ^{vis} — тензор вязких напряжений (см. уравнения (П5)–(П9)), $\tilde{p} = p + W_{el}$, *p*-гидростатическое давление в ЖК-системе, W_{el} — плотность упругой энергии (см. уравнение (П10)), а \mathbf{g}^{c} — вспомогательный вектор (см. уравнение (П11)) соответственно.

При выполнении условия несжимаемости (см. уравнение (1)) поле скорости принимает вид $\mathbf{v} = v_{\varphi}(t, \mathbf{r})\hat{\mathbf{e}}_{\varphi}$ и удовлетворяет условию прилипания на неподвижной внешней рамке, а его тангенциальная компонента равна значению линейной скорости вращения на внутренней круговой рамке, т.е.

$$v_{\varphi}(t,r)_{r=R_2} = 0, \quad v_{\varphi}(t,r)_{r=R_1} = R_1 \omega.$$
 (4)

Граничные условия для азимутального угла имеют вид

$$\Phi(t,r)_{r=R_1} = \frac{\pi}{2}, \quad \Phi(t,r)_{r=R_2} = 0, \tag{5}$$

т. е. мы имеем дело с гибридно ориентированным ЖК-образцом.

Система безразмерных уравнений, описывающих эволюцию поля **с**-директора и скорости для случая вращающейся внутренней круговой рамки может быть записана в виде (см. Приложение, уравнения (П11) и (П15))

$$\Phi_{,\tau} = \Phi_{,rr}\mathcal{G} + \frac{K-1}{2}\Phi_{,r}^{2}\sin 2\Phi + \frac{\Phi_{,r}}{r}\mathcal{G} + \frac{K-1}{2}\frac{\sin 2\Phi}{r^{2}}$$
$$+ \frac{\cos 2\Phi}{2}\left[(1-\lambda)v_{\varphi,r} + (1+\lambda)\frac{v_{\varphi}}{r}\right] - \frac{\sin^{2}\Phi}{r}v_{\varphi},$$
$$\mathcal{A}v_{\varphi,\tau} = f_{1}v_{\varphi,rr} + f_{2}\frac{v_{\varphi,r}}{r} + f_{3}\frac{v_{\varphi}}{r^{2}} + f_{4}, \qquad (6)$$

где $K = \frac{K_2}{K_3}$, K_2 и K_3 — коэффициенты упругости, описывающие деформацию **с**-директора в SmC-пленке, $\mathscr{G} = \cos^2 \Phi + K \sin^2 \Phi$, $\Phi_{,\tau} = \frac{\partial \Phi}{\partial \tau}$, $\lambda = \frac{\lambda_2}{\lambda_5}$ — отношение коэффициентов вращательных вязкостей, $\bar{r} = r/d$ безразмерное значение пространственной координаты, $\tau = t/t_{\Phi}$ — безразмерное время, $t_{\Phi} = \frac{2\lambda_5 d^2}{K_3}$ — характерное время переориентации поля **с**-директора, $\mathscr{A} = \frac{\rho K_3}{2\lambda_5^2}$, а выражения для коэффициентов f_i (i = 1, ..., 4) даны в Приложении (см. уравнения (П16)–(П19)). Граничные условия для азимутального угла $\Phi(\tau, r)$ и скорости $v_{\varphi}(\tau, r)$ в безразмером виде могут быть записаны как

$$\Phi(\tau, r)_{r=\frac{R_1}{d}} = \frac{\pi}{2}, \quad \Phi(\tau, r)_{r=\frac{R_2}{d}} = 0,$$
$$\upsilon_{\varphi}(\tau, r)_{r=\frac{R_1}{d}} = V_0, \quad \upsilon_{\varphi}(\tau, r)_{r=\frac{R_2}{d}} = 0, \tag{7}$$

в то время как начальное условие имеет вид

$$\Phi(0,r) = \Phi_{\rm el}^{\rm eq}(r), \tag{8}$$

где $\Phi_{el}^{eq}(r)$ — решение системы (6), соответствующее равновесному распределению азимутального угла по всей ширине смектической пленки с учетом только упругих сил и при отсутствии течения $v_{\varphi}(r)_{\frac{R_1}{2} < r < \frac{R_2}{2}} = 0$.

В качестве смектической С-пленки может быть использована пленка, образованная ЖК-молекулами, представляющими собой коммерческую смесь Felix 16 [5], которая допускает существование (Clariant) SmC-фазы при комнатных температурах и плотности $ho \sim 10^3 \, {
m kg/m^3}$. Значение полярного угла heta было выбрано равным 20°, а величины упругих и вязких коэффициентов для этих ЖК-материалов были оценены как [11] $K_2 = 0.64 \,\mathrm{pN}$ и $K_3 = 1.58 \,\mathrm{pN}$, $\mu_0 = 0.07$, $\mu_3 = 0.0001, \ \mu_4 = 0.002, \ \lambda_2 = -0.0041$ и $\lambda_5 = 0.004$ соответственно. Здесь все значения коэффициентов вязкости даны в [Pa s]. Значение радиуса внешней круговой рамки равно $R_2 = 500 \, \mu m$, в то время как значения радиуса внутренней круговой рамки были выбраны равными $R_1 = 10$, 20 и 50 μ m. Принимая во внимание микроскопическую ширину смектической пленки $d = R_2 - R_1$, характерное время $t_{\Phi} = \frac{2\lambda_5 d^2}{K_3}$, используемое при нормировке, может быть оценено в 1200 s, при ширине смектической SmC-пленки в $d = 490 \,\mu \text{m}$, в 1150 s, при $d = 480 \,\mu \text{m}$ и в 1000 s, при $d = 450 \,\mu$ m. В наших расчетах величины коэффициентов $\mathcal{A} = \frac{\rho K_3}{2\lambda_5^2}$ и $\delta = \frac{\mu_3}{\lambda_5}$ могут быть оценены как: $\mathcal{A} \sim 4.6 \times 10^{-5}$ и $\delta \sim 0.025$. Угловая скорость вращения угловой рамки варьировалась от $\omega \sim 82 \, \mathrm{rad/s},$ при $R_1 = 10 \,\mu$ m, до $\omega \sim 18 \, \mathrm{rad/s}$ при $R_1 = 50 \,\mu$ m.

Учитывая, что $\mathcal{A} \ll 1$, левой частью второго уравнения (6) можно пренебречь. А тот факт, что $\delta \ll 1$, позволяет также пренебречь некоторыми вкладами в коэффициенты $f_i(i = 1, ..., 4)$ (см. уравнения (П16)–(П19)).

3. Эволюция поля с-директора и скорости в SmC-пленке

Процесс переориентации поля с-директора и формирование гидродинамического потока, инициируемого вращающейся с постоянной безразмерной скоростью $V_0 = 2000$ внутренней круговой рамкой различных радиусов, описывается системой нелинейных дифференциальных уравнений в частных производных (6) с

Рис. 2. Распределения азимутального угла $\Phi(\tau, r)$ по ширине свободно подвешенной смектической пленки, соответствующие различным моментам времени и различным значениям радиуса внутренней круговой рамки, вращающейся против часовой стрелки с безразмерной скоростью $V_0 = 2000.$ (*a*) $R_1 = 10\,\mu$ m, и (*I*) $\tau_1 = 10^{-6}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.02$, (*4*) $\tau_4 = 0.03$, (*5*) $\tau_5 = 0.0373$, (*6*) $\tau_6 = 0.04$ и (*7*) $\tau_7 = \tau_R = 0.094.$ (*b*) $R_1 = 20\,\mu$ m, и (*I*) $\tau_1 = 10^{-6}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.02$, (*4*) $\tau_4 = 0.03$, (*5*) $\tau_5 = 0.0373$, (*b*) $\tau_5 = 0.06$ и (*b*) $\tau_6 = \tau_R = 0.102.$ (*c*) $R_1 = 50\,\mu$ m и (*I*) $\tau_1 = 10^{-6}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.01$ и (*4*) $\tau_4 = \tau_R = 0.037$.

учетом граничных (7) и начального (8) условий, и результаты расчетов представлены на рис. 2-7. Эта система была решена комбинацией методов релаксации и прогонки [12]. В начальный момент времени au=0 было рассчитано распределение азимутального угла $\Phi_{\rm el}^{\rm eq}(r)$ по всей ширине SmC-пленки с помощью системы (6) при условии отсутствия гидродинамического течения $v_{\varphi}(r)_{\frac{R_1}{d} \leq r \leq \frac{R_2}{d}} = 0$, а условием сходимости итерационной процедуры была выбрана величина $\epsilon = |(\Phi_{m+1}(r) - \Phi_m(r))/\Phi_m(r)| \sim 10^{-4}$, где m — номер итерации. На рис. 2 представлены результаты расчета эволюции распределения поля с-директора в гибридно ориентированной свободно подвешенной SmC-пленке при постоянном значении безразмерной скорости V₀ = 2000 вращения внутренней круговой рамки. При этом радиус вращающейся против часовой стрелки (случай I) круговой рамки R₁ изменялся от 10 до 50 µm, а значения скорости вращения внутренней рамки изменялись от $\omega = 82 \text{ rad/s}$ до $\omega = 18 \text{ rad/s}$. Процесс переориентации азимутального угла $\Phi(\tau, r)$ на безразмерных временах до $\tau_2 = 0.005$ характеризуется тем, что сильнее переориентируется область $(0.6 \le r \le 1.0)$, примыкающая к внешней неподвижной круговой рамке, вне зависимости от величины радиуса вращающейся рамки. По мере роста т процесс переориентации начинает увлекать и области, примыкающие к внут-

Рис. 3. Распределения тангенциальной компоненты вектора скорости $v_{\phi}(\tau, r)$ по ширине свободно подвешенной смектической пленки, соответствующие различным временам и величинам радиуса внутренней круговой рамки, представленным на рис. 2.

ренней вращающейся рамке. При достижении времен $au = au_R = au_i \ (i = 7$ при $R_1 = 10 \, \mu$ m, i = 6 при $R_1 = 20 \, \mu$ m и i=4 при $R_1=50\,\mu{
m m})$ азимутальный угол $\Phi(au,r)$ достигает максимальных значений: $\Phi_7^{\text{max}} \sim 28.55$ rad, или ~ 4.5 оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 10\,\mu{
m m}, \,\, \Phi_6^{
m max} \sim 21.72\,{
m rad}, \,\,$ или $\, \sim 3.5\,\,$ оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 20\,\mu\mathrm{m}$ и $\Phi_4^{
m max} \sim 9.25 \,
m rad$, или ~ 1.5 оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 50\,\mu{
m m}$ соответственно. Здесь τ_R — величина времени, при котором система достигает равновесного состояния. На рис. 3 представлены результаты расчетов эволюции распределения тангенциальной компоненты вектора скорости $v_{\varphi}(\tau, r)$ для трех значений радиуса внутренней рамки R₁, вращающейся против часовой стрелки: (a) $10\,\mu\text{m}$, (b) $20\,\mu\text{m}$ и (c) $50\,\mu\text{m}$ соответственно. Для всех этих трех случаев безразмерная величина скорости вращения внутренней рамки равна 2000. На начальных временах эволюции до $\tau = \tau_3$ профили скорости $v_{\varphi}(\tau, r)$ представляют собой выпуклые положительно определенные функции с максимальными значениями, достигаемыми в середине пленки $(r \sim 0.5)$ (см. рис. 3). Так, $v_{\varpi}^{\max}(R_1 = 10 \, \mu \mathrm{m}) \sim 3670$ $(\sim 1500\,\mu\text{m/s}), \ v_{\varphi}^{\text{max}}(R_1 = 20\,\mu\text{m}) \sim 3030 \ (\sim 1260\,\mu\text{m/s})$ и $v_m^{\max}(R_1 = 50\,\mu\text{m}) \sim 3080~(\sim 1380\,\mu\text{m/s})$ соответственно. По мере роста τ и уменьшения радиуса R_1 происходит качественное изменение формы профиля скорости $v_{\varphi}(\tau, r)$. Из профиля, характеризующегося выпуклой функцией в сторону положительных значений $v_{\omega}(\tau = \tau_4 = \tau_R, r)$ при $R_1 = 50 \,\mu \text{m}$ (см. рис. 3, c), распределение скорости превращается в вогнутые профили с полностью отрицательными значениями по всей ширине смектической пленки, как при $R_1 = 10 \,\mu m$ (см. рис. 3, *a*),

так и при $R_1 = 20 \,\mu m$ (см. рис. 3, *b*). Основываясь на наших расчетах, мы можем сделать заключение, что кривизна внутренней вращающейся рамки оказывает принципиальное влияние на характер распределения тангенциальной компоненты вектора скорости. На рис. 4 представлены результаты расчета эволюции азимутального угла $\Phi(\tau, r)$ в трех точках, удаленных на расстояния r = 0.2 (1), 0.5 (2) и 0.9 (3), соответствующие безразмерным единицам, отсчитанным от центра системы координат, и трех значений радиуса внутренней рамки: (a) $R_1 = 10 \,\mu m$, (b) $20 \,\mu m$ и (c) $50\,\mu m$ соответственно, причем внутренняя рамка вращалась против часовой стрелки с безразмерной скоростью V₀ = 2000 (случай I). Было показано, что для всех трех значений радиуса рамки, на начальном этапе эволюции ($\tau < 0.005$), с-директор закручивается сильнее по часовой стрелке относительно вектора **a** в областях, примыкающих к неподвижной внешней рамке. На конечном этапе эволюции азимутального угла $\Phi(\tau, r)$ реализуется более сильное закручивание **с**-директора уже в областях, примыкающих к вращающейся внутренней рамке. При этом с увеличением радиуса R_1 закручивание убывает более чем в три раза, с $\Phi_{eq}^{\max} \sim 28.55 \, \mathrm{rad},$ или ~ 4.5 оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 10\,\mu$ m, до $\sim 9.25\,\mathrm{rad}$, или ~ 1.5 оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 50 \,\mu {
m m}$ (см. рис. 4). Это позволяет нам сделать заключение, что кривизна внутренней вращающейся рамки оказывает сильное влияние и на закручивание с-директора свободно подвешенной SmC-пленки относительно вектора â. На рис. 5 представлены результаты

Рис. 4. Релаксация азимутального угла $\Phi(\tau, r)$ в трех точках на расстояниях r = 0.2 (1), 0.5 (2) и 0.9 (3), соответствующих безразмерным единицам, отсчитанным от центра системы координат, и для трех значений радиуса внутренней рамки: (a) $R_1 = 10$, (b) 20 и (c) $50 \,\mu$ m соответственно. Рамка вращалась против часовой стрелки с безразмерной скоростью $V_0 = 2000$.

Puc. 5. То же, что и на рис. 2, но только внутренняя рамка вращается по часовой стрелке с безразмерной скоростью $V_0 = 2000.$ (*a*) $R_1 = 10\,\mu\text{m}$ и (*l*) $\tau_1 = 10^{-7}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.02$, (*4*) $\tau_4 = 0.03$, (*5*) $\tau_5 = 0.08$ и (*6*) $\tau_6 = \tau_R = 0.15$. (*b*) $R_1 = 20\,\mu\text{m}$ и (*l*) $\tau_1 = 10^{-7}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.02$, (*4*) $\tau_4 = 0.03$, (*5*) $\tau_5 = 0.06$ и (*6*) $\tau_6 = \tau_R = 0.11.$ (*c*) $R_1 = 50\,\mu\text{m}$ и (*l*) $\tau_1 = 10^{-7}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.02$, (*4*) $\tau_4 = 10^{-7}$, (*2*) $\tau_2 = 0.005$, (*3*) $\tau_3 = 0.01$ и (*4*) $\tau_4 = 0.06$ и $\tau_5 = \tau_R = 0.094$.

расчета эволюции поля с-директора в гибридно ориентированной SmC-пленке для случая вращения внутренней рамки по часовой стрелке (случай II) для трех значений радиуса R_1 : (a) 10 μ m, (b) 20 μ m, и (c) 50 μ m соответственно. Процесс переориентации азимутального угла $\Phi(\tau, r)$ на безразмерных временах до $\tau_2 = 0.005$ характеризуется тем, что сильнее переориентируются области (0.6 < r < 0.9), примыкающие к внешней неподвижной рамке, вне зависимости от величины радиуса вращающейся рамки (см. рис. 5). По мере роста т процесс переориентации начинает все сильнее увлекать области, примыкающие к вращающейся против часовой стрелки рамке. При достижении времен $\tau = \tau_R = \tau_i$ (*i* = 6, при $R_1 = 10 \,\mu$ m и 20 $\,\mu$ m, и *i* = 5, при $R_1 = 50\,\mu\text{m}$) азимутальный угол $\Phi(au, r)$ достигает максимальных значений $\Phi_6^{max} \sim 28.18 \, rad$ или ~ 4.5 оборота вокруг вектора â против часовой стрелки при $R_1 = 10\,\mu{
m m}, \; \Phi_6^{
m max} \sim 50.31 \, {
m rad}$ или ~ 8 оборотов вокруг вектора $\hat{\mathbf{a}}$ против часовой стрелки при $R_1 = 20\,\mu\text{m}$ и $\Phi_5^{\rm max} \sim 77.7 \, {
m rad}$ или ~ 12.3 оборота вокруг вектора $\hat{f a}$ против часовой стрелки при $R_1 = 50\,\mu\mathrm{m}$ соответственно. Эволюция распределения тангенциальной компоненты вектора скорости $v_{\varphi}(\tau, r)$ для трех значений радиуса внутренней рамки R1 и для случая II представлена на рис. 6. Для всех трех значений радиуса R_1 : (a)10 μ m, (b) $20\,\mu m$ и (c) $50\,\mu m$ безразмерная величина скорости вращения внутренней рамки была равна 2000. Прежде всего следует отметить, что во всех трех случаях, представленных на рис. 6, а, b и с, значения скорости $v_{\varphi}(\tau, r)$ отрицательны, т.е. свободно подвешенная смектическая пленка на всем временном интервале эволюции вращается по часовой стрелке. В случае малого радиуса $R_1 = 10 \,\mu m$, основная перестройка профиля $v_{\varphi}(\tau, r)$ происходит вблизи вращающейся внуренней рамки (см. рис. 6, a) (0 < r < 0.006), в то время как с увеличением радиуса R_1 до значений 20 и 50 μ m основное изменение профиля $v_{\varphi}(\tau, r)$ происходит в середине смектической пленки (0.1 < r < 0.8). Так, в случае $R_1 = 20\,\mu m$ максимальное значение скорости $v_{\varphi}^{\max} \sim 9000$ достигается на временах $au = au_4$ в точке $r\sim 0.45$ и потом скорость резко убывает в несколько раз до максимального значения $v_{\omega}^{\max} \sim 3000$ вблизи вращающейся рамки $(r \sim 0.06)$ на временах $\tau = \tau_R$. В случае $R_1 = 50\,\mu\mathrm{m}$ максимальное значение скорости $v_{m}^{\max} \sim 12\,000$ достигается близи середины смектической пленки $(r \sim 0.45)$ на временах $\tau = \tau_R$. Следует отметить, что величина тангенциальной компоненты вектора скорости на конечном этапе эволюции на порядок выше в случае $R_1 = 50 \, \mu m$ по сравнению с двумя другими значениями радиуса $R_1 = 10\,\mu\text{m}$ и $R_1 = 20\,\mu\text{m}$ соответственно. При этом безразмерная скорость вращения внутренней рамки равна 2000. На рис. 7 представлены результаты расчета эволюции азимутального угла $\Phi(\tau, r)$ в трех точках, удаленных на расстояния r = 0.2 (1), 0.5 (2) и 0.9 (3), соответствующие безразмерным единицам, отсчитанным от центра системы координат, и для трех значений радиуса внутренней рамки: (a) $R_1 = 10 \,\mu\text{m}$, (b) $20 \,\mu\text{m}$ и (c) $50 \,\mu\text{m}$ соответственно, причем внутренняя рамка вращалась по часовой стрелке с безразмерной скоростью 2000. В отличие от случая I, предстваленного на рис. 4, когда внутренняя рамка вращалась против часовой стрел-

Рис. 6. То же, что и на рис. 3, но только внутренняя рамка вращалась по часовой стрелке с безразмерной скоростью $V_0 = 2000$. Времена и значения радиуса внутренней рамки те же, что и на рис. 5.

Рис. 7. То же, что и на рис. 4, но только внутренняя рамка вращалась по часовой стрелке с безразмерной скоростью $V_0 = 2000$.

ки с такой же скоростью 2000, на заключительном этапе эволюции области SmC-пленки, прилегающие к вращающейся рамке, закручивались значительно сильнее, чем области, прилегающие к неподвижной рамке (см. рис. 7). Такое поведение ЖК-материала вполне понятно с физической точки зрения. Действительно, поскольку смектическая пленка характеризуется слабым коэффициентом упругости ЖК-материала, то в процесс движения должны сильнее увлекаться области, примыкающие к вращающейся рамке, в то время как области, примыкающие к неподвижной рамке должны раскручиваться медленнее. Это и показано на рис. 7, a, bи с. Таким образом наши исследования эволюции как азимутального угла Ф, или с-директора, так и тангенциальной компоненты вектора скорости v_{φ} показали, что кривизна вращающейся внутренней рамки сильно влияет на характер формирующихся равновесных профилей этих физических величин. Было показано, что максимальное закручивание с-директора вокруг вектора â или нормали к SmC-пленке для случая I примерно в два раза больше, чем для случая II (см. рис. 4 и 7). При этом безразмерная скорость вращения внутренней рамки в обоих случаях I и II была равна 2000. Наши вычисления также показали, что в случае II, когда внутренняя рамка вращалась с безразмерной скоростью 2000, переориентация директора в смектической пленке осуществлялась таким образом, что максимальное значение азимутального угла $\Phi_7^{\max}(0.12 < r < 0.68)$ было равно ~ 30 rad или ~ 4.5 оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 10\,\mu$ m. В то же время для случая I, когда внутренняя рамка вращалась с той же скоростью, но против часовой стрелки, максимальное значение азимутального угла $\Phi_5^{\max}(0.3 < r < 0.58)$ было равно $\sim 80 \, \mathrm{rad}$ или ~ 12.3 оборота вокруг вектора $\hat{\mathbf{a}}$

против часовой стрелки при $R_1 = 50 \,\mu$ m. Вычисления также показали, что при малых значениях $R_1 = 50\,\mu{
m m}$ профили $v_{\varphi}(\tau, r)$ эволюционировали антисимметрично для вышеописанных случаев I и II и максимальные значения азимутальных углов были практически равны (см. рис. 2, a и 5, a). Но с ростом R_1 или с уменьшением кривизны вращающейся внутренней рамки до значения 50 µm произошло координальное изменение профилей $\Phi(\tau, r)$ таким образом, что максимальные значения азимутального угла, соответствующие случаям I и II, различались на порядок величины. Так, $\Phi_{
m eq}^{
m max}(0.1 < r < 0.9) \sim 8\,
m rad$ или ~ 1.5 оборота вокруг вектора $\hat{\mathbf{a}}$ по часовой стрелке при $R_1 = 50\,\mu\mathrm{m}$ для случая I, в то время как $\Phi_{
m eq}^{
m max}(0.3 < r < 0.6) \sim 80\,
m rad$ или 12.3 оборота вокруг вектора â против часовой стрелки при $R_1 = 50\,\mu\text{m}$ для случая II, при том, что внутренняя рамка вращалась с одной и той же безразмерной скоростью $V_0 = 2000$.

4. Заключение

В настоящей работе была исследована релаксация как поля с-директора, так и тангенциальной составляющей вектора скорости в гибридно ориентированной SmC-пленке, натянутой между двумя круговыми рамками, выбранными таким образом, что внутренняя рамка вращалась с постоянной скоростью, а внешняя рамка оставалась неподвижной. Было показано, что на величину и характер переориентации азимутального угла, который однозначно определеляет распределение с-директора по всей ширине SmC-пленки, сильно влияют, при всех прочих равных условиях, кривизна и направление вращения внутренней рамки. При вращении рамки по часовой стрелке (случай I) с-директор в свободно подвешенной пленке закручивается вокруг нормали к SmC-пленке против часовой стрелки. При смене направления вращения внутренней круговой рамки на противоположное, т.е. когда внутренняя рамка вращалась против часовой стрелки (случай II), то с-директор закручивался по часовой стрелке, причем расчетная величина азимутального угла $\Phi(\tau, r)$, описывающего ориентацию с-директора, была практически в два раза больше в случае II, чем в случае I. Более того, с ростом радиуса R_1 неравенство азимутальных углов, соответствующих случаям I и II, только возрастало. Такое поведение распределения азимутального угла позволяет сделать заключение о том, что на ориентацию поля с-директора в свободно подвешенной смектической пленке, натянутой между вращающейся внутренней и неподвижной внешней рамками, сильное влияние оказывают как кривизна, так и направление вращения внутренней рамки.

Следует отметить, что расчетное распределение поля с-директора по ширине SmC-пленки, натянутой между вращающейся внутренней и неподвижной внешней рамками (см. рис. 2 и 5), качественно согласуется с экспериментально наблюдаемой с помощью поляризационного микроскопа текстурой свободно подвешенной SmC-пленки, натянутой на круговую рамку [2,5]. В эксперименте вращение ЖК-системы было достигнуто с помощью вращающегося электрического поля, которое было инициировано двумя синхронизированными генераторами. При этом исследовались как бездефектные SmC-пленки, так и смектические пленки с топологическими дефектами структуры [2,5]. Наблюдаемые тестуры в бездефектных SmC-пленках характеризовались чередованием концентрических колец светлых и темных тонов, в то время как наблюдаемые текстуры в SmC-пленках с топологическими дефектами представляли собой спиральные узоры. В свою очередь, если бы эволюции поля с-директора в бездефектных смектических пленках, представленные на рис. 2 и 5, наблюдались бы в поляризационный микроскоп, то видимые текстуры этих смектических пленок характеризовались бы чередованием концентрических областей светлых и темных тонов, как это было описано в эксперименте.

Все это позволяет сделать заключение о том, что реакцию смектической пленки на локальное механическое возмущение необходимо учитывать при создании измерительных приборов на основе ЖК-материалов.

Приложение: моменты и компоненты тензора напряжений

Мы рассматриваем SmC-фазу, где поле с-директора задано вектором $\hat{\mathbf{c}} = (\cos \Phi(\tau, r), \sin \Phi(\tau, r), 0)$. Баланс вращательных моментов, действующих на единицу объема ЖК-фазы, состоит из двух вкладов, за счет упругих и вязких сил, действующих относительно с-директора, как $\mathbf{T}_{el}^c = \frac{\delta \mathscr{W}_{el}}{\delta \hat{\mathbf{c}}} \times \hat{\mathbf{c}}$ и $\mathbf{T}_{vis}^c = \mathbf{g}^c \times \hat{\mathbf{c}}$ соот-ветственно так и относительно $\hat{\mathbf{a}}$ -вектора, как $\mathbf{T}_{el}^a = \mathscr{E}$: $\nabla \mathbf{b} \times \hat{\mathbf{a}}$ и $\mathbf{T}_{vis}^{a} = \mathbf{g}^{a} \times \hat{\mathbf{a}}$ соответственно. Здесь **b** неизвестный вектор, который дает вклад в выражение для упругого момента относительно вектора â и будет определен из уравнения баланса моментов, действующих на единицу объема смектической пленки, а два других вектора $\mathbf{g}^c = -2[\lambda_2 D_s \cdot \hat{\mathbf{c}} + \lambda_5 \mathbf{C}]$ и $\mathbf{g}^a = -2[\lambda_2 D_s \cdot \hat{\mathbf{c}} + \tau_5 \mathbf{C} + \tau_4 \hat{\mathbf{c}} (\hat{\mathbf{c}} \cdot \mathbf{D}^c)]$ дают вклад в диссипационную функцию \mathscr{R}^{vis} , а \mathscr{E} -тензор Леви– Чивита, а $\mathscr{W}_{\text{el}} = \frac{1}{2} \left[K_2 (\nabla \cdot \hat{\mathbf{c}})^2 + K_3 (\hat{\mathbf{a}} \cdot \nabla \times \hat{\mathbf{c}})^2 \right]$ плотность упругой энергии, приходящейся на единицу объема смектической пленки. Вязкий вклад в диссипационную функцию имеет вид $\mathscr{R}^{\text{vis}} = \frac{1}{2} \left(\sigma^{\text{vis}} + (\sigma^{\text{vis}})^T \right)$: $D_s - \mathbf{g}^c \cdot \mathbf{C} + \mathbf{g}^a \cdot (D_a \cdot \hat{\mathbf{a}}),$ где $\mathbf{C} = \frac{d\hat{\mathbf{c}}}{dt} - D_a \cdot \hat{\mathbf{c}},$ a $\mathbf{D}_s =$ $=\frac{1}{2}\left[\nabla \mathbf{v} + (\nabla \mathbf{v})^{\mathrm{T}}\right]$ и $\mathbf{D}_{a} = \frac{1}{2}\left[\nabla \mathbf{v} - (\nabla \mathbf{v})^{\mathrm{T}}\right]$ — симметричный и антисимметричный вклады в тензор ∇v . Тензор вязких напряжений σ^{vis} для случая смектической

пленки принимает вид

$$\begin{split} \sigma^{\mathrm{vis}} &= \mu_0 D_s + \mu_3 (\hat{\mathbf{c}} \cdot \mathbf{D}^c) \hat{\mathbf{c}} \otimes \hat{\mathbf{c}} + \mu_4 \left(\mathbf{D}^c \otimes \hat{\mathbf{c}} + \hat{\mathbf{c}} \otimes \mathbf{D}^c \right) \\ &+ \lambda_2 \big((\mathbf{C} + \mathbf{D}^c) \otimes \hat{\mathbf{c}} + \hat{\mathbf{c}} \otimes (\mathbf{C} - \mathbf{D}^c) \big) + \lambda_5 (\mathbf{C} \otimes \hat{\mathbf{c}} - \hat{\mathbf{c}} \otimes \mathbf{C}), \end{split}$$

где $\mathbf{D}^c = D_s \cdot \hat{\mathbf{c}}$ и $\mathbf{D}^a = D_s \cdot \hat{\mathbf{a}}$ — два вспомогательных вектора, а μ_0 , μ_2 , μ_3 , μ_4 , λ_2 , λ_5 , τ_5 , τ_4 — коэффициенты вязкости смектической пленки.

Безразмерные упругие моменты имеют вид

$$\Gamma_{el}^{c} = -\hat{\mathbf{e}}_{z} \left[\Phi_{,rr} \mathscr{G} + \frac{K-1}{2} \Phi_{,r}^{2} \sin 2\Phi + \frac{\Phi_{,r}}{r} \mathscr{G} + \frac{K-1}{2} \frac{\sin 2\Phi}{r^{2}} \right], \quad (\Pi 1)$$

 $\mathbf{T}_{\rm el}^a = -\hat{\mathbf{e}}_z \cos \Phi b_{z,r},\tag{\Pi2}$

в то время как вязкие вклады задаются выражениями [10]

$$\mathbf{T}_{\text{vis}}^{c} = \hat{\mathbf{e}}_{z} \left[\Phi_{,\tau} - \frac{\cos 2\Phi}{2} \left((1-\lambda) \upsilon_{\varphi,r} + (1+\lambda) \frac{\upsilon_{\varphi}}{r} \right) + \frac{\sin^{2} \Phi}{r} \right], \tag{II3}$$
$$\mathbf{T}_{\text{vis}}^{a} = \hat{\mathbf{e}}_{z} \left[\frac{1}{2} \cos 2\Phi \left(\lambda - 1 \right) \upsilon_{\varphi,r} - (1+\lambda) \frac{\upsilon_{\varphi}}{r} \right) + \sin^{2} \Phi \frac{\upsilon_{\varphi}}{r} + \Phi_{,\tau} \right], \tag{II4}$$

где $K = \frac{K_2}{K_3}$, $\lambda = \frac{\lambda_2}{\lambda_5}$, $\mathscr{G} = \cos^2 \Phi + K \sin^2 \Phi$, $\Phi_{,\tau} = \frac{\partial \Phi}{\partial \tau}$, $\Phi_{,\tau} = \frac{\partial \Phi}{\partial \tau}$. Безразмерные компоненты тензора вязких напряжений имеют вид

$$\sigma_{rr}^{\rm vis} = \left(v_{\varphi,r} - \frac{v_{\varphi}}{r}\right) \left(\frac{\mu_3}{2\lambda_5}\sin 2\Phi \cos^2 \Phi + \frac{\mu_4}{\lambda_5}\sin 2\Phi\right) + \lambda \sin 2\Phi \left(\Phi_{,\tau} + \frac{3}{2}\frac{v_{\varphi}}{r} + \frac{1}{2}v_{\varphi,r}\right), \tag{II5}$$

$$\sigma_{\varphi\varphi}^{\text{vis}} = \left(v_{\varphi,r} - \frac{v_{\varphi}}{r} \right) \left(\frac{\mu_3}{2\lambda_5} \sin 2\Phi \sin^2 \Phi + \frac{\mu_4}{\lambda_5} \sin 2\Phi \right) + \lambda \sin 2\Phi \left(\Phi_{,\tau} + \frac{1}{2} \left(v_{\varphi,r} + \frac{v_{\varphi}}{r} \right) \right), \quad (\Pi 6)$$

$$\sigma_{r\varphi}^{\text{vis}} = \left(v_{\varphi,r} - \frac{v_{\varphi}}{r}\right) \left(\frac{\mu_0}{\lambda_5} + \frac{\mu_3}{2\lambda_5}\sin^2 2\Phi + \frac{\mu_4}{2\lambda_5}\right) + (\lambda - 1)\Phi_{,\tau}\cos 2\Phi + \frac{1 - \lambda + \lambda\cos 2\Phi}{2}\frac{v_{\varphi}}{r},\tag{II7}$$

$$\sigma_{\varphi r}^{\text{vis}} = \left(v_{\varphi,r} - \frac{v_{\varphi}}{r}\right) \left(\frac{\mu_0}{\lambda_5} + \frac{\mu_3}{2\lambda_5}\sin^2 2\Phi + \frac{\mu_4}{2\lambda_5}\right) + (\lambda - 1)\Phi_{,\tau}\cos 2\Phi - \frac{1 - \lambda + \lambda\cos 2\Phi}{2}\frac{v_{\varphi}}{r}.$$
(II8)

Компоненты вектора \mathbf{g}^c в полярной системе координат могут быть записаны в виде

$$g_{r}^{c} = \left[(1-\lambda)v_{\varphi,r} + (1+\lambda)\frac{v_{\varphi}}{r} + 2\Phi_{,\tau} \right] \sin \Phi,$$
$$g_{\varphi}^{c} = \left[(1-\lambda)v_{\varphi,r} + (1+\lambda)\frac{v_{\varphi}}{r} - 2\Phi_{,\tau} \right] \cos \Phi, \quad (\Pi 9)$$

в то время как безразмерная плотность упругой энергии принимает вид

$$W_{\rm el} = \frac{1}{2} \left[K \left(\frac{\cos \Phi}{r} - \sin \Phi \Phi_{,r} \right)^2 + \left(\frac{\sin \Phi}{r} + \cos \Phi \Phi_{,r} \right)^2 \right]. \tag{(II10)}$$

Выражения (П1) и (П3) приводят к безразмерному уравнению баланса моментов относительно с-директора

$$\Phi_{,r} = \Phi_{,rr}\mathscr{G} + \frac{K-1}{2}\Phi_{,r}^{2}\sin 2\Phi + \frac{\Phi_{,r}}{r}\mathscr{G} + \frac{K-1}{2}\frac{\sin 2\Phi}{r^{2}} + \frac{\cos 2\Phi}{2}\left[(1-\lambda)v_{\varphi,r} + (1+\lambda)\frac{v_{\varphi}}{r}\right] - \frac{\sin^{2}\Phi}{r}v_{\varphi},$$
(II11)

в то время как выражения (П2) и (П4) приводят к безразмерному уравнению баланса моментов относительно вектора \hat{a}

$$\cos \Phi b_{z,r} = \frac{1}{2} \cos 2\Phi \left[(\lambda - 1) v_{\varphi,r} - (1 + \lambda) \frac{v_{\varphi}}{r} \right] + \sin^2 \Phi \frac{v_{\varphi}}{r} + \Phi_{,r}. \quad (\Pi 12)$$

Уравнение (3) в проекциях на орты $\hat{\mathbf{e}}_r$, $\hat{\mathbf{e}}_{\varphi}$ сводится к двум безразмерным уравнениям, где первое — определяет гидростатическое давление

$$\begin{split} \tilde{p}_{,r} &= -\mathscr{A} \frac{v_{\varphi}^2}{r} + \frac{\mu_3}{\lambda_5} \bigg[\frac{1}{2} v_{\varphi,rr} \sin 2\Phi \cos^2 \Phi \\ &+ \frac{1}{8} \bigg(\frac{v_{\varphi,r}}{r} - \frac{v_{\varphi}}{r^2} \bigg) (\sin 4\Phi - 2\sin 2\Phi) \\ &+ \frac{1}{4} \bigg(v_{\varphi,r} - \frac{v_{\varphi}}{r} \bigg) \Phi_{,r} \bigg(4\cos 2\Phi \cos^2 \Phi - \sin 4\Phi \bigg) \bigg] \\ &+ \frac{\mu_4}{2\lambda_5} \sin 2\Phi \bigg(v_{\varphi,rr} - \frac{v_{\varphi,r}}{r} + \frac{v_{\varphi}}{r^2} \bigg) \\ &- \Phi_{,r} \cos^2 \Phi \bigg(2\Phi_{,\tau} + v_{\varphi,r} + \frac{v_{\varphi}}{r} \bigg) \\ &- \lambda \bigg[\Phi_{,\tau r} \sin 2\Phi + 2\Phi_{,\tau} \Phi_{,r} \cos 2\Phi \\ &+ \frac{1}{2} \sin 2\Phi \bigg(v_{\varphi,rr} + \frac{3v_{\varphi,r}}{r} - \frac{3v_{\varphi}}{r^2} \bigg) \\ &- \Phi_{,r} \cos^2 \Phi (v_{\varphi,r} - \frac{v_{\varphi}}{r} \bigg) \bigg], \end{split}$$
(II13)

тальный угол

а второе связывает тангенциальную скорость и азиму-

$$\begin{aligned} \mathcal{A}v_{\varphi,\tau} &= \frac{\mu_0 + \mu_4}{4\lambda_5} \left(v_{\varphi,rr} + \frac{v_{\varphi,r}}{r} - \frac{v_{\varphi}}{r^2} \right) + \frac{\mu_3}{8\lambda_5} \\ &\times \left[\sin^2 2\Phi \left(v_{\varphi,rr} + \frac{v_{\varphi,r}}{r} - \frac{v_{\varphi}}{r^2} \right) \right. \\ &+ \Phi_{,r} \left(v_{\varphi,r}r - \frac{v_{\varphi}}{r} \right) \sin 4\Phi \right] \\ &+ \frac{1}{8} \left[4\Phi_{,\tau r} - 8\Phi_{,\tau} \frac{\sin^2 \Phi}{r} + 2\Phi_{,r} v_{\varphi,r} \right. \\ &\times \left(\sin 2\Phi + \cos 2\Phi \right) + \Phi_{,r} \frac{v_{\varphi}}{r} (3\sin 2\Phi) \\ &+ 2\cos 2\Phi \right) + \sin 2\Phi \left(v_{\varphi,rr} + \frac{v_{\varphi,r}}{r} - \frac{v_{\varphi}}{r^2} \right) \\ &+ 2\sin^2 \Phi \left(v_{\varphi,rr} + \frac{v_{\varphi,r}}{r} - 13\frac{v_{\varphi}}{r^2} \right) \right] \\ &+ \lambda \left[\Phi_{,\tau r} \cos 2\Phi - 2\Phi_{,\tau} \Phi_{,r} \sin 2\Phi \right. \\ &+ \left. \frac{2\Phi_{,\tau}}{r} \cos 2\Phi - \Phi_{,r} \left(2v_{\varphi,r} + \frac{v_{\varphi}}{r} \right) \sin 2\Phi \right. \\ &+ \left(v_{\varphi,rr} + \frac{v_{\varphi,r}}{r} + 2\frac{v_{\varphi}}{r^2} \right) \cos 2\Phi - \frac{v_{\varphi}}{r^2} \right]. \quad (\Pi 14) \end{aligned}$$

Здесь $\mathcal{A} = \frac{\rho K_3}{2\lambda_5^2}$. Подстановка уравнения (П11) в (П14) приводит к эволюционному уравнению для поля скорости

$$\mathcal{A}v_{\varphi,\tau} = f_1 v_{\varphi,rr} + f_2 \frac{v_{\varphi,r}}{r} + f_3 \frac{v_{\varphi}}{r^2} + f_4, \qquad (\Pi 15)$$

где коэффициенты $f_i(i=1,\ldots,4)$ задаются выражениями

$$f_{1} = \frac{1}{8} \left[2 + \frac{\mu_{0} + \mu_{4} + \mu_{3} \sin^{2} 2\Phi}{\lambda_{5}} + \sin 2\Phi + 2(1 - \lambda) \cos 2\Phi(\lambda \cos 2\Phi - 1) \right], \quad (\Pi 16)$$

$$f_{2} = \frac{1}{4} \left[-\frac{\mu_{0} + \mu_{4} + \mu_{3} \sin^{2} 2\Phi}{\lambda_{5}} + \sin 2\Phi + \cos 2\Phi(1 + 2\lambda + 2\lambda \cos 2\Phi) - \sin^{2}\Phi(1 + (1 + \lambda) \cos 2\Phi) + \Phi_{,r}r \left(-5\sin 2\Phi + \cos 2\Phi - \lambda(2 - \lambda) \sin 4\Phi + \frac{2\mu_{3}}{\lambda_{5}} \sin 4\Phi \right) \right], \quad (\Pi 17)$$

$$f_{3} = \frac{1}{8} \left[2 \frac{\mu_{0} + \mu_{4} - 2\lambda_{2} + \mu_{3} \sin^{2} 2\Phi}{\lambda_{5}} \right]$$
$$- \sin 2\Phi + \cos 2\Phi (8\lambda + 2(1 + \lambda))$$
$$\times (-1 + \lambda \cos 2\Phi) - 8 \sin^{2} \Phi (1 + \lambda \cos 2\Phi) - \Phi_{,r}r \sin 2\Phi$$
$$\times \left(1 + 8\lambda \cos^{2} \Phi - 4 \frac{2\mu_{3}}{\lambda_{5}} \sin 4\Phi \right) \right], \qquad (\Pi 18)$$
$$f_{4} = \left[\frac{\lambda \cos 2\Phi - \sin^{2} \Phi}{r} - \lambda \Phi_{,r} \sin 2\Phi \right]$$
$$\times \left[\Phi_{,rr} \mathscr{G} + \frac{K - 1}{2} \Phi_{,r}^{2} \sin 2\Phi + \frac{\Phi_{,r}}{r} \mathscr{G} + \frac{K - 1}{2} \frac{\sin 2\Phi}{r^{2}} \right]$$
$$+ \frac{1 + \lambda \cos 2\Phi}{2} \left[\Phi_{,rrr} \mathscr{G} + (K - 1) \left(2\Phi_{,rr} \Phi_{,r} + \frac{\Phi_{,r}^{2}}{r} - \frac{1}{r^{3}} \right) \right]$$
$$\times \sin 2\Phi + (K - 1) \left(\Phi_{,r}^{3} + \frac{\Phi_{,r}}{r^{2}} \right) \cos 2\Phi + \mathscr{G} \left(\frac{\Phi_{,rr}}{r} - \frac{\Phi_{,r}}{r^{2}} \right) \right]. \tag{\Pi 19}$$

Список литературы

- P.E. Cladis, Y. Couder, H.R. Brand. Phys. Rev. Lett. 55, 2945 (1985).
- [2] R. Stannarius, Ch. Bohley, A. Eremin. Phys. Rev. Lett. **97**, 097 802 (2006).
- [3] Y. Tabe, H. Yokoyama. Nature Mater. 2, 806 (2003).
- [4] D. Svensek, H. Pleiner, H.R. Brand. Phys. Rev. Lett. 96, 140 601 (2006).
- [5] K. Harth, A. Eremin, R. Stannarius. Soft Mater. 7, 2858 (2011).
- [6] D.K. Yang, S.T. Wu. Fundamentals of liquid crystal devices. John Wiley and Sons, N.Y. (2006). 378 p.
- [7] M. Staykova, D.P. Holmes, C. Read, H.A. Stone. Proc. Natl. Acad. Sci. USA 108, 9084 (2011).
- [8] J.L. Ericksen. Arch. Ration. Mech. Anal. 4, 231 (1960).
- [9] F.M. Leslie. Arch. Ration. Mech. Anal. 28, 265 (1968).
- [10] С. Гроот, П. Мазур. Неравновесная термодинамика. Мир, М. (1964). 456 с.
- [11] I.W. Stewart. The static and dynamic continuum theory of liquid crystals. Taylor and Francis, London (2004). 360 p.
- [12] Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. Наука, М. (1978). 592 с.