09,14

Эффективный показатель преломления квазидвумерной полидоменной пленки сопряженного полимера

© Е.М. Аверьянов

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: aver@iph.krasn.ru

(Поступила в Редакцию 25 мая 2015 г.)

Экспериментально подтверждена связь эффективного обыкновенного показателя преломления $n^* = (n_o n_e)^{1/2}$ квазидвумерной полидоменной одноосной пленки сопряженного полимера F8BT в видимой области прозрачности с показателями преломления $n_{o,e}$ одноосных доменов, оптические оси которых хаотично ориентированы в плоскости пленки. Установлен допустимый интервал изменения n^* и показана сильная дисперсионная зависимость этого интервала вблизи длинноволновой полосы электронного поглощения пленки.

В оптоэлектронике широко используются оптически одноосные тонкие пленки сопряженных полимеров (СП) с планарной (параллельной плоскости пленки) и гомеотропной (перпендикулярной этой плоскости) ориентациями оптической оси пленки п. Жесткоцепные макромолекулы СП состоят из совокупности линейных фрагментов — конформационных субъединиц (КС) [1,2], которые отличаются пространственной ориентацией продольных осей l_i и числом входящих в них мономерных звеньев, связанных *п*-электронным сопряжением. Монодоменные пленки СП с планарной ориентацией **n** и аксиальной (A) ориентацией осей l_i КС относительно n получают на ориентирующих подложках в высокотемпературной нематической фазе с последующим переводом в стеклообразное состояние при быстром охлаждении [3-5]. Для световых волн с поляризацией Е \perp n и Е || n такая пленка характеризуется обыкновенным (n_{oA}) и необыкновенным (n_{eA}) показателями преломления. Полидоменные пленки СП на изотропных подложках с гомеотропной ориентацией **n** и плоскостной (P) ориентацией осей \mathbf{l}_i КС обычно получают методом центрифугирования (spincoating) [6-8]. Такие пленки состоят из совокупности застеклованных нематических доменов [3,9,10] (кристаллитов [10–12]), у которых оптические оси \mathbf{n}_d хаотично ориентированы в плоскости пленки. В зависимости от технологии получения пленок средний размер доменов а варьируется от нескольких десятков нанометров до долей микрометра [6,9-12]. Для световых волн с длиной $\lambda \gg a$ такая пленка толщиной $d \ll \lambda$ является квазидвумерной композитной средой с одноосным тензором эффективной диэлектрической проницаемости ε^* , диагональные компоненты которого отвечают поляризациям электрического вектора световой волны Е || п и $\mathbf{E} \perp \mathbf{n}$. При волновом векторе световой волны $\mathbf{k}^* \perp \mathbf{n}$ в области прозрачности полидоменная пленка характеризуется эффективными значениями обыкновенного $(n_{oP} = (\varepsilon_{\parallel}^*)^{1/2} = n^*)$ и необыкновенного $(n_{eP} = (\varepsilon_{\parallel}^*)^{1/2})$ показателей преломления. Для моно- и полидоменных

пленок величины $n_{j(A,P)}$ (j = o, e) измеряются методами эллипсометрии [4–8,13].

Показатели преломления n_{jP} и их связь с величинами n_{jA} важны для контроля морфологии, локальной структуры и физических свойств пленок [13], исследования межмолекулярных взаимодействий [14,15] и понимания микроскопической природы этих объектов. Однако вопрос о связи $n^*(n_{jA})$ в оптической области прозрачности до последнего времени оставался открытым [4,13]. В работе [16] было показано, что при доминирующем влиянии межмолекулярных взаимодействий на локальную структуру и оптические свойства одноосных доменов по сравнению с влиянием ориентирующей подложки должны выполняться соотношение $n_{eP} = n_{oA}$ и следующая связь:

$$n^* = (n_{oA} n_{eA})^{1/2} = n_{oP}.$$
 (1)

Целью настоящей работы является проверка этой связи для моно- и полидоменных пленок полимера poly(9, 9'-dioctylfluorene-co-benzothiadiazole) (F8BT) с приведенной на рис. 1 структурной формулой мономера.

Макромолекулы F8BT с персистентной длиной $l_p \approx 10 \text{ nm}$ [1] являются жесткоцепными полимерами класса полифлуоренов с боковыми алкильными цепями (the hairy-rods polymers) [10]. Оптические свойства пленок F8BT подробно исследованы методами эллипсометрии [4–8], что важно для объективной проверки связи (1).

Для оценки степени соответствия формулы (1) данным эксперимента установим допустимые интервалы

Рис. 1. Структурная формула мономерного звена полимера F8BT.

изменения n^* при заданных значениях n_{jA} . Из ограничений [16]

$$B_{l} = \frac{2n_{oA}^{2}n_{eA}^{2}}{n_{oA}^{2} + n_{eA}^{2}} \le \varepsilon_{\perp}^{*} \le \frac{n_{oA}^{2} + n_{eA}^{2}}{2} = B_{u}$$
(2)

следует, что изменение величины $n^* = (\varepsilon_{\perp}^*)^{1/2}$ заключено в пределах

$$b_l \le n^* \le b_u, \tag{3}$$

где $b_{l(u)} = (B_{l(u)})^{1/2}$ и $n^* = (b_l b_u)^{1/2}$. Это максимальный интервал изменения n^* . Применение неравенства $(a_1 a_2)^{1/2} \le (a_1 + a_2)/2$ для $a_{1,2} > 0$ к выражению $n^* = (n_{oA} n_{eA})^{1/2}$ дает для него более узкий интервал изменения

$$\beta_{l} = \frac{2n_{oA}n_{eA}}{n_{oA} + n_{eA}} \le n^{*} \le \frac{n_{oA} + n_{eA}}{2} = \beta_{u}, \qquad (4)$$

причем $n^* = (\beta_l \beta_u)^{1/2}$. Из неравенства $(n_{oA} + n_{eA})/2 \le \le [(n_{oA}^2 + n_{eA}^2)/2]^{1/2}$ следует $\beta_u \le b_u$, откуда с учетом $\beta_l \beta_u = b_l b_u$ получаем $\beta_l = b_l b_u/\beta_u \ge b_l$. Интервалы $\Delta \beta = \beta_u - \beta_l$ и $\Delta b = b_u - b_l$ связаны выражением $\Delta \beta = \Delta b b_u/2\beta_u \ge \Delta b/2$. Дисперсионная зависимость $n_{jA}(\lambda)$ вблизи полос поглощения пленки обусловливает сильную дисперсионную зависимость величин

$$\Delta b = \frac{(n_{eA} - n_{oA})^2}{\sqrt{2}(n_{eA}^2 + n_{oA}^2)^{1/2}},$$

$$\Delta \beta = \frac{(n_{eA} - n_{oA})^2}{2(n_{oA} + n_{eA})}.$$
 (5)

Если дипольный момент перехода для длинноволновой полосы электронного поглощения домена ориентирован вдоль одной из осей *j* эллипсоида рефракции домена, то приближение λ к этой полосе поглощения с максимумом λ_j будет сопровождаться резонансным ростом разности $n_{eA} - n_{oA}$ и величин Δb , $\Delta \beta$.

На рис. 2 приведены показатели преломления $n_{i(A,P)}(\lambda_k)$ для моно- и полидоменных стеклообразных пленок F8BT с близкой толщиной. Величины $n_{i(A,P)}(\lambda_k)$ при пяти значениях λ_k [14,15] в видимой области прозрачности получены из зависимостей $n_{i(A,P)}(\lambda)$ [4,6–8], измеренных методом эллипсометрии при комнатной температуре. Монодоменные одноосные пленки F8BT толщиной $d = 100 \,\mathrm{nm}$ [4] на натертой полиимидной подложке с планарной ориентацией оптической оси n, параллельной направлению натирания подложки, и аксиальной (нематической) ориентационной упорядоченностью осей l_i КС относительно n были получены быстрым охлаждением высокотемпературной нематической фазы. Для монодоменной пленки F8BT на натертой подложке полимера poly(3,4-ethylene dioxythiophene) : poly(styrenesulphonate) (PEDOT : PSS) значения $n_{iA}(\lambda_k)$ в области $\lambda = 0.55 - 0.78 \,\mu m$ [5,15] практически совпадают с зависимостями $n_{jA}(\lambda)$, представленными на рис. 2. Это показывает определяющее

Рис. 2. Дисперсионные зависимости показателей преломления n_{eA} (1), n_{oA} (1') [4] для монодоменной одноосной пленки полимера F8BT с аксиальной ориентацией макромолекул; значений n_{oP} (2-5), n_{eP} (2'-5") из работ [6] (2,2'), [7] (3,3') и [8] (4,4', 5,5') для полидоменных одноосных пленок F8BT с плоскостной ориентацией макромолекул; эффективного по-казателя преломления n^* (6) и граничных значений b_u (7) и b_l (8) в формуле (3). Символы 2, 2', 5,5' (3,3', 4,4') соответствуют неотожженным (отожженным) пленкам. Сплошные линии 1, 1' — аппроксимации функцией (6).

влияние межмолекулярных взаимодействий на ориентационную упорядоченность осей \mathbf{l}_i КС полимера относительно локальных направлений $\mathbf{n}(\mathbf{r})$ в монодоменном образце. Роль анизотропной подложки сводится к монодоменизации пленки в результате ориентации осей $\mathbf{n}(\mathbf{r})$ вдоль оси натирания подложки \mathbf{n} .

Полидоменные одноосные пленки F8BT с толщинами 90 [6], 150 [7] и 133 nm [8] были получены методом центрифугирования на изотропных кварцевых (spectrosil *B*) подложках [6–8]. Отдельные образцы подвергались отжигу в вакууме в течение полутора десятков часов при температуре 115°C [7] ниже температуры стеклования $T_g \approx 140^{\circ}$ С либо двухчасовому отжигу в атмосфере азота при температуре 150°C [8] с последующим быстрым охлаждением до комнатной температуры в обоих случаях. Первой и второй процедурам отвечают средние размеры нематических доменов a < 100 и $\sim 100-150$ nm [12], что удовлетворяет требованию $a \ll \lambda$ в видимой области.

Величины $n_{j(A,P)}(\lambda_k)$ с высокой точностью аппроксимируются функцией [17]

$$n_j(\lambda) = n_{bj} + G_j \lambda^2 \lambda_j^2 / (\lambda^2 - \lambda_j^2), \qquad (6)$$

где значение λ_j отвечает максимуму изолированной длинноволновой полосы электронного поглощения

пленки F8BT, коэффициент G_i пропорционален интегральному коэффициенту поглощения пленки $\alpha_i = \int \alpha_i(\omega) d\omega$ в пределах этой полосы, а фоновый обусловлен более коротковолновыми вклад n_{bi} переходами. С использованием предельного значения $n_{il} = n_i (\lambda \to \infty)$ имеем $G_i \lambda_i^2 = n_{il} - n_{bi}$ и $R_i = G_i \lambda_i^2 / n_{bi} \ll 1$. Для монодоменной пленки F8BT [4] величины $\lambda_{eA} = 0.488 \pm 0.010 \, \mu \mathrm{m}$ И $\lambda_{oA} = 0.468 \pm 0.005\,\mu\mathrm{m}$, полученные из аппроксимации (6), согласуются с экспериментальным значением $\lambda_{eA} \approx 0.470 \pm 0.005 \,\mu \mathrm{m}$ [4], а дихроичное отношение $D_A = G_{eA}/G_{oA} = 10.5$ совпадает с экспериментальным отношением $D_A(\lambda_{eA}) = k_{eA}/k_{oA} = 10.8$ [4] мнимых частей $k_j = \lambda \alpha_j / 4\pi$ комплексного показателя преломления $N_i = n_i + ik_i$. Большая величина D_A обеспечивает сильную дисперсию $n_{eA}(\lambda)$ и слабую дисперсию $n_{oA}(\lambda)$ в видимой области прозрачности. Соотношение $n_{be} = 1.686 > n_{bo} = 1.562$ согласуется с дихроичным отношением $D_A \approx 3$ для более коротковолновой изолированной полосы электронного поглощения пленки F8BT с максимумом $\lambda_{eA} \approx 0.310 \,\mu m$ [4].

Функции (6) для величин $n_{iA}(\lambda_k)$ использовались для расчета зависимостей $n^*(\lambda)$ и $b_{u,l}(\lambda)$, приведенных на рис. 2. Для неотожженных пленок F8BT [6] значения $n_{eP}(\lambda_k)$ лежат выше зависимости $n_{oA}(\lambda)$, но величины $n_{oP}(\lambda_k)$ не выходят за пределы интервала $\Delta b(\lambda)$. Для отожженных пленок F8BT [7] значения $n_{eP}(\lambda_k)$ совпадают с зависимостью $n_{oA}(\lambda)$, а величины $n_{oP}(\lambda_k)$ совпадают с зависимостью $n^*(\lambda)$ или находятся внутри интервала $\Delta\beta(\lambda)$. Отжиг пленок F8BT [8] практически не влияет на значения $n_{eP}(\lambda_k)$, совпадающие с зависимостью $n_{oA}(\lambda)$, и сопровождается слабым ростом величин $n_{oP}(\lambda_k)$, которые лежат в пределах интервала $\Delta b(\lambda)$. Из рис. 2 видно шестикратное резонансное возрастание интервала $\Delta b(\lambda)$ с приближением к длинноволновой полосе поглощения. Таким образом, для полидоменных пленок F8BT на изотропных подложках [6-8] с высокой точностью выполняются соотношения $n_{eP} = n_{oA}$ и (1).

Толщины полидоменных пленок F8BT [6-8] значительно меньше типичных толщин приповерхностных слоев аморфных полимеров с плоскостной ориентацией макромолекул [18,19]. Поэтому равенство $n_{eP} = n_{oA}$ свидетельствует об определяющем влиянии межмолекулярных взаимодействий на внутридоменную ориентационную упорядоченность осей l_i КС полимера относительно оптической оси домена n_d. Изотропия подложки обусловливает отсутствие дальнего ориентационного порядка направлений n_d в плоскости пленки. Кроме того, равенство $n_{eP} = n_{oA}$ возможно лишь при слабом влиянии доменных границ и междоменных областей с нарушенным ориентационным порядком КС на оптические свойства пленки. Это является особенностью морфологии полидоменных пленок F8BT [6-8] по сравнению с пленками полимеров poly(9,9'-dioctyl fluorene) (PFO) [4] и poly(9,9'-diethylhexyl fluorene) (PF2/6) [20], для которых характерно неравенство $n_{eP} > n_{oA}$ [16].

Подтверждение связи (1) во всей видимой области прозрачности и использование функции (6) позволяют сделать определенные заключения о соотношении между величинами $G_{jA} \propto \alpha_{jA} \propto k_{jA}$ для монодоменной пленки и эффективными значениями $G^* = G_{oP} \propto k^* = k_{oP}$ для показателя преломления $N_{oP}(\lambda) = n_{oP}(\lambda) + ik_{oP}(\lambda)$ полидоменной пленки. Аппроксимация приведенной на рис. 2 зависимости $n^*(\lambda)$ функцией (6) дает значение $n_b^* = 1.623$, которое совпадает с величиной $(n_{bo}n_{be})^{1/2}$. С учетом этого в пределе $\lambda \to \infty$ из (1), (6) получаем следующую связь величин R_{jA} и $R^* = G^*(\lambda^*)^2/n_b^*$:

$$R^* = [(1 + R_{oA})(1 + R_{eA})]^{1/2} - 1.$$
(7)

Использование неравенства $(a_o a_e)^{1/2} \leq (a_o + a_e)/2$ с $a_j = 1 + R_{jA}$ дает $R^* \leq (R_{oA} + R_{eA})/2$. С учетом малости величин $R_{jA} \ll 1$ в квадратичном по ним приближении имеем $R^* = (R_{oA} + R_{eA})/2 - (R_{eA} - R_{oA})^2/8$. В результате при $R_{eA} \gg R_{oA}$ величина R^* заметно меньше среднего значения $(R_{oA} + R_{eA})/2$. С учетом близости величин $\lambda_{jA} \approx \lambda^*$, $n_{bj} \approx n_b^*$ и соотношения $G_{jA} \propto k_{jA}$ отсюда следует, что при большом различии $G_{eA} \gg G_{oA}$ значение $k^* = k_{oP}(\lambda_{oP})$ в максимуме полосы поглощения $k_{oP}(\lambda)$ полидоменной пленки заметно меньше среднего значения $[k_{oA}(\lambda_{oA}) + k_{eA}(\lambda_{eA})]/2$ величин k_{jA} в максимумах полос поглощения $k_{jA}(\lambda)$ для монодоменной пленки. Это и наблюдалось ранее при сравнении моно- и полидоменных пленок PFO [4] и PF2/6 [20].

Результаты настоящей работы решают проблему связи показателей преломления n_{iA} и n_{iP} для моно- и полидоменных пленок СП [4,13]. Соотношение (1) здесь подтверждено во всей видимой области прозрачности полимера F8BT для массива независимых данных разных авторов [4-8]. Значения n* для неотожженных и отожженных полидоменных пленок лежат в пределах интервалов (3) и (4), ширины которых характеризуются сильной спектральной дисперсией вблизи длинноволновой полосы электронного поглощения пленки. Экспериментальные зависимости $n_{i(A,P)}(\lambda)$ во всей видимой области с высокой точностью аппроксимируются дисперсионной формулой (6), коэффициенты которой согласуются с независимыми данными поляризованных спектров поглощения. Это показывает преимущества формулы (6) перед широко используемой формулой Коши $n_i(\lambda) = A_i + B_i/\lambda^2 + C_i/\lambda^4$ [4–8,13,20], следующей из (6) и справедливой на длинноволновом краю видимой области.

Список литературы

- M. Grell, D.D.C. Bradley, X. Long, T. Chamberlain, M. Imbasekaran, E.P. Woo, M. Soliman. Acta Polym. 49, 439 (1998).
- [2] G.D. Scholes, G. Rumbles. Nature Mater. 5, 683 (2006).
- [3] S. Kawana, M. Durrell, J. Lu, J.E. Macdonald, M. Grell, D.D.C. Bradley, P.C. Jukes, R.A.L. Jones, S.L. Bennet. Polymer 43, 1907 (2002).
- [4] M. Campoy-Quiles, P.G. Etchegoin, D.D.C. Bradley. Phys. Rev. B 72, 045 209 (2005).

- [5] D.-X. Zhu, W.-D. Shen, H.-Y. Zhen. J. Appl. Phys. 106, 084 504 (2009).
- [6] J.M. Winfield, C.L. Donley, J.-S. Kim. J. Appl. Phys. 102, 063 505 (2007).
- [7] C.M. Ramsdale, N.C. Greenham. Adv. Mater. 14, 212 (2002).
- [8] C.M. Ramsdale, N.C. Greenham. J. Phys. D 36, L29 (2003).
- [9] J. Teetsov, D.A. Vanden Bout. Langmuir 18, 897 (2002).
- [10] M. Knaapila, R. Stepanyan, B.P. Lyons, M. Torkkelli, A.P. Monkman. Adv. Funct. Mater. 16, 599 (2006).
- [11] S.Y. Yang, F. Hide, M.A. Diaz-Garcia, A.J. Heeger, Y. Cao. Polymer **39**, 2299 (1998).
- [12] B. Watts, T. Schuettfort, C.R. Mac Neil. Adv. Funct. Mater. 21, 1122 (2011).
- [13] M. Campoy-Quiles, M.I. Alonso, D.D.C. Bradley, L.J. Richter. Adv. Funct. Mater. 24, 2116 (2014).
- [14] Е.М. Аверьянов. Письма в ЖЭТФ 91, 501 (2010).
- [15] Е.М. Аверьянов. ФТТ 53, 1832 (2011).
- [16] Е.М. Аверьянов. Письма в ЖЭТФ 101, 761 (2015).
- [17] E.M. Aver'yanov. J. Opt. Technol. 64, 417 (1997).
- [18] A.E. Grishchenko, E.I. Rjumtsev, V.K. Turkov. J. Opt. Technol. 64, 424 (1997).
- [19] А.Е. Грищенко, А.Н. Черкасов. УФН 167, 269 (1997).
- [20] B.P. Lyons, A.P. Monkman. J. Appl. Phys. 96, 4735 (2004).