09,10

Спектры инфракрасного поглощения кристалла Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄

© Ю.В. Герасимова, С.Н. Софронова, И.А. Гудим, А.С. Орешонков, А.Н. Втюрин, А.А. Иваненко

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: jul@iph.krasn.ru, ssn@iph.krasn.ru

(Поступила в Редакцию 27 апреля 2015 г.)

Получены спектры инфракрасного поглощения кристалла $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ в спектральном диапазоне 30-1700 сm⁻¹ при температурах от 6 до 300 К. Экспериментальные спектры проанализированы на основе полуэмпирического расчета динамики решетки и анализа корреляционных диаграмм боратных комплексов. В исследуемом диапазоне температур изменений, связанных со структурными фазовыми переходами, не обнаружено; влияния магнитного упорядочения на спектры инфракрасного поглощения исследуемого кристалла не наблюдается.

Работа поддержана грантом РФФИ (№ 13-02-00825).

1. Введение

Недавние исследования редкоземельных ферроборатов с общей формулой ReFe₃(BO₃)₄ показали, что большинство соединений, принадлежащих к этому семейству, относится к классу мультиферроиков [1-4]. Наличие двух магнитных подсистем: ионов железа и редкоземельных ионов — приводит к большому разнообразию свойств. Несмотря на то что обмен Fe-Fe доминирует и превышает косвенный обмен между редкоземельными элементами, ориентация магнитных моментов ионов железа относительно кристаллографических осей определяется типом редкоземельного иона. Реализуется либо легкоосная антиферромагнитная структура, когда спины железа упорядочены вдоль тригональной оси с (*Re* = Dy, Tb, Pr), либо легкоплоскостная структура (Re = Nd, Eu, Er), когда спины железа упорядочены в плоскости ab перпендикулярно оси c кристалла [5].

Кроме того, радиус редкоземельного иона влияет на структуру соединения: при высоких температурах все кристаллы семейства ReFe₃(BO₃)₄ имеют тригональную структуру, которая принадлежит к пространственной группе R32. В соединениях с бо́льшим ионным радиусом (Re = La, Ce, Pr, Nd, Sm) эта структура остается неизменной вплоть до самых низких температур, в то время как в соединениях с меньшим ионным радиусом (Re = Eu, Gd, Tb, Dy, Ho, Er) имеет место структурный фазовый переход.

Объектом нашего исследования выбран твердый раствор $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$. Он интересен тем, что родительские соединения — $NdFe_3(BO_3)_4$ и $HoFe_3(BO_3)_4$ — довольно значительно различаются по свойствам: в кристалле $HoFe_3(BO_3)_4$ реализуются структурный фазовый переход при 360 K, магнитный фазовый переход при 38.5 K (легкоплоскостная антиферромагнитная структура — AFM2), а также спин-переориентационный фазовый переход при 5 K в легкоосную антиферромагнитную структуру — AFM1. Кроме того, в области существования AFM2 наблюдается спонтанная поляриза-

ция, которая подавляется внешним магнитным полем [2]. Кристалл NdFe₃(BO₃)₄, напротив, остается стабильным в структуре R32, при 30.5 К происходит магнитный фазовый переход (легкоплоскостная антиферромагнитная структура), наблюдается также значительный магнито-электрический эффект [6,7].

Твердый раствор Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄ унаследовал характеристики обоих родительских соединений: так же как и в NdFe₃(BO₃)₄, в Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄ не наблюдается структурного фазового перехода. Магнитный фазовый переход в легкоплоскостную антиферромагнитную структуру происходит при 32 K, расширяется область существования легкоосной структуры AFM1 (T = 9 K). Спонтанная поляризация, так же как и в HoFe₃(BO₃)₄ внешнее магнитное поле подавляет ее, только если оно приложено вдоль *c*, при приложении магнитоэлектрический эффект [8].

Ранее в работе [9] в рамановских спектрах кристалла $Nd_{0.22}Ho_{0.78}Fe_3(BO_3)_4$ было обнаружено возникновение новых линий в области 630 cm¹ ниже температуры магнитного фазового перехода, что не наблюдалось в соединениях $NdFe_3(BO_3)_4$ и HoFe_3(BO_3)_4. По-видимому, это является особенностью твердых растворов.

В рамках настоящей работы мы исследуем ИК-спектры в спектральном диапазоне твердого раствора редкоземельного ферробората $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ в спектральном диапазоне $30-1700 \, \mathrm{cm}^{-1}$ в широкой области температур (от 6 до $300 \, \mathrm{K}$).

2. Синтез

Монокристаллы $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ выращивались из растворов-расплавов на основе тримолибдата висмута [8]. Раствор-расплавную систему удобно представить в квазибинарной форме: $82 \text{ wt.}\%[Bi_2Mo_3O_{12} + 3B_2O_3 + 0.25Ho_2O_3 + 0.25Nd_2O_3] + 18 \text{ wt.}\%Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$.

Области стабильности кристаллов Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄, а также соотношения компонентов растворов-расплавов определены методом прямого фазового зондирования. Температура насыщения определялась с точностью $\pm 2^{\circ}$ C с помощью пробных кристаллов, которые предварительно получались из того же растворарасплава в условиях спонтанного зарождения на вращающемся платиновом стержне. Ширина метастабильной зоны $\Delta T_{met} \approx 12^{\circ}$ C определялась как максимальное переохлаждение, при котором не было зарождения за период времени, равный 20 h.

150

Растворы-расплавы массой 800 g готовились при T = 1000°C в платиновом цилиндрическом тигле (D = 100 mm, H = 100 mm) путем сплавления окисидов $(Bi_2O_3, MoO_3, B_2O_3, Ho_2O_3, Nd_2O_3, Fe_2O_3)$ B cootношении, определяемом приведенной выше формулой. Тигель устанавливался в кристаллизационную печь, где температура уменьшалась от дна тигля с вертикальным градиентом 1-2°С/ст. Раствор-расплав гомогенизировался при $T = 1050^{\circ}$ С за 24 h. Для поддержания однородности раствор-расплав перемешивался. Температура насыщения, определенная с помощью пробных кристаллов, составила $965 \pm 2^{\circ}$ С. Сначала в режиме спонтанного зарождения при температуре $T = T_{\text{sat}} - (15-20)^{\circ}\text{C}$ выращивались кристаллы размером ~ 1 mm. Кристаллодержатель с выращенными маленькими кристаллами извлекался без изменения температуры в печи. Эти кристаллы затем использовались как затравки.

После этого десять визуально качественных затравок закреплялись на платиновом кольцевом кристаллодержателе. Держатель погружался в раствор-расплав при температуре $T = T_{sat} + 7^{\circ}$ С и включалось реверсивное с периодом 1 min вращение со скоростью $\omega = 30$ грт. Через 15 min температуру понижали до $T = T_{sat} - 7^{\circ}$ С. Далее температура раствора-расплава снижалась с нарастающим темпом $1-3^{\circ}$ С в сутки, так, чтобы скорость роста кристаллов не превышала 0.5 mm в сутки. Рост продолжался 9-10 дней. После завершения процесса роста стержень приподнимался над поверхностью раствора-расплава и охлаждался до комнатной температуры с выключенным питанием печи. В результате вырастали кристаллы размером 5-7 mm.

3. Экспериментальные результаты и обсуждение

Экспериментальное исследование ИК-спектров $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ проводилось на вакуумном Фурьеспектрометре VERTEX 80V (BRUKER) в спектральном диапазоне от 30 до 1700 сm⁻¹ со спектральным разрешением 0.2 сm⁻¹. Температурные исследования проводились с использованием криостата Optistat TM AC-V 12a 0.25W@4K в температурном диапазоне от 6 до 300 К. Ранее по той же методике нами был исследован кристалл HoFe₃(BO₃)₄, более подробное описание эксперимента представлено в [10].

Рис. 1. Температурная трансформация спектров поглощения в диапазоне частот 375–1700 сm⁻¹.

Структура кристаллов редкоземельных ферроборатов ReFe₃(BO₃)₄ с симметрией пространственной группы R32 была ранее неоднократно подробно описана и проанализирована [2,6], также был проведен подробный теоретико-групповой анализ колебательного спектра [10]. Основными структурными элементами редкоземельных ферроборатов являются треугольники (в элементарной ячейке кристалла четыре молекулярных группы ВО₃, одна обладает симметрией D₃ и три обладают симметрией C₂), октаэдры FeO₆ и треугольные призмы *ReO*₆, которые в значительной степени локализованы. В связи с этим колебательный спектр редкоземельных ферроборатов сформирован внутренними колебаниями групп ВО₃, FeO₆ и ReO₆. В [11] была представлена полная корреляционная схема колебательных мод ReFe₃(BO₃)₄ пространственной группы R32 для молекулярной группы BO_3 и ионов Re, Fe.

На рис. 1 представлена эволюция спектров поглощения в диапазоне $375-1700 \text{ cm}^{-1}$. Как видно из рисунка, при понижении температуры спектры не претерпевают заметных изменений. Согласно корреляционной диаграмме внутренних колебаний (рис. 2), две самые интенсивные широкие полосы с максимумами при 1227 и 1307 сm⁻¹ обусловлены валентными колебаниями v_3 молекул BO_3^{3-} с локальной симметрией D_3 и C_2 соответственно. Полоса 1227 сm⁻¹ имеет сложную структуру, что связано со снятием вырождения этого колебания в низкосимметричном окружении (C_2).

Малоинтенсивная линия при 900 сm⁻¹ также относится к колебаниям молекулярной группы BO_3 с симметрией C_2 . В свободном ионе BO_3 полносимметричное колебание ν_1 , лежащее в этой области частот (рис. 2), неактивно в спектре ИК-поглощения, и его активация в кристалле может быть вызвана искажением структуры иона кристаллическим окружением либо взаимодействием колебаний (давыдовское расщепление). Малая интенсивность этой линии свидетельствует о незначительной величине этих искажений.

Ion	Vibration type [12]	Frequency [12] cm ⁻¹	Free ion symmetry	Site symmetry	Crystal symmetry
B(1)O ₃			D_{3h}	D_3	D_3
	ν_1	939-1060	A'_1	— A ₁ —	—— A ₁
	ν_2	650-740	A''	A ₂	A ₂
	ν_3	1330-1490	<i>E'</i>	<i>E</i>	<i>E</i>
	ν_4	545-606	E'	<i>E</i>	E
B(2)O ₃			D_{3h}	<i>C</i> ₂	D_3
	ν_1	939-1060	A'1	A <	A_1
			1		E
	ν_2	650-740	A''	B <<	A ₂
	-		2		E
	ν_4	1330-1490	Ε'	A	A_1
					E
				B	A ₂
					E
	<i>v</i> ₃	545-606	Ε'	A	A_1
				B	A2
					- E

Рис. 2. Корреляционная диаграмма внутренних колебаний молекулярных групп ВО₃ в кристалле Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄.

Спектральная область $650-800 \text{ cm}^{-1}$ соответствует деформационным колебаниям v_4 и v_2 свободной группы ВО₃. Согласно [12], для плоских молекулярных групп XY_3 должно выполняться условие $v_4 < v_2$. По-видимому, группа линий $670-704 \text{ cm}^{-1}$ соответствует колебаниям v_4 , а группа линий $742-767 \text{ cm}^{-1}$ колебаниям v_2 (рис. 3).

Рис. 3. Спектральная область $650-800 \text{ cm}^{-1}$.

Физика твердого тела, 2016, том 58, вып. 1

В рамановских спектрах смешанного кристалла $Nd_{0.22}Ho_{0.78}Fe_3(BO_3)_4$ ниже температуры магнитного фазового перехода было обнаружено возникновение новых линий вблизи 630 сm⁻¹. Мы подробно изучили температурную эволюцию спектров $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$, но ниже магнитного перехода (рис. 3) никаких заметных изменений спектра не наблюдали. Это свидетельствует о том, что активируемые магнитным переходом линии неактивны в ИК-спектре, т.е. неполярны.

На рис. 4 представлен ИК-спектр $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ в диапазоне от 100 до $600\,\mathrm{cm}^{-1}$ в сравнении с ИК-спектром соединения HoFe₃(BO₃)₄. Как видно из рисунка, в данной области контур достаточно сложный, содержит большое количество максимумов. Этот частотный диапазон соответствует внутренним колебаниям октаэдров FeO₆ и треугольных призм ReO₆, а также внешним колебаниям. Интенсивные линии в районе 450 и $280 \,\mathrm{cm}^{-1}$, вероятно, соответствуют внутренним колебаниям октаэдра FeO₆ [13]. Допирование неодимом не привело к существенным изменениям в этой области спектра, несмотря на то что HoFe₃(BO₃)₄ при комнатной температуре находится в фазе P3₁21, а Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄ — в фазе с симметрией *R*32. Такое слабое различие может быть обусловлено несколькими причинами.

Во-первых, ИК-спектр HoFe₃(BO₃)₄ при структурном фазовом переходе претерпевает незначительные изменения. Несмотря на утроение ячейки, из-за значительной локализации внутренних мод комплексов BO₃, FeO₆ и ReO_6 расщепление линий можно заметить только в спектрах рамановского рассеяния благодаря более узким полосам рассеяния света.

Во-вторых, исследуемое нами соединение является твердым раствором, в котором Nd и Ho случайным образом распределены в кристалле по позициям 3*a*. Разница в ионных радиусах Ho и Nd достаточно заметна: 0.89 и 0.98 Å соответственно. Как следствие, в структуре возникают локальные искажения, что может оказывать влияние на частоты колебаний молекулярных групп. Однако трудно ожидать, что эти искажения будут значи-

Рис. 4. Сравнение спектров поглощения кристаллов $HoFe_3(BO_3)_4$ и $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ в диапазоне частот 100-600 cm⁻¹.

Рис. 5. Сравнение спектров поглощения кристаллов $HoFe_3(BO_3)_4$ и $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ в диапазоне частот $30-100~cm^{-1}$ при температурах 300 и 6 К.

Тип симм	иетрии А2	Тип симметрии Е		
$NdFe_3(BO_3)_4\\$	$HoFe_3(BO_3)_4$	$NdFe_3(BO_3)_4$	$HoFe_3(BO_3)_4$	
97	96	113	109	
158	161	156	160	
188	193	203	210	
207	212	218	222	
243	248	249	250	
257	262	267	269	
282	287	296	300	
309	313	341	346	
636	642	358	366	
718	728	445	448	
734	748	561	567	
1284	1287	641	646	
		660	669	
		691	702	
		716	726	
		963	960	
		1232	1237	
		1252	1261	
		1285	1288	

Вычисленные ИК-активные частоты колебаний кристаллов $HoFe_3(BO_3)_4$ и $NdFe_3(BO_3)_4$ (в ст $^{-1})$

тельными, поскольку и экспериментальные данные [11], и данные наших расчетов показывают, что частоты колебаний HoFe₃(BO₃)₄ очень близки (см. таблицу). Расчет проводился в программном пакете LADY [14]. Моделирование динамики решетки с учетом вероятности заселения атомами неодима и гольмия проводилось в рамках модифицированной модели случайных замещений [15].

Ожидать заметных изменений можно в самой низкочастотной области, соответствующей колебаниям редкоземельных ионов Но и Nd. Действительно, в области ниже $100 \,\mathrm{cm}^{-1}$ в смешанном кристалле наблюдаются два дополнительных пика с частотой 35 и 48 cm⁻¹, которые предположительно соответствуют колебаниям атомов неодима (рис. 5). Как видно из сравнения низкочастотного спектра Nd_{0.5}Ho_{0.5}Fe₃(BO₃)₄ и HoFe₃(BO₃)₄, линии в районе 60 и 90 cm⁻¹ присутствуют в обоих соединениях, очень слабо смещаются при допировании неодимом и относятся к колебанию иона Ho.

4. Заключение

Исследование ИК-спектров $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ в спектральном диапазоне 30-1700 сm⁻¹ при температурах от 6 до 300 К показало, что изменений, связанных со структурными фазовыми переходами, не происходит. Магнитный переход также не влияет на ИК-спектры $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$. Незначительные различия ИК спектров $Nd_{0.5}Ho_{0.5}Fe_3(BO_3)_4$ и HoFe₃(BO₃)₄ свидетельствуют о том, что ИК-спектры редкоземельных ферроборатов формируются в основном внутренними

колебаниями групп BO₃, FeO₆ и *ReO*₆, на которые практически не влияют структурные изменения и замещения редкоземельного катиона, что подтверждается полуэмпирическими расчетами динамики решетки. Изменения наблюдаются лишь в низкочастотной области спектра, где появляются новые линии, связанные с колебаниями Nd.

Список литературы

- А.А. Мухин, Г.П. Воробьев, В.Ю. Иванов, А.М. Кадомцева, А.С. Нарижная, А.М. Кузьменко, Ю.Ф. Попов, Л.Н. Безматерных, И.А. Гудим. Письма в ЖЭТФ 93, 305 (2011).
- [2] C. Ritter, A. Vorotynov, A. Pankrats, G. Petrakovskii, V. Temerov, I. Gudim, R. Szymczak. J. Phys.: Condens. Matter 20, 365 209 (2008).
- [3] А.А. Демидов, Д.В. Волков. ФТТ 53, 926 (2011).
- [4] I.A. Gudim, E.V. Eremin, V.L. Temerov. J. Cryst. Growth 312, 2427 (2010).
- [5] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ **36**, 640 (2010).
- [6] M.N. Popova, E.P. Chukalina, T.N. Stanislavchuk, B.Z. Malkin, A.R. Zakirov, E. Antic-Fidancev, E.A. Popova, L.N. Bezmaternykh, V.L. Temerov. Phys. Rev. B 75, 224 435 (2007).
- [7] M. Janoschek, P. Fischer, J. Schefer, B. Roessli, V. Pomjakushin, M. Meven, V. Petricek, G. Petrakovskii, L. Bezmaternikh. Phys. Rev. B 81, 094 429 (2010).
- [8] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 80, 104424 (2009).
- [9] A.S. Krylov, S.N. Sofronova, I.A. Gudim, A.N. Vtyurin. Solid State Commun. 174, 26 (2013).
- [10] S.N. Sofronova, Yu.V. Gerasimova, A.N. Vtyurin, I.A. Gudim, N.P. Shestakov, A.A. Ivanenko. Vibrational Spectroscopy 72, 20 (2014).
- [11] D. Fausti, A.A. Nugroho, P.H.M. van Loosdrecht, S.A. Klimin, M.N. Popova, L.N. Bezmaternykh. Phys. Rev. B 74, 024 403 (2006).
- [12] К. Накамото. ИК-спектры и спектры КР неорганических и координационных соединений. Мир, М. (1991). 536 с.
- [13] М.И. Пащенко, В.А. Бедарев, В.И. Кутько, Л.Н. Безматерных, В.Л. Темеров. ФНТ 36, 800 (2010).
- [14] M.B. Smirnov, V.Yu. Kazimirov. LADY: software for lattice dynamics simulations. JINR communications. Dubna. (2001). E14-2001-159.
- [15] I.F. Chang, S.S. Mitra. Phys. Rev. 172, 924 (1986).