# Рентгеноэлектронное и мессбауэровское исследования валентного состояния ионов переходных металлов в керамиках $Co_{1-x}Fe_xCr_2O_4$ (x = 0.1, 0.2, 0.5)

© А.Г. Кочур<sup>1</sup>, К.А. Гуглев<sup>2</sup>, А.Т. Козаков<sup>2</sup>, С.П. Кубрин<sup>2</sup>, А.В. Никольский<sup>2</sup>, В.И. Торгашев<sup>3</sup>

 <sup>1</sup> Ростовский государственный университет путей сообщения, Ростов-на-Дону, Россия
<sup>2</sup> Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия
<sup>3</sup> Южный федеральный университет, Ростов-на-Дону, Россия
E-mail: Kozakov\_a@mail.ru

(Поступила в Редакцию 2 июня 2015 г.)

Валентное состояние ионов переходных металлов в системе  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) изучено с помощью рентгеновской фотоэлектронной и мессбауэровской спектроскопии. Показано присутствие в этой системе ионов  $Fe^{2+}$  и  $Fe^{3+}$ . Относительные содержания  $Fe^{3+}/Fe^{2+}$  определены путем подгонки экспериментальных  $Fe_2^{2-}$ -спектров суперпозицией теоретических спектров  $Fe^{2+}$  и  $Fe^{3+}$ , а также методом мессбауэровской спектроскопии.

Работа выполнена при частичной поддержке Минобрнауки РФ проект 1880 и в рамках проектной части государственного задания Департамента науки и технологий Минобрнауки России № 3.1137.2014К, а также соглашения № 14.607.21.0110 от 27.11.2014 г., уникальный идентификатор соглашения RFMEFI60714X0110.

### 1. Введение

06

Сегнетомагнетиками, или мультиферроиками, называются материалы, обладающие одновременно сегнетоэлектрическими и ферро/антиферромагнитными свойствами. Валентное состояние 3d-переходных металлов в этих материалах представляет большой интерес для понимания физических явлений упорядочения электрической и магнитной подсистем, поскольку они в значительной степени обусловливают применение этих материалов в микроэлектронике, спинтронике и магнитной памяти. В последнее время наблюдается интерес к соединениям с общей формулой Со<sub>1-*x*</sub>А<sub>*x*</sub>Сr<sub>2</sub>О<sub>4</sub> (А — переходные металлы, такие как Cu, Fe, Mn), получаемым из CoCr<sub>2</sub>O<sub>4</sub> частичным замещением кобальта на другие переходные металлы, в том числе Fe [1-5]. Привлекательность для практических приложений таких соединений не в последнюю очередь обусловлена магнитными моментами электронов 3*d*-оболочек переходных металлов и их взаимодействием с коллективизированными электронами внешних оболочек.

Кристаллическая структура исходного соединения  $CoCr_2O_4$  относится в кубической парафазе к структурному типу нормальной шпинели, в которой магнитные ионы  $Co^{2+}$  занимают тетраэдрически координированные позиции, а ионы  $Cr^{3+}$  расположены в октаэдрически координированных позициях [1]. В то же время априори неясно, как будет обстоять дело с валентностью железа при замещении им ионов кобальта в соединениях  $Co_{1-x}Fe_xCr_2O_4$ , которая может, в зависимости от

соединения, быть равной 2, 3 и 4. В зависимости от валентности железа для данного *х* нельзя исключать и изменений в валентностях кобальта и хрома.

Целью настоящей работы является исследование валентного состояния ионов переходных металлов кобальта, железа и хрома в керамической системе  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) методами рентгеновской фотоэлектронной и мессбауэровской спектроскопии.

# 2. Синтез керамических образцов

Образцы  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) синтезированы по обычной керамической технологии путем проведения твердофазных реакций. В качестве исходных компонентов использовались оксиды  $Co_3O_4$ , FeO и  $Cr_2O_3$  марок чистоты не хуже "чда". Синтез проводили в воздушной атмосфере, температура первого отжига составляла 1200°C. Спекание керамики осуществляли в течение 2 h при 1550°C, после чего образцы охлаждались до комнатной температуры в течение 4 h. Полученные керамические образцы представляли собой цилиндрические таблетки диаметром 10 mm и толщиной 1-2 mm [4,5].

Рентгеноструктурные исследования выполнены на автоматизированном рентгеновском дифрактометре ДРОН-3, с использованием фильтрованного медного излучения Си $K\alpha$ . Согласно полученным дифрактограммам, образцы с x = 0.1, 0.2, 0.5 однофазны, они представляют собой твердые растворы со структурой шпинели.

**Таблица 1.** Элементный состав керамических образцов Co<sub>1-*x*</sub>Fe<sub>*x*</sub>Cr<sub>2</sub>O<sub>4</sub> по данным рентгеновского микроанализа и рентгеноэлектронной спектроскопии

| x          | Номинальный<br>состав                                                         | Измеренный состав                                                      |                                                                    |  |  |
|------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
|            |                                                                               | Рентгеновский<br>микроанализ                                           | Рентгеноэлектронная<br>спектроскопия                               |  |  |
| 0.1<br>0.2 | $Co_{0.9}Fe_{0.1}Cr_2O_4$ $Co_{0.8}Fe_{0.2}Cr_2O_4$ $Co_{0.8}Fe_{0.2}Cr_2O_4$ | $Co_{0.9}Fe_{0.1}Cr_{1.9}O_{4.1}$<br>$Co_{0.8}Fe_{0.2}Cr_{1.9}O_{4.1}$ | $Co_{0.8}Fe_{0.6}Cr_{1.6}O_4$<br>$Co_{0.9}Fe_{0.8}Cr_{1.5}O_{3.8}$ |  |  |
| 0.5        | $Co_{0.5}Fe_{0.5}Cr_2O_4$                                                     | $Co_{0.8}Fe_{0.6}Cr_{1.8}O_{3.8}$                                      | $Co_{0.6}Fe_{0.8}Cr_{1.5}O_{4.1}$                                  |  |  |

# Фотоэлектронный и мессбауэровский эксперименты

Рентгеновские фотоэлектронные спектры с поверхности керамик получены с помощью рентгеновского фотоэлектронного микрозонда ESCALAB 250. Возбуждение рентгеноэлектронных спектров осуществлялось с помощью монохроматизированного излучения АІКа-линии с энергией 1486.6 eV. Для нейтрализации зарядовых эффектов поверхность образца облучалась дополнительно потоком медленных электронов. Свободная от загрязнений поверхность создавалась скрайбированием образца алмазным надфилем в камере подготовки при давлении  $5 \cdot 10^{-7}$  mbar. Содержание углерода на исследуемых поверхностях было исчезающе малым: C1s-рентгеноэлектронная линия едва превышала уровень фона, но была достаточной для калибровки значений энергии связи. В качестве реперных соединений для определения валентности ионов кобальта и хрома использовались керамика  $CoCr_2O_4$  и порошок  $Cr_2O_3$ .

Мессбауэровские спектры образцов керамики  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) измерялись на спектрометре MS1104Em производства НИИ физики ЮФУ в геометрии подвижного источника. В качестве источника использовался <sup>57</sup>Со в матрице Сг. Изомерные сдвиги определены относительно металлического  $\alpha$ -Fe. Модельная расшифровка спектров проводилась с помощью программы UnivermMS [6].

В табл. 1 приведены измеренные составы керамик, определенные двумя способами: методом рентгеноспектрального микроанализа [7] и методом рентгеновской фотоэлектронной спектроскопии [8]. Относительная погрешность обоих методов составляет приблизительно 25%. Следует отметить, что данные микроанализа (столбец 3 табл. 1) представляют собой средние составы. Сравнение данных, полученных с помощью микроанализа и рентгеноэлектронной спектроскопии (столбцы 3 и 4 табл. 1), показывает, что объем и приповерхностный слой образцов заметно отличаются по элементному составу.

# 4. Результаты и обсуждение

На рис. 1 представлены Cr2p-спектры керамических образцов  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) в сравне-

нии с Cr2*p*-спектром реперного соединения Cr<sub>2</sub>O<sub>3</sub>. На нижней панели рис. 1 приведен также теоретический спектр иона Cr<sup>3+</sup>, рассчитанный в приближении изолированного иона при температурах 0 и 295 К. Метод расчета описан в [5,9]. Расчет при температуре 295 К лучше согласуется с экспериментом, что подтверждает необходимость учитывать температурный эффект при теоретическом описании Cr2*p*-спектров [5,9].

Спин-дублетное расщепление является основным взаимодействием, определяющим структуру Cr2p-спектров. Пики спин-дублета  $Cr2p_{3/2}$  и  $Cr2p_{1/2}$  имеют дополнительную тонкую структуру, отражающую мультиплетное расщепление в конечном состоянии фотопоглощения из-за взаимодействия 2p-дырки с незаполненной 3d-оболочкой.

Как можно видеть из рис. 1, Cr2*p*-спектры образцов керамик Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> (x = 0.1, 0.2, 0.5) по положению и форме очень близки к спектрам трехвалентного хрома в соединении Cr<sub>2</sub>O<sub>3</sub>. Это означает, что степень окисления хрома равна +3, и возможное присутствие ионов Cr с различной валентностью является незначительным. Энергии связи главного пика Cr2*p*<sub>3/2</sub> равны 576.6 eV, что согласуется с данными для трехвалентного иона хрома (576.2–576.6 eV) [3,10–12].



**Рис.** 1. Рентгеноэлектронные Cr2p-спектры керамик  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) и  $Cr_2O_3$ . Вертикальные линии разных размеров и сплошная кривая на нижней панели — теоретический Cr2p-спектр иона  $Cr^{3+}$  при температуре 295 К. Пунктирная линия — теоретический Cr2p-спектр  $Cr^{3+}$  при T = 0 (572–594 eV).

**Рис. 2.** Рентгеноэлектронные Co2*p*-спектры керамик Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> (x = 0.1, 0.2, 0.5). Сплошная линия на верхней панели представляет сумму теоретических спектров: Co2*p*-спектра иона Co<sup>2+</sup> в тетраэдрическом окружении и CoL<sub>3</sub>M<sub>23</sub>M<sub>45</sub> оже-спектра (заштрихованная область).

Для идентификации валентного состояния хрома также может быть использована величина расщепления  $\Delta E_{3s}$  между низкоспиновой и высокоспиновой компонентами Cr3s-спектра, которая зависит от числа неспаренных 3d-электронов [13]. Экспериментально измеренные величины  $\Delta E_{3s}$  для Cr3s-уровня в соединениях с x = 0.1-0.5 одинаковы и равны 4.1 eV, что согласуется с данными [14,15]. Это обстоятельство также свидетельствует о том, что хром в системе Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> находится в трехвалентном состоянии.

На рис. 2 приведены рентгеноэлектронные Со2*p*спектры, полученные с поверхностей образцов исследуемой системы. Известно, что на 2*p*-спектры 3*d*-соединений переходных металлов конца ряда оказывает существенное влияние явление переноса заряда (charge-transfer (СТ)), возникающее от смешивания конфигураций основного состояния  $3d^n$  и состояния с переносом заряда  $3d^{n+1}L^{-1}$ , где L —- высшие занятые орбитали атомов окружения (лигандов) [16,17]. Взаимное расположение главного  $3d^n$ -пика и сателлита  $3d^{n+1}L^{-1}$  может быть различным. Как правило, в спектрах 3*d*-переходных металлов до Mn сателлиты СТ малы, и основные спектральные линии соответствуют  $2p^5 3d^n$ -состояниям. По этой причине даже приближение изолированного иона достаточно хорошо описывает Mn2p-спектры [18–20]. Для более тяжелых 3d-атомов, потенциал 2p-вакансии, ощущаемый 3d-электронами, часто становится больше, чем энергия переноса заряда  $L \rightarrow 3d$ , и  $2p^5 3d^{n+1}L^{-1}$ -состояния имеют более низкую энергию связи, а соответствующие компоненты рентгеноэлектронного спектра — большую интенсивность, чем компоненты, происходящие от основных  $2p^5 3d^n$ -состояний. Так, на рис. 2 в Co2p-спектрах пики B и D соответствуют состояниям переноса заряда  $2p^5 3d^{n+1}L^{-1}$ , а C и E — основным  $2p^5 3d^n$ -состояниям.

В [5,17] расчет Co2*p* и Ni2*p* рентгеновских фотоэлектронных спектров образцов системы Ni<sub>1-x</sub>Co<sub>x</sub>Cr<sub>2</sub>O<sub>3</sub> выполнен с учетом мультиплетного расщепления, расщепления кристаллическим полем и явления переноса заряда с использованием программы Ставицкого и де Грота [21]. Результат расчета Co2*p* рентгеновского фотоэлектронного спектра иона Co<sup>2+</sup> в тетраэдрическом кислородном окружении с помощью программы [21] представлен на верхней панели рис. 2 сплошной линией.

Дополнительной проблемой для полного описания Co2p рентгеновского фотоэлектронного спектра является необходимость учета вклада  $CoL_3M_{23}M_{45}$  Оже-линии, которая всегда присутствует в начале Co2p-спектра при возбуждении Co2p-электронов рентгеновским излучением  $AlK\alpha$ -линии (особенность A). Для учета этого вклада в приближении изолированного иона [5,17] был рассчитан  $CoL_3M_{23}M_{45}$  Оже-спектр. На рис. 2 рассчитанный спектр (сплошная линия) на верхней панели представлен в виде суммы двух теоретических спектров: Co2p рентгеновского фотоэлектронного спектра и  $CoL_3M_{23}M_{45}$  Оже-спектра. Вклад от  $CoL_3M_{23}M_{45}$  представлен в виде заштрихованной площади.

Как видно из рис. 2, все Co2*p*-спектры образцов Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> похожи друг на друга и хорошо совпадают с рассчитанным спектром для Co<sup>2+</sup> в тетраэдрическом окружении. Главный пик с энергией связи 780.5 eV также хорошо согласуется с энергией Co2*p*-линии для соединения CoCr<sub>2</sub>O<sub>4</sub>, в котором двухвалентный кобальт также находится в тетраэдрическом окружении. Можно заключить, что в керамиках Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> ионы кобальта находятся в двухвалентном состоянии и занимают тетраэдрические позиции.

Рассмотрим теперь валентное состояние ионов Fe. Так как в системе  $Co_{1-x}Fe_xCr_2O_4$  ионы Fe частично замещают ионы двухвалентного Co, можно было бы ожидать, что железо будет находиться в двухвалентном состоянии. Однако это не так. Валентное состояние ионов железа было определено двумя независимыми методами: рентгеновской фотоэлектронной и мессбауэровской спектроскопией.

Мессбауэровские спектры образцов  $Co_{1-x}Fe_xCr_2O_4$  приведены на рис. 3. Спектры всех трех образцов состоят из трех дублетов, один из которых имеет малую величину квадрупольного расщепления и выглядит на эксперименте как одна линия. Параметры компонент



Таблица 2. Параметры мессбауэровских спектров керамических образцов Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub>, измеренных при комнатной температуре

| x   | Компонента | Ионное<br>состояние | Координация | $\delta,$ mm/s $\pm 0.02$ | $arepsilon, \ mm/s \ \pm 0.02$ | G,<br>mm/s<br>±0.02 | $A, \% \\ \pm 0.02$ |
|-----|------------|---------------------|-------------|---------------------------|--------------------------------|---------------------|---------------------|
| 0.1 | Дублет #1  | Fe <sup>3+</sup>    | октаэдр     | 0.35                      | 0.37                           | 0.26                | 53.44               |
|     | Дублет #2  | Fe <sup>3+</sup>    | тетраэдр    | 0.30                      | 1.03                           | 0.43                | 22.20               |
|     | Синглет    | Fe <sup>2+</sup>    | тетраэдр    | 0.94                      |                                | 0.38                | 24.37               |
| 0.2 | Дублет #1  | Fe <sup>3+</sup>    | октаэдр     | 0.35                      | 0.36                           | 0.26                | 48.63               |
|     | Дублет #2  | Fe <sup>3+</sup>    | тетраэдр    | 0.30                      | 1.01                           | 0.52                | 29.62               |
|     | Синглет    | Fe <sup>2+</sup>    | тетраэдр    | 0.92                      |                                | 0.50                | 21.75               |
| 0.5 | Лублет #1  | Fe <sup>3+</sup>    | октаэлр     | 0.36                      | 0.36                           | 0.27                | 64.03               |
|     | Дублет #2  | Fe <sup>3+</sup>    | тетраэдр    | 0.31                      | 0.90                           | 0.70                | 34.31               |
|     | Синглет    | Fe <sup>2+</sup>    | тетраэдр    | 1.39                      |                                | 0.32                | 1.66                |

Примечание.  $\delta$  — изомерный сдвиг,  $\varepsilon$  — квадрупольное расщепление, G — ширина линии, A — площадь под компонентой разложения.

спектра приведены в табл. 2. Площади компонент (восьмой столбец табл. 2) позволяют рассчитать соотношение содержания ионов  $Fe^{2+}$  и  $Fe^{3+}$ .

Дублет 1, исходя из значения его изомерного сдвига, соответствует ионам Fe<sup>3+</sup> в октаэдрическом окружении [22], наличие квадрупольного расщепления указы-



**Рис. 3.** Мессбауэровские спектры керамик  $Co_{1-x}Fe_xCr_2O_4$ (x = 0.1, 0.2, 0.5), измеренные при комнатной температуре.

вает на наличие искажения кислородных октаэдров [23]. Данная компонента обладает наибольшей площадью во всех спектрах. Дублет 2 обладает меньшим изомерным сдвигом и соответствует ионам  $Fe^{3+}$  в тетраэдрическом окружении. Следует отметить, что для линии дублета 2 наблюдается значительное уширение, которое увеличивается с ростом концентрации Fe. По-видимому, это связано с нарастанием неоднородности в тетраэдрическом окружении  $Fe^{3+}$ . То есть, в образцах имеется набор кислородных тетраэдров, окружающих ионы  $Fe^{3+}$ , каждый из этих тетраэдров слегка отличается от остальных. Таким образом, компонента дублета 2 представляет некоторый "усредненный" тетраэдр.

Третья компонента спектра с изомерным сдвигом, соответствующим ионам Fe<sup>2+</sup> в тетраэдрическом окружении, хотя и обладает очень слабым квадрупольным расщеплением, также представлена в виде дублета. Низкая величина квадрупольного расщепления связана с конкуренцией электронного и решеточного вкладов в градиент электрического поля на ядрах Fe<sup>2+</sup>, что является следствием сильного искажения элементарных ячеек в образцах керамик исследуемых соединений [23].

Из параметров дублета 3 (рис. 3) следует, что с ростом концентрации Fe изменяется изомерный сдвиг и площадь дублета. Изменение изомерного сдвига при неизменной валентности иона может быть вызвано изменением (вероятно, увеличением) координационного числа для ионов Fe<sup>2+</sup>. Уменьшение площади дублета 3 сопровождается ростом площади дублета 2. Простая оценка в рамках теории кристаллического поля показывает, что состояние Fe<sup>3+</sup> в тетраэдрическом окружении более стабильно (на  $0.4(10Dq)_{tetr}$ ), чем состояние  $Fe^{2+}$  [5]. При x = 0.1 и 0.2 концентрации ионов  $Fe^{2+}$ и Fe<sup>3+</sup> в тетраэдрическом окружении сопоставимы, что указывает на наличие в данных образцах механизма, отличного от электростатического отталкивания, который стабилизирует состояние Fe<sup>2+</sup>. Для образца с наибольшей концентрацией железа (x = 0.5) механизм кристаллического поля преобладает, и большей части ионов Fe в тетраэдрическом окружении энергетически выгодно находиться в трехвалентном состоянии.

Относительное содержание ионов  $Fe^{2+}$  и  $Fe^{3+}$  было получено, кроме того, альтернативным методом — путем подгонки Fe2p-спектров керамик суперпозицией теоретических Fe2p-спектров ионов  $Fe^{2+}$  и  $Fe^{3+}$  и  $CoL_3M_{45}M_{45}$  — Оже-спектра:

$$Spct(a_{1}, a_{2}, a_{3}) = a_{1}Spct(Fe^{2+}2p) + a_{2}Spct(Fe^{3+}2p) + a_{3}Spct(CoL_{3}M_{45}M_{45})$$
(1)

где  $Spct(Fe^{2+}2p)$ ,  $Spct(Fe^{3+}2p)$ ,  $Spct(CoL_3M_{45}M_{45})$  базисные спектры,  $a_1, a_2, a_3$  — параметры подгонки.

На основании результатов наших расчетов интегральных сечений фотоионизации и вероятности Оже-эмиссии, были приняты следующие отношения площадей базисных спектров

$$Spct(Fe^{2+}2p)/Spct(Fe^{3+}2p)/Spct(CoL_3M_{45}M_{45})$$
  
= 2.0/1.0/0.17.

Если *a*<sub>1</sub>, *a*<sub>2</sub>, *a*<sub>3</sub> являются оптимальными параметрами подгонки, то выражение для относительных долей



Рис. 4. Рентгеноэлектронные Fe2*p*-спектры керамик Co<sub>1-x</sub>Fe<sub>x</sub>Cr<sub>2</sub>O<sub>4</sub> (x = 0.1, 0.2, 0.5). *I* — эксперимент, *2* — подгонка суперпозицией спектров (1), *3* — вклад Fe<sup>2+</sup>, *4* — вклад Fe<sup>3+</sup>, *5* — вклад CoL<sub>3</sub>M<sub>23</sub>M<sub>45</sub>.



**Рис. 5.** Относительная доля ионов  $Fe^{3+}$  в керамиках  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) по мессбауэровским и рентгеноэлектронным данным.

ионов  $Fe^{2+}$  и  $Fe^{3+}$  имеет вид

$$C(\text{Fe}^{2+}) = a_1/(a_1 + a_2); \quad C(\text{Fe}^{3+}) = a_2/(a_1 + a_2).$$
 (2)

Аналогичным образом относительное содержание Co/Fe может быть рассчитано как

$$C(\text{Co})/C(\text{Fe}) = a_3/(a_1 + a_2).$$
 (3)

Экспериментальные Fe2*p*-спектры керамик  $Co_{1-x}Fe_xCr_2O_4$  и их подгонка (1) приведены на рис. 4. Основываясь на данных мессбауэровской спектроскопии, мы использовали для базисного спектра в выражении (1) спектр двухвалентного железа в тетраэдрическом окружении и спектр трехвалентного железа в октаэдрическом окружении. Наши расчеты показали, что Fe2*p*-спектры для ионов Fe<sup>3+</sup> в октаэдрическом и тетраэдрическом кристаллических полях имеют близкие профили. Однако эти спектры могут отличаться по энергетическому положению. Поскольку наш расчет не позволяет точно рассчитывать энергетические положения спектров, можно было бы ввести в набор базисных спектров (1) дополнительно спектр иона Fe<sup>3+</sup> в тетраэдрическом окружении, а также дополнительный варьируемый параметр — сдвиг между спектрами  $(Fe^{3+})_{oct}$  и  $(Fe^{3+})_{tetr}$ . Мы отказались от такого шага, так как это вызывало бы очень сильную скоррелированность параметров подгонки и могло бы привести к неоднозначным решениям.

На рис. 5 приведены доли  $Fe^{3+}$  ионов в керамиках  $Co_{1-x}Fe_xCr_2O_4$ , рассчитанные по мессбауэровским и рентгеноэлектронным данным как функция номинального содержания железа x.

Как видно из рис. 5, относительное содержание ионов  $Fe^{3+}$  увеличивается с увеличением концентрации Fe. При этом содержание Со не изменяется, а содержание Cr уменьшается (табл. 1).

Это означает, что ионы трехвалентного Fe могут замещать ионы  $Cr^{3+}$  в октаэдрических позициях, в то время как ионы Fe<sup>2+</sup> замещают ионы двухвалентного Co<sup>2+</sup> в тетраэдрических позициях.

### 5. Заключение

В керамиках  $Co_{1-x}Fe_xCr_2O_4$  (x = 0.1, 0.2, 0.5) определены валентные состояния ионов переходных металлов Co, Cr и Fe. Ионы Co находятся в двухвалентном состоянии в тетраэдрических позициях; ионы Cr находятся в трехвалентном состоянии в октаэдрических позициях. Двухвалентные ионы Fe находятся в тетраэдрических позициях, в то время как Fe<sup>3+</sup> занимают как тетраэдрические, так и октаэдрические позиции.

Относительное содержание  $Fe^{3+}/Fe^{2+}$  определено путем подгонки экспериментальных Fe2p-спектров суперпозицией теоретических спектров, а также методом мессбауэровской спектроскопии. Доля  $Fe^{3+}$  ионов увеличивается при увеличении x.

## Список литературы

- Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, Y. Tokura. Phys. Rev. Lett. 96, 207 204-1 (2006).
- [2] H. Bao, S. Yang, X. Ren. J. Phys.: Conf. Ser. 266, 012 001 (2011).
- [3] C. Suchomski, C. Reitz, K. Brezesinski, C.T. Sousa, M. Rohnke, K. Iimura, J.P.E. Araujo, T. Brezesinski. Chem. Mater. 24, 155 (2012).
- [4] A.A. Bush, V.Ya. Shkuratov, K.E. Kamentsev, V.V. Masterov, V.M. Cherepanov. (INTERMATIC – 2014). Materials. Part 2. Moscow, Moscow State Technical University of Radio Engineering, Electronics and Automation (2014) P. 46.
- [5] A.G. Kochur, A.T. Kozakov, K.A. Googlev, S.P. Kubrin, A.V. Nikolskii, V.I. Torgashev, A.A. Bush, V.Ya. Shkuratovd, S.I. Shevtsova. J. Alloys Comp., 636, 241 (2015).
- [6] I.P. Raevski, S.P. Kubrin, S.I. Raevskaya, V.V. Stashenko, D.A. Sarychev, M.A. Malitskaya, M.A. Seredkina, V.G. Smotrakov, I.N. Zaharchenko, V.V. Eremkin. Ferroelectrics 373, 121 (2008).
- [7] V.D. Scott, G. Love. Quantitative electron-probe microanalysis./ John Wiley&Sons. N.Y.-Brisbane-Chichester-Ontario (1983). 351 p.
- [8] D. Briggs, M.P. Seach. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. John Wiley&Sons, Chichester–N.Y. (1984), 533 p.
- [9] A.G. Kochur, A.T. Kozakov, V.A. Yavna, Ph. Daniel. J. Electron Spectrosc. Relat. Phenom, 195, 200 (2014).
- [10] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lan, A.R. Gerson, R.St.C. Smart. Appl. Surf. Sci. 257, 2717 (2011).
- [11] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Maulder, G.E. Muilenberg. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Praire (1979). 190 p.
- [12] В.И. Нефедов. Рентгеноэлектронная спектроскопия химических соединений. Справочник. Химия, М. (1984). 256 с.
- [13] J.H. Van Vleck. Phys. Rev. 45, 405 (1934).
- [14] I. Pollini. Phil. Mag., 85, 2641 (2005).
- [15] P.A.W. van der Heide. J. Electron Spectrosc. Relat. Phenom. 164, 8 (2008).
- [16] S. Hüfner. Photoelectron Spectroscopy. Principles and Applications. Springer-Verlag, Berlin. (2003). 662 p.
- [17] A.G. Kochur, A.T. Kozakov, K.A. Googlev, A.S. Mikheykin, V.I. Torgashev, A.A. Bush, A.V. Nikolskii. J. Electron Spectrosc. Relat. Phenom. **195**, 208 (2014).

- [18] A.T. Kozakov, A.G. Kochur, A.V. Nikolsky, K.A. Googlev, V.G. Smotrakov, V.V. Eremkin. J. Electron Spectrosc. Relat. Phenom. 184, 508 (2011).
- [19] A.G. Kochur, A.T. Kozakov, A.V. Nikolskii, K.A. Googlev, A.V. Pavlenko, I.A. Verbenko, L.A. Reznichenko, T.I. Krasnenko. J. Electron Spectrosc. Relat. Phenom. 185, 175 (2012).
- [20] A.T. Kozakov, A.G. Kochur, L.A. Reznichenko, L.A. Shilkina, A.V. Pavlenko, A.V. Nikolskii, K.A. Googlev, V.G. Smotrakov. J. Electron Spectrosc. Relat. Phenom. 186, 14 (2013).
- [21] E. Stavitski, F.M.F. de Groot. Micron. 41, 687 (2010).
- [22] F.Menil. J. Phys. Chem. Solids, 46, 763 (1985).
- [23] F.J. Berry, D.J. Vaughan. Chemical bonding and spectroscopy in mineral chemistry / Chapman and Hall, London-N.Y. (1985). 325 p.

8