05,06

Диэлектрическая релаксация, магнитодиэлектрические и магнитоэлектрические взаимодействия в керамике Bi_{0.6}La_{0.4}MnO₃

© А.В. Турик^{1,2}, А.В. Павленко^{1,3}, А.В. Махиборода², Л.А. Резниченко¹

 ¹ Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия
² Южный федеральный университет, Ростов-на-Дону, Россия
³ Южный научный центр РАН, Ростов-на-Дону, Россия
E-mail: turik1934@yandex.ru
(Поступила в Редакцию 2 июня 2015 г.

В окончательной редакции 24 июня 2015 г.)

В интервалах температур T = 10-220 K, частот $f = 20-10^6$ Hz и магнитных индукций B = 0-0.846 T выполнены измерения комплексной диэлектрической проницаемости $\varepsilon^*/\varepsilon_0 = \varepsilon'/\varepsilon_0 - i\varepsilon''/\varepsilon_0$ керамики манганита висмута-лантана Bi_{0.6}La_{0.4}MnO₃. При температуре 80 K в спектрах $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$ обнаружена диэлектрическая релаксация, являющаяся суперпозицией вкладов нескольких релаксационных процессов, каждый из которых приоритетен в своем частотном диапазоне: I — $f < 10^3$ Hz, II — $10^3 < f < 10^5$ Hz, III — $10^5 < f < 10^6$ Hz. В области = 10-120 K аномальное поведение $\varepsilon'/\varepsilon_0(T)$ и $\varepsilon''/\varepsilon_0(T)$ наблюдается вблизи температуры перехода из парамагнитной в ферромагнитную фазу и обусловлено андерсоновской локализацией носителей заряда на спиновом беспорядке.

Работа выполнена при финансовой поддержке МОН РФ (базовая и проектная части госзадания, проект № 1927, темы № 213.01-2014/012-ВГ и 3.1246.2014/К), ФЦП (соглашение № 14.575.21.0007) и СП-1689.2015.3.

1. Введение

Материалы, в которых проявляются магнитоэлектрический, магнитодиэлектрический и магниторезистивный эффекты, представляют интерес как с научной, так и с практической точки зрения. Манганит висмута (BiMnO₃) и твердые растворы (TP) на его основе представители указанного класса материалов [1-4]. Как показал обзор литературы и наши предварительные исследования, одной из наиболее интересных и в то же время малоизученной является бинарная система ТР Ві_{1-х}Lа_хMnO₃ (BLM). Нами проведены исследования свойств полученных по обычной керамической технологии образцов ТР данной системы в диапазоне концентраций x = 0.3 - 0.7 с шагом $\Delta x = 0.1$ [5–9], в ходе которых было показано, что в керамике $Bi_{0.5}La_{0.5}MnO_3$ (BLM-50) при T = 80 К наблюдается магнитодиэлектрический эффект, обусловленный сосуществованием максвеллвагнеровской поляризации и магниторезистивного эффекта. Настоящая работа является продолжением выполненных ранее исследований и посвящена установлению закономерностей формирования диэлектрических и магнитодиэлектрических характеристик керамики ТР системы $Bi_{1-x}La_xMnO_3$ с x = 0.4.

2. Объекты, методы приготовления и исследования образцов

Объектами исследования являлись керамики состава Bi_{0.6}La_{0.4}MnO₃ (BLM-60). Синтез ТР осуществлялся методом твердофазных реакций из оксидов Bi₂O₃, Mn₂O₃, La₂O₃ высокой степени чистоты путем обжига в две стадии (с промежуточным помолом) при температурах $T_1 = 1173$ К и $T_2 = 1273$ К и временах выдержки $\tau_1 = 10$ h и $\tau_2 = 2$ h. Спекание керамики проводилось при температуре 1293 К в течение 2 h.

Измерения действительной ($\varepsilon'/\varepsilon_0$) и мнимой ($\varepsilon''/\varepsilon_0$) частей относительной комплексной диэлектрической проницаемости $\varepsilon^*/\varepsilon_0 = \varepsilon'/\varepsilon_0 - i\varepsilon''/\varepsilon_0$ (ε_0 — электрическая постоянная) в температурном (10–220 K) и частотном (20–10⁶ Hz) интервалах проводились с помощью прецизионного анализатора импеданса Wayne Kerr 6500 B. Петли диэлектрического гистерезиса (зависимость поляризованности *P* от напряженности электрического поля *E*) при $T \sim 80$ K на частоте 50 Hz получались с помощью осциллографической установки Сойера–Тауэра.

Исследование характера изменения $\varepsilon'/\varepsilon_0$ и $\varepsilon''/\varepsilon_0$ на частотах $f = 20-10^6$ Hz при T = 80 K в магнитном поле B = 0-0.846 T и/или постоянном электрическом поле U = 0-40 V проводилось с помощью LCR-метра Agilent E4980A при напряженности измерительного электрического поля E = 1 V/mm. По экспериментальным данным были рассчитаны магнитодиэлектрический (MD), электродиэлектрический (ED) коэффициенты, коэффициент MED в случае комбинированного воздействия магнитного и электрического полей, а также коэффициенты диэлектрических потерь: магнитодиэлектрический (ML) и электродиэлектрический (EL) коэффициенты диэлектрических потерь и коэффициент MEL в случае комбинированного воздействия полей:

$$MD(B) = \frac{\varepsilon'(B) - \varepsilon'(0)}{\varepsilon'(0)} \cdot 100\%,$$
$$ML(B) = \frac{\varepsilon''(B) - \varepsilon''(0)}{\varepsilon''(0)} \cdot 100\%,$$
(1)

$$\mathrm{ED}(U) = rac{arepsilon'(U) - arepsilon'(0)}{arepsilon'(0)} \cdot 100\%,$$

$$\mathrm{EL}(U) = \frac{\varepsilon''(B) - \varepsilon''(0)}{\varepsilon''(0)} \cdot 100\%, \qquad (2)$$

$$MED(B, U) = \frac{\varepsilon'(B, U) - \varepsilon'(0, 0)}{\varepsilon'(0, 0)} \cdot 100\%,$$

$$MEL(B, U) = \frac{\varepsilon''(B, U) - \varepsilon''(0, 0)}{\varepsilon''(0, 0)} \cdot 100\%, \quad (3)$$

где $\varepsilon(B)$, $\varepsilon(U)$, $\varepsilon(B, U)$, $\varepsilon(0)$ — диэлектрические проницаемости, измеренные в переменном электрическом поле частоты f с напряженностью E в присутствии и в отсутствие постоянного магнитного поля с индукцией Bи/или постоянного электрического поля с напряжением смещения U.

Для измерения удельного электрического сопротивления ρ при температуре T = 80 К в магнитном поле B = 0-0.846 Т или постоянном электрическом поле U = 0-250 V использовался High Resistance Meter Agilent E4339 B.

3. Экспериментальные результаты и обсуждение

В [5,6] показано, что исследуемые в работе керамические образцы BLM-60 однофазны, практически беспримесны и при комнатной температуре имеют структуру, близкую к кубической.

Для измерения магнитной активности керамики BLM-60 образец подвешивался между полюсами магнита и оценивался его отклик на воздействие постоянного магнитного поля при различных температурах. При комнатной температуре ($T \sim 300 \text{ K}$) образец не реагировал на приложение магнитного поля B = 0-0.846 T, в то время как при T = 80 K магнитная активность материала четко проявлялась уже при $B \sim 0.2 \text{ T}$. Это свидетельствует о том, что при комнатной температуре образец находится в парамагнитной фазе, а при T = 80 K - в ферромагнитной, что коррелирует с магнитной фазовой диаграммой системы Bi_{1-x}La_xMnO₃ [3].

На рис. 1 представлены характерные зависимости $\varepsilon'/\varepsilon_0(T)$ и $\varepsilon''/\varepsilon_0(T)$ керамики BLM-60 в диапазонах частот $f = 10^3 - 10^6$ Hz и температур T = 10 - 220 K. В исследуемом TP в области T = 10 - 120 K при повышении температуры на зависимостях $\varepsilon'/\varepsilon_0(T)$ наблюдается формирование ступенек, практически исчезающих при

Рис. 1. Зависимости $\varepsilon'/\varepsilon_0(T)$ и $\varepsilon''/\varepsilon_0(T)$ керамики BLM-60 в диапазоне частот $10^3 - 10^6$ Hz и температур 10–220 K. Стрелка указывает направление роста частоты f для кривых $\varepsilon'/\varepsilon_0(T)$. Для кривых $\varepsilon''/\varepsilon_0(T) > 100$ частота f увеличивается слева направо.

низких частотах измерительного электрического поля, а на кривых $\varepsilon''/\varepsilon_0(T)$ — формирование максимумов, сдвигающихся в область более высоких температуры по мере увеличения f. Дальнейший рост температуры сопровождается резким увеличением дисперсии $\varepsilon'/\varepsilon_0$ и $\varepsilon''/\varepsilon_0$, что может быть связано с увеличением электропроводности образцов. При изучении петель диэлектрического гистерезиса в керамике BLM-60 при $T \sim 80$ K наблюдать проявление сегнетоэлектрических свойств не удалось. Поэтому разумно предположить, что, как и в случае керамики BLM-50, аномалии в поведении $\varepsilon'/\varepsilon_0(T)$ и $\varepsilon''/\varepsilon_0(T)$ связаны с размытым магнитным фазовым переходом из парамагнитного в ферромагнитное состояние.

На рис. 2 представлены зависимости $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, MD(f), ML(f) керамики BLM-60 при T = 80 K в диапазоне $f = 20-10^6$ Hz при B = 0и 0.846 T. В отсутствие магнитного поля с увеличением f величина $\varepsilon'/\varepsilon_0$ монотонно убывает от 130 до 50 и при $f > 10^5$ Hz практически не изменяется. На кривых $\varepsilon''/\varepsilon_0(f)$ увеличение f сопровождается сначала плавным уменьшением $\varepsilon''/\varepsilon_0$ в интервале $20-10^3$ Hz, затем — формированием максимума при $f \sim 2 \cdot 10^3$ Hz,

Рис. 2. Зависимости $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, MD(f) и ML(f) керамики BLM-60 при T = 80 К в диапазонах $f = 20-10^6$ Hz и B = 0-0.846 Т.

а при $f > 2 \cdot 10^3$ Hz — резким снижением, замедляющимся при $f = 10^5 - 10^6$ Hz. Это свидетельствует о том, что в керамике BLM-60 при T = 80 K, как и в BLM-50, в спектрах $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$ проявляется диэлектрическая релаксация. Достаточно сложный характер регистрируемых спектров позволяет предположить, что в рассматриваемом частотном диапазоне имеет место суперпозиция вкладов нескольких релаксационных процессов, каждый из которых приоритетен в своем частотном диапазоне: I — $f < 10^3$ Hz, II — $10^3 < f < 10^5$ Hz, III — $10^5 < f < 10^6$ Hz. Это предположение подтверждают результаты исследования магнитодиэлектрического эффекта (рис. 2).

Приложение к образцу постоянного магнитного поля приводит к росту $\varepsilon'/\varepsilon_0$ практически на всех частотах измерительного электрического поля и, как следствие, к положительным значениям MD. Более сложное поведение наблюдается для $\varepsilon''/\varepsilon_0$: при $f < 10^3$ Hz и $f > 2 \cdot 10^3$ Hz приложение магнитного поля приводит к увеличению $\varepsilon''/\varepsilon_0$, тогда как при $10^3 < f < 2 \cdot 10^3$ Hz величина $\varepsilon''/\varepsilon_0$ практически не изменяется, что находит свое отражение также в зависимости ML(f). Отметим, что в чистом манганите висмута BiMnO₃ магнитодиэлектрический эффект

проявляется очень слабо (MD(B) = -0.6% при магнитной индукции B = 9 T [10]). В тонких пленках Bi_{0.8}La_{0.2}MnO₃/SrTiO₃(111) при сопоставимом с наблюдаемым в нашем случае поведении $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$ MD(B) больше и достигает 45% при B = 9 T [10].

Описанные эффекты в нашем случае могут быть объяснены увеличением релаксационной частоты системы зерно-прослойка в BLM-керамике вследствие колоссального отрицательного магнетосопротивления [2,11]. Согласно [12], спецификой манганитов является узкая зона проводимости, в которой эффекты, связанные с электронными и фононными корреляциями и структурным беспорядком, приводят к андерсоновской локализации носителей заряда на спиновом беспорядке. Магнитное упорядочение под действием внешнего магнитного поля снижает степень беспорядка и ведет к частичной делокализации носителей вблизи точки Кюри. Наибольший эффект достигается, когда в парамагнитной фазе конкурируют различные типы магнитных взаимодействий. Следует учитывать также влияние межзеренных границ и туннелирование носителей заряда через диэлектрические межзеренные прослойки.

На рис. З представлены зависимости $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, ED(f), EL(f) керамики BLM-60 при T = 80 К в диапазонах $f = 20-10^6$ Hz и U = 0-40 V. Приложение

Рис. 3. Зависимости $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, ED(f) и EL(f) керамики BLM-60 при T = 80 К в диапазонах $f = 20-10^6$ Hz и U = 0-40 V.

Рис. 4. Зависимости $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$, MED(f) и MEL(f)керамики BLM-60 при T = 80 К в диапазонах $f = 20-10^6$ Hz, B = 0-0.846 Т и U = 0-40 V.

Рис. 5. Зависимости $\rho(B)$ и $\rho(U)$ керамики BLM-60 в диапазонах B = 0 - 0.846 Т и U = 0 - 250 V при T = 80 K.

к образцу электрического поля приводит при $f < 10^3$ Hz к уменьшению $\varepsilon'/\varepsilon_0$ и возрастанию $\varepsilon''/\varepsilon_0$ и не оказывает заметного влияния в остальном диапазоне частот, что подтверждается зависимостями ED(f) и EL(f). Это свидетельствует о том, что релаксационный процесс I более чувствителен к влиянию электрического поля, чем процессы II и III. Зависимости $\varepsilon'/\varepsilon_0(U)$ и особенно $\varepsilon''/\varepsilon_0(U)$ при $f < 10^3$ Hz выражены сильнее, чем зависимости $\varepsilon'/\varepsilon_0(B)$ и $\varepsilon''/\varepsilon_0(B)$. Следовательно, делокализация носителей на хвостах плотности состояний в запрещенной зоне в электрическом поле происходит более интенсивно, чем в магнитном поле.

Одновременное приложение к образцу электрического и магнитного полей (рис. 4) приводит к суперпозиции вкладов от обоих воздействий. Это выражается в медленном росте $\varepsilon'/\varepsilon_0$, резком скачке с последующим уменьшением $\varepsilon''/\varepsilon_0$ при f > 20 Hz и полном совпадении в диапазоне $f > 10^3$ Hz этих зависимостей с наблюдаемыми кривыми $\varepsilon'/\varepsilon_0(f)$ и $\varepsilon''/\varepsilon_0(f)$ при воздействии на образец магнитного поля с B = 0.846 T. Поэтому в зависимостях MED(f) и MEL(f) при низких частотах преобладают черты зависимостей ED(f) и EL(f).

На рис. 5 приведены зависимости $\rho(B)$ и $\rho(U)$ керамики BLM-60, полученные при T = 80 К, B = 0-0.846 Т и U = 0-250 V. При температуре 80 К в отсутствие постоянного магнитного поля керамика BLM-60 имеет достаточно низкое удельное электрическое сопротивление ($\rho = 59 \cdot 10^6 \,\Omega \cdot m$). Воздействие магнитного поля приводит к уменьшению ρ (отрицательный магниторезистивный эффект, согласующийся с данными других авторов), и при $B = \pm 0.846$ Т ρ снижается до значений $\sim 47 \cdot 10^6 \,\Omega \cdot m$. Приложение к образцу электрического поля приводит к резкому падению ρ при U < 50 V и последующему монотонному убыванию ρ в остальном диапазоне напряжений. Такое поведение ρ полностью коррелирует с характером зависимостей на рис. 2–4.

4. Выводы

Установлено, что в керамике BLM-60:

1) в области T = 10-120 К аномальное поведение зависимостей $\varepsilon'/\varepsilon_0(T)$ и $\varepsilon''/\varepsilon_0(T)$ обусловлено происходящим магнитным фазовым переходом из парамагнитного в ферромагнитное состояние;

2) при $T = 80 \,\mathrm{K}$ в спектрах $\varepsilon'/\varepsilon_0(f)$, $\varepsilon''/\varepsilon_0(f)$ в частотном диапазоне 20–10⁶ Hz выделяются три области диэлектрической релаксации: I — $f < 10^3 \,\mathrm{Hz}$, II — $10^3 < f < 10^5 \,\mathrm{Hz}$, III — $10^5 < f < 10^6 \,\mathrm{Hz}$; природа релаксации в третьей области отлична от релаксаций в областях I и II.

Список литературы

- T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura. Phys. Rev. B 67, 180 401 (2003).
- [2] Y.D. Zhao, Jonghyurk Park, R.-J. Jung, H.-J. Noh, S.-J. Oh. J. Magn. Magn. Mater. 280, 404 (2004).
- [3] I.O. Troynchuk, O.S. Mantytskja, H. Szymczak, M.Yu. Shvedun. Low Temp. Phys. 28, 569 (2002).

- [4] В.А. Хомченко, И.О. Троянчук, О.С. Мантыцкая, М. Товар, Г. Шимчак. ЖЭТФ 130, 64 (2006).
- [5] А.Г. Кочур, А.Т. Козаков, А.В. Никольский, К.А. Гуглев, А.В. Павленко, И.А. Вербенко, Л.А. Резниченко, С.И. Шевцова. ФТТ 55, 684 (2013).
- [6] A.G. Kochur, A.T. Kozakov, A.V. Nikolskii, K.A. Googlev, A.V. Pavlenko, I.A. Verbenko, L.A. Reznichenko, T.I. Krasnenko. J. Electron Spectr. Related Phenom. 185, 175 (2012).
- [7] А.В. Павленко, А.В. Турик, Л.А. Резниченко, Л.А. Шилкина, Г.М. Константинов. Письма в ЖТФ **39**, *1*, 47 (2013).
- [8] А.В. Павленко, А.В. Турик, Л.А. Резниченко, Ю.С. Кошкидько. ФТТ 56, 1093 (2014).
- [9] А.В. Павленко, А.В. Турик, Л.А. Резниченко. Изв. РАН. Сер. физ. 78, 1042 (2014).
- [10] C.-H. Yang, S.-H. Lee, T.Y. Koo, Y.H. Jeong. Phys. Rev. B 75, 140 104 (2007).
- [11] А.И. Абрамович, А.В. Мичурин. ФТТ 42, 2052 (2000).
- [12] И.О. Троянчук. Изв. НАН Беларуси 4, 28 (2013).