# О роли изолированных и связанных дефектов в определении спектра близкраевой люминесценции твердых тел

© К.Д. Глинчук, А.В. Прохорович

Институт физики полупроводников Национальной академии наук Украины, 03028 Киев, Украина

E-mail: ria@isp.kiev.ua

(Поступила в Редакцию 5 мая 2003 г. В окончательной редакции 26 августа 2003 г.)

Приведены выражения для интенсивностей полос в близкраевом спектре люминесценции твердых тел, содержащих как изолированные, так и связанные дефекты (мелкие акцепторы и доноры). Найдены условия, при выполнении которых они вносят незначительный либо доминирующий вклад в близкраевые полосы люминесценции. Показано (на основе анализа близкраевого спектра люминесценции полуизолирующего GaAs), что в твердых телах весьма вероятны ситуации, когда интенсивности близкраевых полос люминесценции определяются различными состояниями (изолированное или связанное) мелких акцепторов и доноров.

#### 1. Введение

Известно, что в спектрах люминесценции твердых тел наблюдаются интенсивные близкраевые полосы (примесные и экситонно-примесные; их появление обусловлено рекомбинацией электронов и дырок на дефектах мелких акцепторах и донорах- и аннигиляцией связанных с ними экситонов). При расчете интенсивностей близкраевых полос люминесценции обычно предполагается, что твердые тела содержат изолированные [1–5] либо связанные в донорно-акцепторные пары [1,6,7] мелкие акцепторы и доноры (далее акцепторы и доноры). Однако, очевидно, что в твердых телах имеются как изолированные, так и связанные акцепторы и доноры. Расчету интенсивностей близкраевых полос люминесценции в твердых телах, содержащих изолированные и связанные дефекты (мелкие акцепторы и доноры), и посвящена настоящая работа. Показано, что в рассматриваемом случае (в отличие от существующих представлений) вклад изолированных и связанных акцепторов и доноров в формирование спектров близкраевой люминесценции не всегда определяется лишь соотношением между их концентрациями. Из этого следует, что в твердых телах весьма вероятны случаи, когда изолированные и связанные акцепторы и доноры даже при близких их концентрациях вносят существенно различный вклад в интенсивности близкраевых полос люминесценции. Полученные соотношения использованы для выявления относительной роли изолированных и связанных акцепторов и доноров в формировании близкраевого спектра люминесценции полуизолирующих кристаллов арсенида галлия.

#### 2. Модель и основные предположения

Рассмотрим твердые тела, находящиеся при низких температурах; в них отсутствуют термически стимулированные процессы, их проводимость определяется

равномерно распределенными фотоэлектронами (концентрация  $\delta n$ ) и фотодырками (концентрация  $\delta p$ ). Пусть они содержат изолированные в концентрациях  $N_{A1}$  и  $N_{D1}$ и связанные в концентрациях N<sub>A2</sub> и N<sub>D2</sub> акцепторы и доноры соответственно (полная концентрация акцепторов в них  $N_{\rm A} = N_{\rm A1} + N_{\rm A2}$ , а доноров  $N_{\rm D} = N_{\rm D1} + N_{\rm D2}$ ). Обозначим коэффициент захвата свободных электронов акцепторами  $c_{nA}^{0}$ , донорами  $c_{nD}^{+}$ , коэффициент захвата свободных дырок акцепторами  $c_{pA}^{-}$ , а донорами —  $c_{pD}^{0}$ . Средний коэффициент межпримесной рекомбинации  $c_n^*$ . Вероятности заполнения связанных (при низком темпе межпримесных переходов) и изолированных акцепторов дырками составляют  $\varphi_{{
m A}^0}=c_{p{
m A}}^-\delta p/(c_{p{
m A}}^-\delta p+c_{n{
m A}}^0\delta n)$ , доноров электронами —  $\varphi_{D^0} = c_{nD}^+ \delta n / (c_{nD}^+ \delta n + c_{pD}^0 \delta p)$ , а дырками —  $1 - \varphi_{D^0} = c_{pD}^0 \delta p / (c_{nD}^+ \delta n + c_{pD}^0 \delta p)$  [5,7]. Свободные экситоны X (их концентрация  $n_X$ ) могут связываться с нейтральными акцепторами A<sup>0</sup>, ионизированными  $D^+$  и нейтральными  $D^0$  донорами, образуя экситоннопримесные комплексы  $A^0X$ ,  $D^+X$  и  $D^0X$  (коэффициенты связывания соответственно  $b_{A^0X}$ ,  $b_{D^+X}$  и  $b_{D^0X}$ , а вероятности —  $b_{A^0X}N_{A^0}$ ,  $b_{D^+X}N_{D^+}$  и  $b_{D^0X}N_{D^0}$ ). В дальнейшем при записи выражений для интенсивностей близкраевых полос люминесценции (обусловленных переходом свободных электронов е на нейтральные акцепторы  $I_{eA^0}$ , свободных дырок h на нейтральные доноры  $I_{hD^0}$ , донорно-акцепторными переходами I<sub>D<sup>0</sup>A<sup>0</sup></sub>, аннигиляцией



**Рис. 1.** Излучательные (волнистые линии) и безызлучательные (прямые линии) переходы на изолированные доноры D и акцепторы A, а также в донорно-акцепторных парах DA и связанных экситонах  $A^0X$ ,  $D^+X$  и  $D^0X$ .

связанных экситонов  $A^0X$ ,  $D^+X$  и  $D^0X$  соответственно  $I_{A^0X}$ ,  $I_{D^+X}$  и  $I_{D^0X}$ ; рис. 1) предполагается, что рекомбинационные переходы являются в основном излучательными. Кроме того, выражения для интенсивностей полос в близкраевом спектре приводятся при наиболее вероятных соотношениях между величинами  $c_{nD}^+N_{D2}\delta n = b$  и  $c_{pA}^-N_{A2}\delta p = d$  ( $b \gg d$  и  $d \gg b$ ) и для низких ( $c_n^*(b+d) \gg (c_{nD}^+\delta n + c_{pD}^0\delta p)(c_{pA}^-\delta p + c_{nA}^-\delta n) = a$ ) и высоких ( $a \gg c_n^*(b+d)$ ) значений  $\delta p$  и  $\delta n$ . Это связано с тем, что лишь в указанных случаях можно получить удобные для анализа аналитические выражения для концентраций связанных акцепторов и доноров в различных зарядовых состояниях [5,7].

## Теоретические соотношения для интенсивностей близкраевых полос люминесценции в полупроводнике, содержащем изолированные и связанные акцепторы и доноры

**3.1.** Общие соотношения. Очевидно, в обсуждаемом случае спектр близкраевой люминесценции твердого тела формируется электронно-дырочными переходами как на изолированные, так и на связанные акцепторы и доноры, а также аннигиляцией связанных с ними экситонов (рис. 1). Интенсивности полос в нем определяются концентрациями нейтральных акцепторов и ионизированных и нейтральных доноров, находящихся в изолированным (соответственно  $N_{A^01}$ ,  $N_{D^+1}$  и  $N_{D^01}$ ) и связанном (соответственно  $N_{A^02}$ ,  $N_{D^+2}$  и  $N_{D^02}$ ) состояниях ( $N_{D^+1} + N_{D^01} = N_{D1}$  и  $N_{D^+2} + N_{D^02} = N_{D2}$ ), а также концентрациями фотоэлектронов, фотодырок и свободных экситонов (возможно, что  $\delta n$ ,  $\delta p$  и  $n_X$  зависят от  $N_A$  и  $N_D$ ). Они равны<sup>1</sup> (рис. 1)

$$I_{eA^0} = c_{nA}^0 (N_{A^01} + N_{A^02}) \delta n, \qquad (1)$$

$$I_{\rm hD^0} = c_{p\rm D}^{\,0} (N_{\rm D^01} + N_{\rm D^02}) \delta p, \qquad (2)$$

$$I_{\rm D^0A^0} = c_n^* N_{\rm D^02} N_{\rm A^02}, \tag{3}$$

$$I_{A^{0}X} = b_{A^{0}X}(N_{A^{0}1} + N_{A^{0}2})n_{X},$$
(4)

$$I_{\rm D^+X} = b_{\rm D^+X} (N_{\rm D^+1} + N_{\rm D^+2}) n_{\rm X}, \tag{5}$$

$$I_{\rm D^0X} = b_{\rm D^0X} (N_{\rm D^01} + N_{\rm D^02}) n_{\rm X}.$$
 (6)

Из выражений (1)–(6) видно, что относительная роль изолированных и связанных акцепторов и доноров в определении интенсивностей близкраевых полос люминесценции зависит от соотношения величин  $N_{A^01}$  и  $N_{A^02}$ ,  $N_{D^+1}$  и  $N_{D^+2}$ ,  $N_{D^01}$  и  $N_{D^02}$  (они определяются изолированными акцепторами и донорами, если  $N_{A^01} \gg N_{A^02}$ ,

 $N_{\rm D^{+1}} \gg N_{\rm D^{+2}}$  и  $N_{\rm D^{0}1} \gg N_{\rm D^{0}2}$ , и связанными акцепторами и донорами, если  $N_{\rm A^{0}2} \gg N_{\rm A^{0}1}$ ,  $N_{\rm D^{+2}} \gg N_{\rm D^{+1}}$  и  $N_{\rm D^{0}2} \gg N_{\rm D^{0}1}$ ). Из них также следует, что интенсивности  $I_{\rm eA^{0}}$  и  $I_{\rm A^{0}X}$  обусловлены одним и тем же состоянием акцепторов (изолированным, если  $N_{\rm A^{0}1} \gg N_{\rm A^{0}2}$ , и связанным, если  $N_{\rm A^{0}2} \gg N_{\rm A^{0}1}$ ), а интенсивности  $I_{\rm hD^{0}}$  и  $I_{\rm D^{0}X}$  определяются одним и тем же состоянием доноров (изолированным, если  $N_{\rm D^{0}2} \gg N_{\rm A^{0}1}$ ), а связанным, если  $N_{\rm D^{0}2} \gg N_{\rm D^{0}1}$ ).

Выражения (1)–(6) используются далее для определения при низких и высоких концентрациях фотодырок и фотоэлектронов интенсивностей близкраевых полос люминесценции в полупроводниках, содержащих как изолированные, так и связанные акцепторы и доноры (входящие в них величины  $N_{A^01,2}$ ,  $N_{D^+1,2}$  и  $N_{D^01,2}$  при различных соотношениях между b и d, а также при низких и высоких  $\delta p$  и  $\delta n$  приведены в [5,7]).

Полученные выражения для  $I_{eA^0}$ ,  $I_{hD^0}$ ,  $I_{A^0X}$ ,  $I_{D^+X}$  и  $I_{D^0X}$  далее представляются в виде двух слагаемых, первое из которых показывает вклад в интенсивности близкраевых полос люминесценции изолированных, а второе — связанных акцепторов и доноров.

**3.2.** Низкие  $\delta p$  и  $\delta n$ . Для простоты ограничимся рассмотрением весьма вероятных случаев:  $c_{nD}^+ N_{D2} \delta n \gg c_{pA}^- N_{A2} \delta p$  и  $c_{pA}^- N_{A2} \delta p \gg c_{nD}^+ N_{D2} \delta n$ .

а)  $c_{nD}^+ N_{D2} \delta n \gg c_{pA} N_{A2} \delta p$ . При указанных соотношениях между рекомбинационными характеристиками мелких дефектов интенсивности рассматриваемых полос примесной, межпримесной и экситонной люминесценции определяются следующими выражениями (в них, очевидно,  $c_{pA}^- \delta p / c_n^* \varphi_{D^0} N_{D2} \ll 1$ ,  $c_{pA}^- N_{A2} \delta p / (c_{nD}^+ \delta n + c_{pD}^0 \delta p) \ll N_{D2}$ , а  $N_{D1} + N_{D2} = N_D$ ):

$$I_{eA^{0}} = c_{nA}^{0} \left( \varphi_{A0} N_{A1} + \frac{c_{pA}^{-} \delta p}{c_{n}^{*} \varphi_{D^{0}} N_{D2}} N_{A2} \right) \delta n, \qquad (7)$$

$$I_{\rm hD^0} = c_{p\rm D}^{\,0} \varphi_{\rm D^0} (N_{\rm D1} + N_{\rm D2}) \delta p, \qquad (8)$$

$$I_{\rm D^0A^0} = c_{pA}^{-} N_{\rm A2} \delta p, \tag{9}$$

$$I_{A^{0}X} = b_{A^{0}X} \left( \varphi_{A^{0}} N_{A1} + \frac{c_{pA}^{-} \delta p}{c_{n}^{*} \varphi_{D^{0}} N_{D2}} N_{A2} \right) n_{X}, \qquad (10)$$

$$I_{\rm D^+X} = b_{\rm D^+X} \bigg\{ (1 - \varphi_{\rm D^0}) N_{\rm D1}$$

+ 
$$\left[ (1 - \varphi_{\mathrm{D}^{0}}) N_{\mathrm{D}2} + \frac{c_{p\mathrm{A}}^{-} N_{\mathrm{A}2} \delta p}{c_{n\mathrm{D}}^{+} \delta n + c_{p\mathrm{D}}^{0} \delta p} \right] \right\} n_{\mathrm{X}}, \quad (11)$$

$$I_{\rm D^0 X} = b_{\rm D^0 X} \varphi_{\rm D^0} (N_{\rm D1} + N_{\rm D2}) n_{\rm X}.$$
 (12)

В этом случае<sup>2</sup> имеем

1)  $I_{eA^0}/I_{D^0A^0} = c_{nA}^0 \varphi_{A^0} N_{A1} \delta n/c_{pA}^- N_{A2} \delta p$ , если  $I_{eA^0}$  определяется изолированными акцепторами (тогда

<sup>&</sup>lt;sup>1</sup> При записи выражений (4)–(6) предполагается, что лишь небольшое число нейтральных акцепторов, ионизированных и нейтральных доноров связано с экситонами.

 $<sup>^2</sup>$ Очевидно, что  $\varphi_{\mathrm{A}^0} \simeq 1$ , если  $c_{p\mathrm{A}}^- \delta p \gg c_{n\mathrm{A}}^0 \delta n$ , и  $\varphi_{\mathrm{A}^0} = c_{p\mathrm{A}}^- \delta p / c_{n\mathrm{A}}^0 \delta n \ll 1$ , если  $c_{p\mathrm{A}}^- \delta p \ll c_{n\mathrm{A}}^0 \delta n$ ;  $\varphi_{\mathrm{D}^0} \simeq 1$ , если  $c_{n\mathrm{D}}^+ \delta n \gg c_{p\mathrm{D}}^0 \delta p$  (тогда  $1 - \varphi_{\mathrm{D}^0} \simeq c_{p\mathrm{D}}^0 \delta p / c_{n\mathrm{D}}^+ \delta n \ll 1$ ), и  $\varphi_{\mathrm{D}^0} = c_{n\mathrm{D}}^+ \delta n / c_{p\mathrm{D}}^0 \delta p \ll 1$ , если  $c_{n\mathrm{D}}^+ \delta n \ll c_{p\mathrm{D}}^0 \delta p$ . Несомненно,  $\varphi_{\mathrm{A}^0}$ ,  $1 - \varphi_{\mathrm{D}^0}, \varphi_{\mathrm{D}^0} \neq (\delta n, \delta p)$ , если  $\delta p \sim \delta n$ .

 $I_{
m eA} \ll I_{
m D^0A^0},$  если  $N_{
m A2} \ge N_{
m A1},$  а  $arphi_{
m A^0} \simeq 1,$  и  $I_{
m eA^0}/I_{
m D^0A^0} =$  $N_{\rm A1}/N_{\rm A2}$  $(I_{eA^0} > I_{D^0A^0})$ при  $N_{\rm A1} > N_{\rm A2}$ И  $I_{\mathrm{eA}^0} < I_{\mathrm{D}^0\mathrm{A}^0}$  при  $N_{\mathrm{A1}} < N_{\mathrm{A2}}),$  если  $\varphi_{\mathrm{A}^0} \ll 1),$  и  $I_{\mathrm{eA}^0}/I_{\mathrm{D}^0\mathrm{A}^0} = c_{n\mathrm{A}}^0 \delta n/c_n^* \varphi_{\mathrm{D}^0} N_{\mathrm{D2}} \ll 1,$  если  $I_{\mathrm{eA}^0}$  определяется связанными акцепторами;

2)  $I_{\mathrm{hD}^0}/I_{\mathrm{D}^0\mathrm{A}^0} = c_{p\mathrm{D}}^0 \varphi_{\mathrm{D}^0} N_{\mathrm{D}1}/c_{p\mathrm{A}}^- N_{\mathrm{A}2},$  если  $I_{\mathrm{hD}^0}$  определяется изолированными донорами, и  $I_{\rm hD^0}/I_{\rm D^0A^0} =$  $=c_{pD}^{0} \varphi_{D^{0}} N_{D2} / c_{pA}^{-} N_{A2}$ , если  $I_{hD^{0}}$  определяется связанными донорами (весьма вероятно, что  $I_{\rm hD^0} \ll I_{\rm D^0A^0}$ , так как следует ожидать, что  $c_{pD}^0 \ll c_{pA}^-$ ;

3)  $I_{eA^0} \sim \varphi_{A^0} \delta n$ , а  $I_{A^0X} \sim \varphi_{A^0} n_X$ , если излучение обусловлено изолированными акцепторами (тогда  $I_{\mathrm{eA}^0}\sim\delta p,$  а  $I_{\mathrm{A}^0\mathrm{X}}\sim(\delta p/\delta n)n_\mathrm{X},$  если  $arphi_{\mathrm{A}^0}\ll1),$  и  $I_{\rm eA^0} \sim \delta p \delta n / \varphi_{\rm D^0}$ , а  $I_{\rm A^0X} \sim n_{\rm X} \delta p / \varphi_{\rm D^0}$ , если излучение обусловлено связанными акцепторами (тогда  $I_{eA^0} \sim \delta p^2$ , а  $I_{A^0X} \sim (\delta p^2 / \delta n) n_X$ , если  $\varphi_{D^0} \ll 1$ );

4)  $I_{hD^0} \sim \varphi_{D^0} \delta p$ ,  $I_{D^+X} \sim (1 - \varphi_{D^0}) n_X$ , a  $I_{D^0X} \sim \varphi_{D^0} n_X$ , если излучение обусловлено изолированными донорами либо связанными акцепторами и донорами (тогда  $I_{\mathrm{D^+X}} \sim (\delta p/\delta n) n_{\mathrm{X}}$ , если  $\varphi_{\mathrm{D^0}} \simeq 1$ , и  $I_{\mathrm{hD^0}} \sim \delta n$ , а  $I_{\mathrm{D}^{0}\mathrm{X}} \sim (\delta n / \delta p) n_{\mathrm{X}},$ если  $\varphi_{\mathrm{D}^{0}} \ll 1$ ).

b)  $c_{pA}^{-}N_{A2}\delta p \gg c_{nD}^{+}N_{D2}\delta n$ . Несомненно, при выполнении указанного неравенства интенсивности близкраевых полос люминесценции определяются следующими выражениями (в них, очевидно,  $c_{nD}^+ \delta n/c_n^* \varphi_{A^0} N_{A2} \ll 1$ , а  $N_{A1} + N_{A2} = N_A$ ):

$$I_{eA^0} = c_{nA}^0 \varphi_{A^0} (N_{A1} + N_{A2}) \delta n, \qquad (13)$$

$$I_{\rm hD^0} = c_{p\rm D}^0 \left( \varphi_{\rm D^0} N_{\rm D1} + \frac{c_{n\rm D}^+ \delta n}{c_n^* \varphi_{\rm A^0} N_{\rm A2}} N_{\rm D2} \right) \delta p, \qquad (14)$$

$$I_{\rm D^0A^0} = c_{n\rm D}^+ N_{\rm D2} \delta n, \tag{15}$$

$$I_{A^0X} = b_{A^0X} \varphi_{A^0} (N_{A1} + N_{A2}) n_X, \qquad (16)$$

$$I_{\rm D^+X} = b_{\rm D^+X} \left[ (1 - \varphi_{\rm D^0}) N_{\rm D1} + N_{\rm D2} \right] n_{\rm X}, \qquad (17)$$

$$I_{\rm D^0 X} = b_{\rm D^0 X} \left( \varphi_{\rm D^0} N_{\rm D1} + \frac{c_{n\rm D}^+ \delta n}{c_n^* \varphi_{\rm A^0} N_{\rm A2}} N_{\rm D2} \right) n_{\rm X}.$$
(18)

В этом случае имеем

1)  $I_{\mathrm{eA}^0}/I_{\mathrm{D}^0\mathrm{A}^0} = c_{n\mathrm{A}}^0 \varphi_{\mathrm{A}^0} N_{\mathrm{A}1}/c_{n\mathrm{D}}^+ N_{\mathrm{D}2}$ , если  $I_{\mathrm{eA}^0}$  определяется изолированными акцепторами, и  $I_{\rm eA^0}/I_{\rm D^0A^0} =$  $= c_{nA}^{0} \varphi_{A^{0}} N_{A2} / c_{nD}^{+} N_{D2}$ , если  $I_{eA^{0}}$  определяется связанными акцепторами (весьма вероятно, что  $I_{eA^0} \ll I_{D^0A^0}$ , так как следует ожидать, что  $c_{nA}^0 \ll c_{nD}^-$ ;

2)  $I_{\rm hD^0}/I_{\rm D^0A^0} = c_{p\rm D}^0 \varphi_{\rm D^0} N_{\rm D1} \delta p/c_{n\rm D}^+ N_{\rm D2} \delta n$ , если  $I_{\rm hD^0}$ определяется изолированными донорами (тогда  $I_{
m hD^0} \ll I_{
m D^0A^0},$  если  $N_{
m D2} \ge N_{
m D1},$  а  $arphi_{
m D^0} \simeq 1,$  и  $I_{
m hD^0}/I_{
m D^0A^0} =$  $= N_{\rm D1}/N_{\rm D2}~(I_{
m hD^0} > I_{
m D^0A^0}$  при  $N_{\rm D1} > N_{\rm D2}$  и  $I_{
m hD^0} < I_{
m D^0A^0}$ при  $N_{\mathrm{D1}} < N_{\mathrm{D2}}),$  если  $\varphi_{\mathrm{D^0}} \ll 1),$  и  $I_{\mathrm{hD^0}}/I_{\mathrm{D^0A^0}} =$  $=c_{n\mathrm{D}}^{0}\delta p/c_{n}^{*}\varphi_{\mathrm{A}^{0}}N_{\mathrm{A}2}\ll 1,$  если  $I_{\mathrm{hD}^{0}}$ определяется связанными донорами;

3)  $I_{eA^0} \sim \varphi_{A^0} \delta n$  и  $I_{A^0 X} \sim \varphi_{A^0} n_X$ , если излучение обусловлено изолированными либо связанными акцепторами (тогда  $I_{\mathrm{eA}^0} \sim \delta p$ , а  $I_{\mathrm{A}^0\mathrm{X}} \sim (\delta p / \delta n) n_\mathrm{X}$ , если  $\varphi_{\mathrm{A}^0} \ll 1$ );

4)  $I_{hD^0} \sim \varphi_{D^0} \delta p$ ,  $I_{D^+X} \sim (1 - \varphi_{D^0}) n_X$ , a  $I_{D^0X} \sim \varphi_{D^0} n_X$ , если излучение обусловлено изолированными донорами

(тогда  $I_{\mathrm{D^+X}} \sim (\delta p / \delta n) n_{\mathrm{X}}$ , если  $\varphi_{\mathrm{D^0}} \simeq 1$ , и  $I_{\mathrm{hD^0}} \sim \delta n$ , а  $I_{\mathrm{D}^{0}\mathrm{X}} \sim (\delta n/\delta p) n_{\mathrm{X}}, \,$ если  $\varphi_{\mathrm{D}^{0}} \ll 1), \,$ и  $I_{\mathrm{h}\mathrm{D}^{0}} \sim \delta p \delta n/\varphi_{\mathrm{A}^{0}},$  $I_{\mathrm{D^+X}} \sim n_{\mathrm{X}}$  и  $I_{\mathrm{D^0X}} \sim n_{\mathrm{X}} \delta n/ \varphi_{\mathrm{A^0}}$ , если излучение обусловлено связанными донорами (тогда  $I_{\rm hD^0} \sim \delta n^2$ , а  $I_{{
m D}^0{
m X}} \sim (\delta n^2/\delta p) n_{
m X},$  если  $\phi_{{
m A}^0} \ll 1$ ).

**3.3.** Высокие  $\delta p$  и  $\delta n$ . Очевидно, при высоких  $\delta p$ и *бп* интенсивности близкраевых полос люминесценции равны

$$I_{eA^0} = c_{nA}^0 \varphi_{A^0} (N_{A1} + N_{A2}) \delta n, \qquad (19)$$

$$I_{\rm hD^0} = c_{p\rm D}^{\,0} \varphi_{\rm D^0} (N_{\rm D1} + N_{\rm D2}) \delta p, \qquad (20)$$

$$I_{\rm D^0A^0} = c_n^* N_{\rm A2} N_{\rm D2}, \tag{21}$$

$$I_{A^0X} = b_{A^0X} \varphi_{A^0} (N_{A1} + N_{A2}) n_X, \qquad (22)$$

$$I_{\rm D^+X} = b_{\rm D^+X} (1 - \varphi_{\rm D^0}) (N_{\rm D1} + N_{\rm D2}) n_{\rm X}, \qquad (23)$$

$$I_{\rm D^0 X} = b_{\rm D^0 X} \varphi_{\rm D^0} (N_{\rm D1} + N_{\rm D2}) n_{\rm X}, \qquad (24)$$

где, как отмечалось выше,  $N_{A1} + N_{A2} = N_A$ И  $N_{\rm D1} + N_{\rm D2} = N_{\rm D}.^3$ 

В этом случае имеем 1)  $I_{\rm eA^0}$ ,  $I_{\rm hD^0} \gg I_{\rm D^0A^0}$ ; 2) вид зависимостей  $I_{\rm eA^0}$ ,  $I_{\rm hD^0}$ ,  $I_{\rm A^0X}$ ,  $I_{\rm D^+X}$  и  $I_{\rm D^0X}$  от  $\delta p$  и  $\delta n$  не зависит от того, чем обусловлено соответствующее излучение — изолированными либо связанными акцепторами и донорами ( $I_{\mathrm{D}^+\mathrm{X}} \sim (\delta p / \delta n)$  при  $\varphi_{\mathrm{D}^0} \simeq 1$ ,  $I_{
m eA^0}\sim\delta p$ , а  $I_{
m A^0X}\sim(\delta p/\delta n)n_{
m X}$  при  $arphi_{
m A^0}\ll 1$  и  $I_{
m hD^0}\sim\delta n$ , а  $I_{\mathrm{D}^{0}\mathrm{X}} \sim (\delta n / \delta p) n_{\mathrm{X}}$  при  $\varphi_{\mathrm{D}^{0}} \ll 1$ ).

**3.4.** Обсуждение. **Низкие** *бр* и *бп*. При рассмотрении приведенных соотношений интенсивностей близкраевых полос люминесценции при низких концентрациях фотодырок и фотоэлектронов можно отметить следующее. Лишь в некоторых случаях (они реализуются, если межпримесные переходы мало изменяют величины  $N_{A^02}$ ,  $N_{D^+2}$  и  $N_{D^02}$ , т.е.  $N_{A^02}$ ,  $N_{D^+2}$ ,  $N_{D^02} \neq \varphi(c_n^*)$ ) вклад изолированных и связанных акцепторов и доноров в формирование спектра близкраевой люминесценции полупроводника, т.е. в интенсивности близкраевых полос люминесценции, зависит только от соотношения между их концентрациями (он пропорционален их концентрациям, если  $\delta n$ ,  $\delta p$  и  $n_X$  не зависят от N<sub>A</sub> и N<sub>D</sub>). При этом близкраевой спектр люминесценции определяется изолированными акцепторами и донорами, если  $N_{A1} \gg N_{A2}$  и  $N_{D1} \gg N_{D2}$ , и, наоборот, связанными акцепторами и донорами, если  $N_{A2} \gg N_{A1}$  и  $N_{D2} \gg N_{D1}$ . Так, при  $b \gg d$  это относится к интенсивностям  $I_{\rm hD^0}$ и  $I_{D^0X}$ , а при  $d \gg b$  — к интенсивностям  $I_{eA^0}$ ,  $I_{A^0X}$ и  $I_{D^+X}$  (см. соотношения (8), (12), (13), (16) и (17)). Однако в большинстве случаев (они реализуются, если межпримесные переходы существенно изменяют величины N<sub>A<sup>0</sup>1</sub>, N<sub>D<sup>+</sup>2</sub> и N<sub>D<sup>0</sup>2</sub>) вклад изолированных и связанных акцепторов и доноров в формирование

1010

 $<sup>^3</sup>$  При записи выражения (23) для  $I_{\rm D^+X}$  принято, что  $N_{\mathrm{D}^+2} \approx (1-\varphi_{\mathrm{D}^0}) N_{\mathrm{D}2}$  при высоких  $\delta p$  и  $\delta n$  [7]. Как следует из общего соотношения для  $dN_{D+2}/dt = -dN_{D02}/dt = 0$  (см. уравнение (2) в [7]), это справедливо при  $c_{pD}^0 \delta p \gg c_n^* N_{A02} \approx c_n^* \varphi_{A0} N_{A2}$ , т.е. при высоких δр.

спектра близкраевой люминесценции полупроводника, т.е. в соответствующие интенсивности полос люминесценции, зависит не только от соотношения между их концентрациями, но и от их рекомбинационных характеристик. Так, при  $\varphi_{A^0}N_{A1} \gg (c_{pA}\delta p/c_n^*\varphi_{D^0}N_{D2})N_{A2}$ и  $\varphi_{\rm D^0}N_{\rm D1} \gg (c_{n\rm D}^+\delta n/c_n^*\varphi_{\rm A^0}N_{\rm A2})N_{\rm D2}$  интенсивности люминесценции  $I_{\mathrm{eA}^0}$  и  $I_{\mathrm{A}^0\mathrm{X}}$  (если  $b \gg d$ ) и  $I_{\mathrm{hD}^0}$  и  $I_{\mathrm{D}^0\mathrm{X}}$ (если  $d \gg b$ ) могут определяться изолированными акцепторами и донорами, даже если их концентрации N<sub>A1</sub> и N<sub>D1</sub> существенно ниже концентраций связанных акцепторов  $N_{A2}$  и доноров  $N_{D2}$  (см. (7), (10), (14) и (18)). В то же время интенсивность экситонной люминесценции I<sub>D<sup>+</sup>X</sub> может быть обусловлена связанными акцепторами (если  $b \gg d$ ), даже когда их концентрация  $N_{A2}$ ниже концентрации доноров  $N_{\rm D}$  (при  $c_{pA}N_{\rm A2} \gg c_{pD}^0 N_{\rm D}$ , см. (11)), и связанными донорами (если  $d \gg b$ ), даже когда их концентрация N<sub>D2</sub> существенно ниже концентрации изолированных доноров N<sub>D1</sub> (это имеет место при  $N_{\text{D2}} \gg (1 - \varphi_{\text{D}^0}) N_{\text{D1}}$ , см. (17)). Очевидно, интенсивность межпримесной люминесценции определяется лишь связанными акцепторами и донорами (см. (9) и (15)).

В рассматриваемых условиях весьма вероятно, что  $I_{\mathrm{eA}^0}, I_{\mathrm{hD}^0} \ll I_{\mathrm{D}^0\mathrm{A}^0}$  (см. подраздел 3.2). Лишь в отдельных случаях (если интенсивности  $I_{\mathrm{eA}^0}$  и  $I_{\mathrm{hD}^0}$  определяются изолированными акцепторами и донорами, а  $N_{\mathrm{A1}} > N_{\mathrm{A2}}, \varphi_{\mathrm{A}^0} \ll 1$  и  $N_{\mathrm{D1}} > N_{\mathrm{D2}}, \varphi_{\mathrm{D}^0} \ll 1$ ) возможна реализация соотношения  $I_{\mathrm{eA}^0}, I_{\mathrm{hD}^0} > I_{\mathrm{D}^0\mathrm{A}^0}$ .

Несомненно, что при низких концентрациях фотодырок и фотоэлектронов люкс-яркостные характеристики интенсивностей  $I_{eA^0}$  и  $I_{hD^0}$ ;  $I_{A^0X}$ ,  $I_{D^+X}$  и  $I_{D^0X}$  совпадают ( $I_{eA^0}$ ,  $I_{hD^0} \sim \delta n$  либо  $\delta p$ , а  $I_{A^0X}$ ,  $I_{D^+X}$ ,  $I_{D^0X} \sim n_X$ ), если они обусловлены изолированными акцепторами и донорами, а  $\delta p \sim \delta n$  (т.е.  $\varphi_{A^0}$ ,  $\varphi_{D^0} \neq \varphi(\delta p, \delta n)$ ) (см. подраздел 3.2). В то же время люкс-яркостные характеристики интенсивностей  $I_{eA^0}$  и  $I_{hD^0}$ ,  $I_{A^0X}$  и  $I_{D^0X}$  существенно различаются, если они определяются связанными акцепторами и донорами.

Высокие  $\delta p$ и *бп*. Несомненно, что при высоких концентрациях фотодырок и фотоэлектронов вклад изолированных и связанных акцепторов и доноров в формирование спектра близкраевой люминесценции полупроводника, т.е. в интенсивности близкраевых полос примесной и экситонной люминесценции, зависит лишь от соотношения между их концентрациями (он пропорционален их концентрациям, если  $\delta n$ ,  $\delta p$  и  $n_X$  не зависят от N<sub>A</sub> и N<sub>D</sub>) (см. (19), (20), (22)-(24)). Очевидно, интенсивность межпримесной люминесценции в этом случае, как и при низких  $\delta p$  и  $\delta n$ , определяется лишь связанными акцепторами и донорами (см. (21)). В обсуждаемом случае люкс-яркостные характеристики интенсивностей  $I_{eA^0}$  и  $I_{hD^0}$ ;  $I_{A^0X}$ ,  $I_{D^+X}$  и  $I_{D^0X}$  совпадают  $(I_{\rm eA^0},~I_{\rm hD^0}\sim\delta n$ либо  $\delta p,$  а  $I_{\rm A^0X},~I_{\rm D^+X},~I_{\rm D^0X}\sim n_{\rm X})$  независимо от того, определяются ли они изолированными или связанными акцепторами и донорами, а  $\delta p \sim \delta n$  (т.е.  $\varphi_{A^0}, \varphi_{D^0} \neq \varphi(\delta p, \delta n)$ ) (см. подраздел 3.3).

### Анализ спектра близкраевой люминесценции полуизолирующего GaAs

На рис. 2 приведен спектр близкраевой люминесценции, а также зависимости интенсивностей полос в нем от интенсивности возбуждения L, измеренные для специально нелегированного полуизолирующего арсенида галлия при 4.2 К и низких бр и бл (люминесценция возбуждалась излучением He–Ne-лазера,  $\lambda = 632.8$  nm,  $hv = 1.96 \,\mathrm{eV}$ ; проводимость GaAs задавалась избыточными дырками и электронами,  $\delta p$ ,  $\delta n \sim L$ ). Вид близкраевого спектра и интенсивности полос в нем определяются: а) излучательными переходами в связанных акцепторах и донорах (индуцируется полоса люминесценции  $I_{D^0A^0}$ ; b) излучательной рекомбинацией свободных электронов на изолированных акцепторах (индуцируется полоса  $I_{eA^0}$ ) и излучательной аннигиляцией экситонов, связанных с ними (индуцируется полоса  $I_{A^0X}$ ); с) излучательной аннигиляцией экситонов, связанных с изолированными донорами (индуцируются полосы I<sub>D+X</sub> и I<sub>D<sup>0</sup>X</sub>). О доминирующей роли изолированных акцепторов и доноров в определении интенсивностей  $I_{A^0X}$ , I<sub>D<sup>+</sup>X</sub> и I<sub>D<sup>0</sup>X</sub> свидетельствует близкий вид зависимостей данных интенсивностей от L (это возможно, если  $\delta p \sim \delta n$ ), а именно  $I_{A^0X}$ ,  $I_{D^+X}$ ,  $I_{D^0X} \sim L^2$  (см. рис. 2 и подраздел 3.4). На доминирующую роль изолированных акцепторов в определении интенсивности I<sub>еА<sup>0</sup></sub> указывает установленная природа дефектов (изолированные акцепторы), ответственных за появление полосы с интенсивностью I<sub>A<sup>0</sup>X</sub> (как отмечалось в подразделе 3.1, интенсивности  $I_{eA^0}$  и  $I_{A^0X}$  индуцируются одним и тем



**Рис. 2.** Спектр близкраевой люминесценции полуизолирующего арсенида галлия (штриховые линии разного вида — результат разложения спектра на элементарные составляющие). На вставке — зависимости интенсивностей близкраевых полос люминесценции  $I_{D^0A^0}$  (1),  $I_{eA^0}$  (2),  $I_{A^0X}$  (3),  $I_{D^+X}$  (4) и  $I_{D^0X}$  (5) от интенсивности возбуждения (соотношения между интенсивностями полос произвольные; истинные соотношения видны из спектра). Измерения проведены при T = 4.2 К и низких  $\delta p$  и  $\delta n$ ; спектр записан при  $L = 10^{18}$  quanta/cm<sup>2</sup> · s.

же состоянием акцепторов). Кроме того, об этом также свидетельствуют и близкие значения величин  $I_{eA^0}$  и  $I_{D^0A^0}$  при любых L ( $I_{eA^0}$ ,  $I_{D^0A^0} \sim L$ , т.е.  $I_{eA^0}/I_{D^0A^0}$  не зависит от L) (см. рис. 2 и подраздел 3.4). Следовательно, в полуизолирующем арсениде галлия в формировании спектра близкраевой люминесценции принимают участие как изолированные, так и связанные акцепторы и доноры.

### 5. Заключение

Изолированные и связанные мелкие дефекты могут вносить и аддитивный (зависящий только от соотношения их концентраций), и неаддитивный (зависящий как от соотношения их концентраций, так и от их рекомбинационных характеристик, а также от концентраций в твердом теле фотоэлектронов и фотодырок) вклад в интенсивность низкотемпературных близкраевых полос люминесценции. Это связано с различной ролью межпримесных переходов в определении заполнения мелких дефектов электронами и дырками, т.е. величин  $N_{A^02}$ , N<sub>D<sup>+</sup>2</sub> и N<sub>D<sup>0</sup>2</sub>. Приведенные соотношения интенсивностей примесных, межпримесных и экситонных полос излучения, а также зависимости интенсивностей близкраевых полос излучения от уровня возбуждения позволяют на опыте установить вклад изолированных и связанных мелких дефектов в формирование спектра краевой люминесценции твердых тел.

### Список литературы

- [1] А. Берг, П. Дин. Светодиоды. Мир, М. (1979).
- [2] O. Brandt, J. Ringling, K.H. Ploog. Phys. Rev. B 58, 24, R 15 977 (1998).
- [3] S. Seto, K. Suzuki, M. Adachi, K. Inabe. Physica B 302–303, 307 (2000).
- [4] I. Brousell, J.A.H. Stotz, M.L.W. Thewalt. J. Appl. Phys. 92, 10, 5913 (2002).
- [5] К.Д. Глинчук, А.В. Прохорович. ФТП 36, 5, 519 (2002).
- [6] T. Schmidt, K. Lischka, W. Zulehner. Phys. Rev. B 45, 16, 8989 (1992).
- [7] К.Д. Глинчук, А.В. Прохорович. ФТП 37, 2, 159 (2003).