05

Влияние примеси $BaTiO_3$ на структуру $NaNO_2$ в композите $(0.9)NaNO_2 + (0.1)BaTiO_3$

© А.А. Набережнов,^{1,2} О.А. Алексеева,² Е.В. Стукова,³ С.А. Борисов,¹ В.Г. Симкин⁴

1 Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

² Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

³ Амурский государственный университет,

⁴ Объединенный институт ядерных исследований,

141980 Дубна, Московская область, Россия

e-mail alex.nabereznov@mail.ioffe.ru

(Поступило в Редакцию 2 июня 2015 г.)

Методом дифракции нейтронов проведено исследование температурной эволюции кристаллической структуры композита на основе смеси сегнетоэлектриков 0.9NaNO₂ + 0.1BaTiO₃. Показано, что в интервале температур 360–430 К значения параметра порядка NaNO₂ в композите меньше по сравнению с массивным веществом, что может свидетельствовать о сосуществовании в этом интервале сегнетоэлектрической и несоразмерной фаз нитрита натрия.

Введение

Сегнетоэлектрические композиты относятся к неоднородным сегнетоэлектрическим структурам, состоящим из различающихся по своим диэлектрическим свойствам компонент. Макроскопические физические свойства таких систем могут заметно отличаться от свойств исходных веществ из-за взаимного влияния составляющих компонент. Так, например в работе [1] показано, что дальнодействующие диполь-дипольные взаимодействия в сегнетоэлектрических сэндвич-структурах влияют на величину спонтанной поляризации среднего слоя структуры и приводят к исчезновению критической толщины сегнетоэлектрической пленки. В работе [2] наблюдалась зависимость температуры фазового перехода в сегнетоэлектрическую фазу в порошке KNO3 от степени контакта между соседними гранулами порошка, а в статьях [3,4] экспериментально показано расширение температурного диапазона существования сегнетоэлектрической фазы нитрата калия в сегнетоэлектрических композитах (1 - x)KNO₃ + (x)BaTiO₃ и (1 - x)KNO₃ + (x)KNbO₃, зависящее от содержания примеси ВаТіО₃.

Ранее были исследованы диэлектрические свойства композитов (1 - x)NaNO₂ + (x)BaTiO₃, различающихся процентным содержанием (x = 0.05 и 0.1) и размером частиц титаната бария, и был обнаружен ряд аномалий диэлектрического отклика [5]. Так, в частности, при нагреве выше 360 К наблюдается резкий рост диэлектрической проницаемости (на частотах менее 10 kHz), далее при 420 К существует достаточно острый максимум в зависимости $\varepsilon'(T)$ ($\varepsilon' = 7500$ на частоте 10 Hz), после которого диэлектрическая проницаемость резко уменьшается (до 2000 на частоте 10 Hz). При дальнейшем

повышении температуры появляется второй пик, соответствующий фазовому переходу в параэлектрическую фазу нитрита натрия при T = 437 К. При охлаждении наблюдается только один пик при 437 К, при этом значения ε' в диапазоне температур 430–400 К практически не меняются (на частоте 10 Hz $\varepsilon' \approx 300$), и только ниже 400 К ε' плавно уменьшается. Ниже 360 К обе кривые (нагрев и охлаждение) полностью совпадают. Авторы [5] предположили, что существование максимума при нагреве связано с фазовым переходом сегнетоэлектрическая фаза – несоразмерная фаза в нитрите натрия, однако температурная эволюция структуры не изучалась. В то же время именно такие исследования могут дать ответ на происхождение наблюдаемых аномалий диэлектрического отклика в данных композитах.

Методика измерений и характеристика образцов

Физической реализацией параметра порядка η в нитрите натрия является разность заселенностей [6] двух кристаллографически эквивалентных положений групп NO₂. Для интенсивности I(hkl) упругих пиков с индексами hkl, наблюдаемых при рассеянии рентгеновского излучения (или нейтронов), можно написать следующее соотношение [7]:

$$I(hkl) \sim |F|^2 = F(hkl)_{real}^2 + \eta^2 \times F(hkl)_{im}^2$$

где F_{real} и F_{im} — реальная и мнимая части структурного фактора F, а η — параметр порядка.

Кроме того, оказывается, что для данного соединения среди всех семейств упругих отражений можно выделить два семейства с принципиально различной зависимостью

⁶⁷⁵⁰²⁷ Благовещенск, Россия

интенсивности от параметра порядка: так (в случае дифракции нейтронов [8]) для отражений (110), (101), (200) и (020) $F_{\text{real}}^2 \gg F_{\text{im}}^2$ и интенсивности этих отражений практически не зависят от параметра порядка, а для упругих пиков (022), (132), (123) $F_{\text{real}}^2 \ll F_{\text{im}}^2$, и интенсивность этих пиков в целом пропорциональна квадрату параметра порядка η^2 . Фазовый переход в высокотемпературную параэлектрическую фазу происходит через промежуточную несоразмерную фазу, существующую в массивном нитрите натрия в узком (~1 K) температурном интервале 436–437 K, и сопровождается появлением сателлитов типа ($h \pm \delta k l$) с $k \neq 0$ (δ изменяется в пределах 0.1–0.12) [9,10]. Таким образом, появление перехода в несоразмерную фазу при 420 K [5] должно приводить к следующим эффектам:

— температурные зависимости параметра порядка для чистого нитрита натрия и для смеси (1 - x)NaNO₂ + +(x)BaTiO₃ обязаны отличаться вблизи этой температуры,

— следует ожидать появления дополнительных сателлитов ($h \pm \delta k l$), соответствующих несоразмерной фазе, например, вблизи точки ($\delta 2 0$). При этом разница Δd в положениях пика (020) и сателлита должна составлять (при 420 K) 0.08 nm, что является экспериментально наблюдаемой величиной на дифрактометре высокого разрешения.

Известно, что в массивном титанате бария при 393 К происходит $\Phi\Pi$ первого рода из кубической параэлектрической фазы в тетрагональную сегнетоэлектрическую фазу, причем температурный гистерезис составляет 2–4 К [11]. В принципе наблюдаемая аномалия в диэлектрическом отклике может быть связана и с этим переходом, если в данном композите происходит аномально большое увеличение температурного гистерезиса сегнетоэлектрического $\Phi\Pi$. В этом случае использование дифрактометра высокого разрешения позволит получить информацию и о фазовом состоянии BaTiO₃ в окрестности температуры диэлектрической аномалии.

Образец представлял собой порошковую смесь, содержащую 90 объемных % NaNO₂ и 10% BaTiO₃ (0.9NaNO₂ + 0.1BaTiO₃), размер частиц BaTiO₃ составлял 5–30 μ m [5]. Измерения проводились на нейтронном времяпролетном Фурье-дифрактометре высокого разрешения (ФДВР) (ЛНФ ОИЯИ, г. Дубна) при нескольких температурах в диапазоне 300–440 K, т. е. ниже и выше сегнетоэлектрического ФП в NaNO₂ и включающем область существования аномалии диэлектрического отклика, в режиме нагрева и охлаждения. В этих же экспериментальных условиях была исследована и температурная эволюция структуры чистого нитрита натрия. Стабильность поддержания температуры во время измерений была не хуже 2 К.

Полученные дифракционные спектры для чистого нитрита натрия и для смеси 0.9NaNO₂ + 0.1BaTiO₃ обрабатывались с использованием метода полного профильного анализа. Для всех дифрактограмм величина *R*-фактора

Результаты и обсуждение

На рис. 1 приведены участки дифракционного спектра композита, содержащие упругие пики титаната бария при температурах T = 385 и 395 и 410 K, лежащих ниже и выше точки Кюри для BaTiO₃ ($T_C = 393$ K). Отчетливо видно, что при температурах T = 395 и 410 K наблюдается пик (311), соответствующий кубической параэлектрической фазе BaTiO₃, а при температуре T = 385 K — два пика (311) и (113) тетрагональной сегнетоэлектрической фазы. При нагреве и охлаждении положение, интенсивность и форма пиков, соответствующих структуре BaTiO₃, не изменяются (рис. 1). Это позволяет утверждать, что наблюдаемый в [5] максимум диэлектрического отклика композитов при T = 420 K не связан с фазовым переходом в частицах титаната бария.

Из уточненных значений факторов заселенности, эквивалентных кристаллографических позиций NaNO₂, были получены значения параметра порядка, которые вычислялись как отношение разности заселенностей к их сумме [6]. На рис. 2 приведены температурные зависимости параметра порядка $\eta(T)$ в массивном нитрите натрия и исследованном композите. Во всем исследованном температурном диапазоне значения $\eta(T)$ при нагреве и охлаждении в композите меньше, чем

Рис. 1. Дифракционные пики титаната бария в дифракционном спектре композита 90%NaNO₂ + 10%BaTiO₃ при различных температурах. Стрелками указаны пики (311) и (113) BaTiO₃, по которым проводилась идентификация сегнето- и параэлектрической фаз, стрелка с индексом (024) — положение соответствующего пика для нитрита натрия. Для температуры T = 410 К приведены дифрактограммы при нагреве (сплошная линия) и охлаждении (штриховая линия).

Рис. 2. Температурные зависимости параметра порядка $\eta(T)$ массивного NaNO₂ (сплошная линия, белые треугольники) и композита (окружности). Для композита приведены значения при нагреве (черные окружности) и при охлаждении (белые окружности).

в чистом NaNO₂. Аналогичный результат был получен нами неоднократно при измерениях на других экспериментальных установках, что позволяет говорить о воспроизводимости наблюдаемого эффекта. Полученные величины параметра порядка становятся практически одинаковыми для массивного нитрита натрия и композитного материала при приближении к температуре сегнетоэлектрического фазового перехода NaNO2. При *T* = 440 K пики, интенсивность которых пропорциональна квадрату параметра порядка, практически исчезают, т.е. температура фазового перехода NaNO2 в композите практически не отличается (в пределах точности поддержания температуры во время измерений) от Т_С в массивном нитрите натрия. Следует отметить, что при низких температурах (ниже 390 K) значения $\eta(T)$ также приближаются к величинам, наблюдавшимся для массивного материала, а при 360 К и ниже практически сливаются. Наблюдаемое уменьшение параметра порядка для NaNO₂ в композите по сравнению с массивным нитритом натрия позволяет сделать заключение, что в температурном интервале 360-430 К возможно сосуществование несоразмерной и сегнетоэлектрической фаз NaNO₂. К сожалению, получить температурную зависимость интенсивности сверхструктурных пиков в данном эксперименте мы не смогли, так как полученной в эксперименте статистики оказалось недостаточно для надежного выделения слабых сверхструктурных пиков на фоне интенсивных упругих отражений и общего фона. Из разности температурных зависимостей параметра порядка для массивного нитрита натрия и для NaNO2 в композитном материале можно оценить количество

нитрита натрия, находящегося в несоразмерной фазе в композите. Такие оценки показали, что при температуре 385 К объем несоразмерной фазы не превышает 3%, далее при нагреве доля этой фазы увеличивается и достигает примерно 15–20% при температурах 420–425 К, а затем начинает уменьшаться. Таким образом, можно полагать, что максимум при 420 К в диэлектрической проницаемости при нагреве соответствует максимальному содержанию несоразмерной фазы в композитном материале. В то же время вопрос почему при охлаждении подобного максимума в зависимости $\varepsilon'(T)$ не наблюдается, хотя температурная зависимость параметра порядка при охлаждении соответствует зависимости $\eta(T)$ при нагреве, остается в настоящее время открытым.

Заключение

В результате исследований температурной эволюции кристаллической структуры композита 0.9NaNO₂ + +0.1BaTiO₃ не обнаружено особенностей фазового перехода в частицах BaTiO₃ по сравнению с массивным веществом. Из анализа дифракционных данных получены температурные зависимости параметра порядка NaNO₂ в композите и обнаружено его уменьшение по сравнению с массивным NaNO₂ в температурном диапазоне 360-430 K, что может указывать на сосуществование несоразмерной и сегнетоэлектрической фаз NaNO₂ в данном диапазоне температур. Показано, что максимум в зависимости $\varepsilon'(T)$ при 420 K (при нагреве) соответствует максимальному содержанию несоразмерной фазы в композитном материале 0.9NaNO₂ + 0.1BaTiO₃.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 14-22-00136).

Список литературы

- Shen J., Ma Yu-qiang. // J. Appl. Phys. 2001. Vol. 89. P. 5031– 5035.
- [2] Westphal M.J. // J. Appl. Phys. 1993. Vol. 74. P. 3131-3137.
- [3] Стукова Е.В., Барышников С.В. // Перспективные материалы. 2011. № 2. С. 28–33.
- [4] Стукова Е.В., Барышников С.В. // Перспективные материалы. 2011. № 2. С. 45–48.
- [5] Стукова Е.В., Королева Е.Ю., Трюхан Т.А., Барышников С.В. // Научно-технические ведомости СПбГПУ. Физ.-мат. науки. 2012. № 4(158). С. 22–28.
- [6] Kay M.I. // Ferroelectrics. 1973. Vol. 4. P. 235–243.
- [7] Lamas A., Chang S.-L., Caticha-Ellis S. // Phys. Stat. Sol. A. 1981. Vol. 68. P. 173–178.
- [8] Naberezhnov A., Fokin A., Kumzerov Yu., Sotnikov A., Vakhrushev S., Dorner B. // Eur. Phys. J.E. 2003. Vol. 12. P. 21–24.
- [9] Durand D., Denoyer F., Lambert M., Bernard L., Currat R. // J. Physique. 1982. Vol. 43. P. 149–154.
- [10] Durand D., Papoular R., Currat R., Lambert M., Legrand J., Mezei F. // Phys. Rev. B. 1991. Vol. 43. N 11. P. 10690–10696.
- [11] Horst E.M., Walter J.K., Albers J. // Ferroelectrics Lett. 1993.
 Vol. 15. P. 101–107.