09

Визуализация дефектов отдельных компонент тонких композитных элементов с одномерной дифракционной структурой

© А.М. Ляликов

Гродненский государственный университет им. Я. Купалы, 230023 Гродно, Белоруссия e-mail: amlialikov@grsu.by

(Поступило в Редакцию 22 апреля 2015 г.)

Рассмотрены особенности реализации методов раздельного контроля качества отдельных компонент тонких композитных дифракционных элементов, имеющих одномерную периодическую структуру. Предложены и проанализированы различные оптические схемы визуализации дефектов отдельных компонент. На примере композитного дифракционного элемента, представляющего собой набор оптических компонент, в виде тонкой прозрачной пластины с поверхностями, имеющими определенную кривизну, и одномерной периодической микроструктурой, показана возможность раздельной визуализации дефектов подложки и периодической структуры. Представлены интерференционные картины качества тонкой подложки и периодической структуры композитного элемента, представляющего собой амплитудную решетку, записанную в тонком светочувствительном слое, расположенном между двумя стеклянными подложками.

Введение

Периодические микро- и наноструктуры в настоящее время нашли широкое распространение при создании оптических элементов для спектральных приборов высокого разрешения, элементов волоконной оптики и лазерных систем. Данная оптика представляет собой композитный дифракционный элемент, состоящий из периодических структур, как нанесенных на поверхность прозрачной подложки с произвольной кривизной поверхности, так и встроенных в подложку. К такого рода композитным дифракционным элементам относятся пропускающие вогнутые голограммные решетки [1], обеспечивающие коррекцию аберраций и увеличение дифракционной эффективности в современных спектральных приборах, волоконные решетки [2], нашедшие применение в различных элементах и устройствах интегральной и волоконной оптики, в системах волоконнооптической связи и в различных типах волоконных и жидкостных РОС-лазерах и усилителях, в системах измерения физических величин [3-6], а также прозрачный метаматериал, представляющий собой искусственно структурированную систему элементов [7–9].

Например, для электрически управляемых жидкокристаллических дифракционных элементов требуется контролировать качество большого количества их компонент: саму периодическую структуру, стеклянные подложки, прозрачные электроды, слои фоточувствительного полимера и т.д. [10–12]. До стадии сборки такого оптического элемента процедуру контроля отдельных компонент достаточно просто реализовать, используя известные методы оптического контроля [13,14]. Однако после сборки элемента контроль качества отдельных компонент значительно затруднен. Возможна процедура контроля композитного дифракционного элемента в целом на основании соответствия качества формируемого им светового пучка [15], однако определение конкретной дефектной компоненты при этом вызывает значительные затруднения. Данная задача контроля может быть решена для простых дифракционных элементов с минимальным количеством компонент, например для нескольких наложенных периодических структур без прозрачных подложек [16]. Использование лазерной модуляционной интерференционной микроскопии позволяет достаточно полно исследовать периодическую микро- и наноструктуру дифракционного элемента, исключив при этом влияние подложек на результат контроля [17]. В работе [18] рассмотрен подход через интерференционный измерительный контроль, позволяющий разделить информацию о дефектах подложки и периодической микроструктуры при их визуализации для тонких композитных дифракционных элементов.

Настоящая работа посвящена особенностям реализации методов раздельного контроля качества отдельных компонент тонких композитных элементов, имеющих одномерную периодическую структуру.

Тонкий композитный элемент с одномерной дифракционной структурой

Рассмотрим композитный дифракционный элемент с одномерной периодической микроструктурой, представляющий собой набор оптических компонент в виде тонкой прозрачной пластины с поверхностями, имеющими определенную кривизну. В этом случае коэффициент пропускания такого композитного дифракционного элемента имеет полное сходство с пропусканием тонкой амплитудной или фазовой голограммы с постоянной несущей частотой полос, записанной в тонком светочувствительном слое, расположенном на тонкой прозрачной подложке, ограниченной поверхностями определенной кривизны. Комплексное пропускание такого элемента можно выразить в виде произведения пропускания тонкой подложки, осуществляющей фазовую модуляцию, и пропускания периодической структуры, осуществляющей амплитудную или фазовую модуляцию световой волны [19,20]. Для случая периодической структуры в виде амплитудной решетки комплексное пропускание такого композитного дифракционного элемента можно представить в виде

$$\tau_{c}(x, y) = \tau_{0} \exp i[\psi(x, y) + \Delta \psi(x, y)]$$

$$\times \sum_{n=-\infty}^{+\infty} \tau_{c,n} \exp i\left\{\frac{2\pi nx}{T} + n[\varphi(x, y) + \Delta \varphi(x, y)]\right\},$$
(1)

где τ_0 и $\tau_{c,n}$ — коэффициенты, $\psi(x, y)$ — функция, пропорциональная толщине $\Delta z(x, y)$ подложки, $\Delta \psi(x, y)$ функция, описывающая дефект подложки, связанный с отклонением ее толщины от нормы, T — период штрихов опорной периодической структуры (система координат xy совмещена с плоскостью элемента, а направление оси x выбрано перпендикулярно штрихам структуры), $n = 0, 1, 2, ..., \varphi(x, y)$ — функция, описывающая изменение периода структуры, $\Delta \varphi(x, y)$ функция, описывающая дефект микроструктуры, связанный с отклонением изменения периода структуры от нормы.

При измерительном контроле кроме исследуемого элемента используется также эталонный элемент с параметрами, соответствующими норме. Очевидно, что при описании пропускания эталонного композитного дифракционного элемента в выражении (1) принимается $\Delta \psi(x, y) = 0$ и $\Delta \varphi(x, y) = 0$. В этом случае

$$\tau_m(x, y) = \tau_0 \exp i[\psi(x, y)] \\ \times \sum_{n=-\infty}^{+\infty} \tau_{m,n} \exp i\left\{\frac{2\pi nx}{T} + n\varphi(x, y)\right\}, \quad (2)$$

где $\tau_{m,n}$ — коэффициенты.

При измерительном контроле параметров подложки и периодической микроструктуры композитных элементов, которые описываются выражением (1), для соответствия норме должно выполняться следующее условие:

$$\Delta \psi(x, y) < \Delta \psi_{\max}(x, y), \quad \Delta \varphi(x, y) < \Delta \varphi_{\max}(x, y), \quad (3)$$

где $\Delta \psi_{\max}(x, y)$ и $\Delta \varphi_{\max}(x, y)$ — предельно допустимые отклонения от нормы.

На рис. 1, a, b представлены оптические схемы реализации способов раздельного отображения информации о дефектах тонкой подложки (рис. 1, a) и периодической микроструктуры (рис. 1, b) исследуемого композитного дифракционного элемента 2. При визуализации дефектов подложки и микроструктуры в схемах используется эталонный композитный дифракционный элемент I.

Рис. 1. Оптические схемы реализации способа раздельного отображения информации о дефектах подложки (*a*) и периодической микроструктуры (*b*) композитного дифракционного элемента: 1, 5 — эталонный и контролируемый элементы, 3 — светоделительный кубик, 4 — объектив, 5 — непрозрачный экран с отверстием, 6 — плоскость наблюдения интерференционной картины.

Визуализация дефектов подложки

Для отображения информации о дефектах подложки в качестве устройства реализации может быть использован двухлучевой интерферометр, например Маха–Цендера, дополненный оптической системой фильтрации пространственных частот. Эталонный 1 и контролируемый 2 композитные дифракционные элементы устанавливаются в схему (рис. 1, *a*) при соблюдении одинаковых расстояний до светоделительного кубика 3 и освещаются когерентными световыми пучками с плоскими волновыми фронтами. С учетом (1) и (2) на выходе дифракционных элементов 1 и 2 вследствие дифракции комплексные амплитуды световых волн $A_{m,n}(x, y)$ и $A_{c,n}(x, y)$ для эталонного и контролируемого элементов соответственно будут иметь вид

$$A_{m,n}(x, y) = \sum_{n=-\infty}^{+\infty} a_{m,n} \exp i[2\pi n\xi x + n\varphi(x, y) + \psi(x, y)],$$
(4)

$$A_{c,n}(x, y) = \sum_{n=-\infty}^{+\infty} a_{c,n} \exp i[2\pi n\xi x + n\varphi(x, y) + n\Delta\varphi(x, y) + \psi(x, y) + \Delta\psi(x, y)], \quad (5)$$

где $a_{m,n}, a_{c,n}$ — действительные амплитуды волн, индексом "*m*" отмечены параметры волны, дифрагированной на эталонном, а индексом "*c*" — на контролируемом

Рис. 2. Дифракционные спектры, полученные при освещении композитных элементов, с различными одномерными периодическими структурами, осуществляющими фазовую (a) и амплитудную (b) модуляции.

элементе, $\xi = \frac{\cos \alpha}{\lambda}$, $\cos \alpha$ — направляющий косинус световой волны, распространяющейся в первом порядке дифракции, причем $\xi = \frac{1}{T}, \lambda$ — длина волны. Посредством светоделительного кубика 3 регулируется направление распространения световых волн, дифрагированных на контролируемом дифракционном элементе 2. В задней фокальной плоскости объектива 4 на непрозрачном экране 5 будет формироваться пара картин дифракционных максимумов, образованных волнами, дифрагированными на элементах 1 и 2. Дифракционные максимумы в первой и второй картинах расположены на прямых, параллельных оси х. Интенсивность дифракционных максимумов определяется типом и глубиной модуляции слоя [19,20]. Обычно в при фазовой модуляции в отличие от амплитудной дифракционные структуры имеют достаточно интенсивные высшие порядки дифракции. На фотографии (рис. 2) представлены дифракционные спектры для различных типов периодических структур с фазовой (рис. 2, а) и амплитудной (рис. 2, b) модуляциями. В верхней части фотографий указаны номера дифракционных порядков. Прямо прошедшие световые волны, соответствующие 0-у наиболее яркому порядку дифракции, согласно выражениям (4) и (5) описываются первыми членами сумм при n = 0.

Волны, прямо прошедшие через элементы 1 и 2, содержат информацию только об изменении толщины подложки элементов (функция $\Psi(x, y)$) и о дефекте подложки контролируемого элемента (функция $\Delta \Psi(x, y)$). Волны, дифрагированные в +1-е и -1-е, а также более высокие порядки дифракции, обозначены на фотографии соответствующими цифрами и содержат информацию как о дефекте подложки, так и о дефекте микроструктуры, описываемом для контролируемого элемента функцией $\Delta \varphi(x, y)$. Если картины дифракционных максимумов совместить и отверстием в непрозрачном экране 5, установленном строго в задней фокальной плоскости объектива 4, выделить только волны, распространяющиеся в 0-х порядках дифракции, то в плоскости регистрации 6 образуется интерференционная картина

при наложении двух волн

A

$$A_{m,0} = a_{m,0} \exp i[\psi(x, y)],$$
 (6)

$$A_{c,0} = a_{c,0} \exp i[\psi(x, y) + \Delta \psi(x, y)].$$
(7)

При точном совмещении в плоскости 6 (рис. 1, a) изображений элементов 1 и 2 интерференционная картина, образованная наложением волн, будет настроена на полосу бесконечной ширины

$$I_1(x, y) = a_{m,0}^2 + a_{c,0}^2 + 2a_{m,0}a_{c,0}\cos[\Delta\Psi(x, y)].$$
 (8)

Ориентация и ширина интерференционных полос в образованной картине определяется углом между направлениями распространения интерферирующих волн и регулируется вращением светоделительного кубика *3* [20]. Распределение освещенности в интерференционной картине в полосах конечной ширины можно представить в виде

$$I_{1}(x, y) = a_{m,0}^{2} + a_{c,0}^{2} + 2a_{m,0}a_{c,0}$$
$$\times \cos[2\pi(x/P_{x} + y/P_{y}) + \Delta\Psi(x, y)], \quad (9)$$

где P_x и P_y — длины отрезков, отсекаемых парой соседних интерференционных опорных полос соответственно на осях *x* и *y*.

Как видно из выражений (8) и (9), количество полос или искривление опорных полос определяется только функцией $\Delta \Psi(x, y)$, описывающей дефект подложки контролируемого композитного элемента. Ориентация полос определяется соотношением P_x и P_y . Например, достижение вертикальной настройки полос, параллельных оси y, будет соответствовать условию $P_y \to \infty$. Бесконечно широкая полоса будет наблюдаться в случае $P_x \to \infty$ и $P_y \to \infty$ (выражение (9) преобразуется в (8)).

Визуализация дефектов структуры

При реализации способа в схеме (рис. 1, a) с выделением волн, дифрагированных в первом порядке, образуется интерференционная картина, искривление полос в которой определяется суммарным действием дефектов подложки и структуры контролируемого элемента.

Если отверстием в непрозрачном экране 5 (рис. 1, a) выделить только волны, распространяющиеся в +1-х порядках дифракции (рис. 2, a, b), то в плоскости регистрации 6 (рис. 1, a) образуется интерференционная картина при наложении волн

$$A_{m,1}(x, y) = a_{m,1} \exp i[2\pi\xi x + \varphi(x, y) + \psi(x, y)], \quad (10)$$

$$A_{c,1}(x, y) = a_{c,1} \exp i[2\pi\xi x + \varphi(x, y) + \Delta\varphi(x, y) + \psi(x, y) + \Delta\Psi(x, y)], \quad (11)$$

где $a_{m,1}$ и $a_{c,1}$ — действительные амплитуды волн, распространяющихся в +1-х порядках дифракции. Распределение освещенности в интерференционной картине

для более общего случая, соответствующего настройке на полосы конечной ширины, определится следующим выражением:

$$I_{2}(x, y) = a_{m,0}^{2} + a_{c,0}^{2} + 2a_{m,0}a_{c,0}$$
$$\times \cos[2\pi(x/P_{x} + y/P_{y}) + \Delta\varphi + \Delta\Psi(x, y)].$$
(12)

В этом случае визуализация дефекта микроструктуры в схеме (рис. 1, *a*) возможна только при условии

$$\Delta \varphi(x, y) \gg \Delta \Psi(x, y). \tag{13}$$

Искривление интерференционных полос в картине (12) из-за дефекта подложки приводит к систематической погрешности при оценке дефекта структуры. Уменьшить влияние данной систематической погрешности можно, используя при образовании интерференционной картины волны, дифрагированной на контролируемом дифракционном элементе в более высокий, например +k-й (где |k| > 1), порядок. Для этого посредством светоделительного кубика 3 (рис. 1, *a*) совмещают +k-й дифракционный максимум с отверстием в экране 5. В этом случае интерференционная картина образуется при наложении волны вида (10) и

$$A_{c,k}(x, y) = a_{c,k} \exp i[2\pi\xi x + k\varphi(x, y) + k\Delta\varphi(x, y) + \psi(x, y) + \Delta\Psi(x, y)], \quad (14)$$

где $a_{c,k}$ — действительная амплитуда волны, распространяющейся в +k-м порядке дифракции. Распределение освещенности в интерференционной картине

$$I_{3}(x, y) = a_{m,0}^{2} + a_{c,k}^{2} + 2a_{m,0}a_{c,k}\cos[2\pi(x/P_{x} + y/P_{y}) + (k-1)\varphi(x, y) + k\Delta\varphi(x, y) + \Delta\Psi(x, y)],$$
(15)

Из выражения (15) следует, что влияние систематической погрешности, вызванной дефектом подложки, уменьшено k раз. Однако при такой визуализации действие функции $\varphi(x, y)$, описывающей изменение периода структуры, не компенсируется в отличие от случая использования волн, дифрагированных на элементах в одинаковый, например +1-й, порядок. Визуализация дефектов периодической структуры возможна при условии

$$\Delta \varphi(x, y) \gg \left| \frac{1}{k} \Delta \Psi(x, y) + \frac{(k-1)}{k} \varphi(x, y) \right|.$$
(16)

Вышеописанный способ минимизации влияния дефектов подложки можно рекомендовать для строго периодических структур с постоянной величиной периода, т. е. в случае $\varphi(x, y) = 0$. Для данного случая систематическая погрешность, вызванная дефектом подложки, уменьшается в k раз.

Если условия (13), (16) не выполняются, то влияние дефекта подложки контролируемого элемента необходимо исключить. Для этого контролируемый дифракционный элемент 2 совмещается с эталонным элементом 1,

как это показано на рис. 1, *b*. Для случая тонких композитных дифракционных элементов результирующее пропускание можно представить в виде произведения $\tau_{c,n}(x, y)\tau_{m,n}(x, y)$ [21].

Для формирования интерференционной картины используется только один световой пучок. Точное совмещение эталонного 1 и контролируемого 2 элементов уже обеспечивает в плоскости экрана 5 наложение дифракционных максимумов, сформированных световыми волнами, дифрагированными на эталонном 1 и контролируемом 2 элементах. При освещении совмещенных элементов плоской световой волной с амплитудой распределение комплексных амплитуд $A_{\Sigma}(x, y)$ на выходе совмещенных элементов определится как

$$A_{\Sigma}(x, y) = a\tau_{c,n}(x, y)\tau_{m,n}(x, y).$$
(17)

С учетом выражений (1) и (2) распределение комплексных амплитуд на выходе совмещенных элементов можно представить как

$$A_{\Sigma}(x, y) = \sum_{n, l=-\infty}^{+\infty} a_{c,n} a_{m,l} \exp i \left\{ 2\pi (n+l) \xi x + (n+l) \varphi(x+y) + n \Delta \varphi(x, y) + 2\psi(x, y) + \Delta \psi(x, y) \right\},$$
(18)

где l = 0, 1, 2, ... Так как периоды эталонного и контролируемого комбинированных элементов имеют одинаковые величины периодов опорных штрихов периодических структур, направления распространения волн, дифрагированных на совмещенных структурах, будут определяться множителем $(n + l)\xi$. Например, волны, распространяющиеся в +1-м порядке, определятся из выражения (18) при выполнении условия (n + l)=1. Это значит, что если отверстием в непрозрачном экране 5 (рис. 1, *b*) выделить +1-й порядок дифракции, то результирующая интерференционная картина в плоскости *б* будет формироваться при наложении многих волн, т.е.

$$A_{\Sigma,+1}(x,y) = \sum_{n,l=-\infty}^{+\infty} a_{c,n}a_{m,l} \exp i\left\{2\pi\xi x + \varphi(x,y) + n\Delta\varphi(x,y) + 2\Psi(x,y) + \Delta\psi(x,y)\right\}.$$
(19)

В случае низкой дифракционной эффективности элементов для волн высших порядков (рис. 2, a, b), при наложении волн вида (19) профиль полос в интерференционной картине будет определяться вкладом волн низких порядков дифракции с действительными амплитудами $a_{c,0}a_{m,+1}$, $a_{c,+1}a_{m,0}$, т.е.

$$A_{m,1}(x, y) = a_{c,0}a_{m,+1} \exp i \left[2\pi\xi x + \varphi(x, y) + 2\psi(x, y) + \Delta\Psi(x, y) \right],$$
(20)

$$A_{c,1}(x, y) = a_{c,+1}a_{m,0} \exp i \left[2\pi \xi x + \varphi(x, y) + \Delta \varphi(x, y) + \Delta \varphi(x, y) + 2\psi(x, y) + \Delta \Psi(x, y) \right].$$
 (21)

Рис. 3. Интерференционные картины, визуализирующие неоднородности стеклянных подложек и светочувствительного слоя по всему композитному элементу (a), а также дефектов структуры амплитудной решетки (b).

В этом случае распределение освещенности в интерференционной картине при настройке на полосы конечной ширины будет описываться выражением

$$I_{4}(x, y) = a_{c,0}^{2} a_{m,+1}^{2} + a_{c,+1}^{2} a_{m,0}^{2} + 2a_{c,0} a_{m,+1} a_{c,+1} a_{m,0} \cos \left[2\pi (x/P_{x} + y/P_{y}) + \Delta \varphi(x, y) \right].$$
(22)

Следует отметить, что распределение освещенности в интерференционной картине по гармоническому закону (22) возможно лишь в случае двухлучевой интерференции, т.е. при основном вкладе в результирующее распределение освещенности полос волн вида (20) и (21). Если действительные амплитуды волн более высоких порядков, например $a_{c,+2}a_{m,-1}$, $a_{c,-1}a_{m,+2}$, $a_{c,+3}a_{m,-2}$, $a_{c,-2}a_{m,+3}$, соизмеримы с амплитудой волн $a_{c,0}a_{m,+1}$, $a_{c,+1}a_{m,0}$, то результирующая интерференционная картина будет определяться интерференцией многих пучков. Результат такой интерференции, как известно, может привести к ухудшению качества интерференционной картины в виде образования дополнительных максимумов в минимумах освещенности (22). Особенности формирования интерференционных картин при многолучевой интерференции волн, дифрагированных на пропускающих голограммах, совмещенных с дифракционными решетками, а также на двухэкспозиционной голограмме нелинейного вида рассмотрены в работе [22].

На рис. 3 приведены результаты контроля качества подложек (рис. 3, *a*) и микроструктуры (рис. 3, *b*) тонкого композитного дифракционного элемента. Данный элемент представлял собой амплитудную решетку (размеры 25×25 mm, $\xi = 30$ mm⁻¹), записанную в светочувствительном слое, расположенном между двумя тонкими стеклянными подложками. Данные подложки представляли собой длиннофокусные линзы, причем поверхности подложек, обращенные к светочувствительному слою,

были плоскими. Для апробации методики была выбрана пара таких композитных элементов. На рис. 2, *b* представлен дифракционный спектр, соответствующий контролируемому композитному элементу, свидетельствующий о незначительной интенсивности высших дифракционных порядков.

Первая фотография (рис. 3, a) визуализирует неоднородности тонких стеклянных подложек и светочувствительного слоя по всему полю композитного элемента, а вторая (рис. 3, b) — дефекты структуры амплитудной решетки. Из фотографий видно, что, несмотря на наличие дефектов в подложках и слое, дефекты в структуре решетки отсутствуют, что и подтверждается неискаженными полосами интерферограммы (рис. 3, b).

Заключение

Таким образом, в настоящей работе рассмотрены особенности реализации способов интерференционного контроля качества отдельных компонент тонких композитных элементов, имеющих одномерную периодическую структуру. На примере композитного дифракционного элемента, представляющего собой набор оптических компонент, в виде тонкой прозрачной пластины с поверхностями, имеющими определенную кривизну, и одномерной периодической микроструктуры теоретически показана и экспериментально подтверждена возможность раздельной визуализации дефектов подложки и периодической структуры.

Список литературы

- [1] Муслимов Э.Р. // Научно-технический вестник СПбГУ ИТМО. 2011. № 1. С. 1–6.
- [2] Васильев С.В., Медведков О.И., Королев И.Г., Божков А.С., Курков А.С., Дианов Е.М. // Квант. электрон. 2005. Т. 35. № 12. С. 1085–1103.
- [3] Денисюк И.Ю., Бурункова Ю.Э., Тибилов А.С., Семьина С.А., Булгакова В.Г. // Оптический журнал. 2013. Т. 80. № 3. С. 97–91.
- [4] Viegas D., Carvalho J.P., Coelho L., Santos J.L., Araujo F.M., Frazao O. // IEEE Photonics Technology Letters. 2010. Vol. 22, № 20. P. 1533–1535.
- [5] Liao C.R., Wang D.N. // Photonic Sensors. 2013. Vol. 3. № 2. P. 97–101.
- [6] Тарасов Л.В. Физика процессов в генераторах когерентного оптического излучения. М.: Радио и связь, 1981. 440 с.
- [7] Веселаго В.Г. // УФН. 1967. Т. 92. С. 517–526.
- [8] Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. // Nature Materials. 2008. Vol. 7. P. 31–37.
- [9] Ушанов В.И., Чалдышев В.В., Преображенский В.В., Путято М.А., Семягин Б.Р. // ФТТ. 2013. Т. 47. № 8. С. 1043–1047.
- [10] Казак А.А., Мельникова Е.А., Толстик А.Л., Могильный В.В., Станкевич А.И. // Письма в ЖТФ. 2008. Т. 34. № 20. С. 1–7.
- [11] Valyukh S., Chigrinov V., Kwok H.S., Arwin H. // Optics Express. 2012. Vol. 20, № 14. P. 15 209–15 221.

- [12] Кабанова О.С., Мельникова Е.А., Оленская И.И., Толстик А.Л. // Письма в ЖТФ. 2014. Т. 40. № 14. С. 30–35.
- [13] Оптический производственный контроль / Под ред. Д. Малакары. М.: Машиностроение, 1985. 400 с.
- [14] Malacara D., Servín M., Malacara Z. Interferogram Analysis for Optical Testing. Boca Raton: Taylor & Francis Group, 2005. 568 p.
- [15] Ляликов А.М. // Квант. электрон. 2010. Т. 40. № 12. С. 1141–1145.
- [16] Ляликов А.М. // Опт. и спектр. 2008. Т. 105. № 1. С. 136-139.
- [17] Игнатьев П.С., Индукаев К.В., Лопарев А.В., Осипов П.А. // Оптический журнал. 2011. Т. 78. № 1. С. 26–31.
- [18] *Ляликов А.М. //* Письма в ЖТФ. 2015. Т. 41. Вып. 13. С. 56– 63.
- [19] Кольер Р., Беркхарт К., Лин Л. Оптическая голография. М.: Мир, 1973. 686 с.
- [20] Бекетова А.К., Белозеров А.Ф., Березкин А.Н. и др. Голографическая интерферометрия фазовых объектов. Л.: Наука, 1979. 232 с.
- [21] Волоконно-оптические датчики. Вводный курс для инженеров и научных работников / Под ред. Э. Удда. М.: Техносфера, 2008. 520 с.
- [22] Вест Ч. Голографическая интерферометрия. М.: Мир, 1982. 504 с.