Влияние изгибных напряжений на высокочастотные магнитные свойства и временную их стабильность в аморфном сплаве на основе кобальта с очень низкой магнитострикцией

© И.Б. Кекало, П.С. Могильников

Национальный исследовательский технологический университет «МИСиС», 119991 Москва, Россия e-mail: pavel mog@mail.ru

(Поступило в Редакцию 13 января 2015 г. В окончательной редакции 7 мая 2015 г.)

При изучении аморфного сплава Co₆₉Fe_{3.7}Cr_{3.8}Si_{12.5}B₁₁ с очень низкой магнитострикцией ($|\lambda_s| \leq 10^{-7}$) были обнаружены необычные закономерности влияния напряжений изгиба (диаметра тороидальных образцов D) на гистерезисные магнитные свойства (H_c , μ_5), измеренные в динамическом режиме при частотах f переменного магнитного поля от 0.1 до 20 kHz. При низких частотах (f < 1 kHz) коэрцитивная сила H_c изученного сплава практически не зависит от D, в то время как проницаемость μ_5 (H = 5 mOe), наоборот, не зависит от D при высоких частотах и зависит от D при низких. В образцах, подвергнутых высокотемпературному отжигу (390°C) с последующей закалкой в воде, наблюдаются "аномальные" закономерности — проницаемость μ_5 увеличивается с уменьшением радиуса тороидальных образцов, т.е. с увеличением изгибных напряжений. Обнаруженные закономерности связываются с тем, что при низких частотах и при статических измерениях преобладает перемагничивание путем смещения жестких границ доменов.

Введение

В большинстве работ, посвященных вопросу о влиянии изгибных напряжений (диаметра тороидальных образцов D) на гистерезисные магнитные свойства (ГМС) аморфных сплавов (коэрцитивная сила H_c, начальная проницаемость μ_a , коэффициент прямоугольности петли гистерезиса K_r), результаты в основном были получены путем измерения этих свойств или в статическом режиме, или при одной частоте f переменного магнитного поля (обычно порядка 1 kHz). С ростом изгибных напряжений (уменьшением D), как правило, происходит деградация ГМС: коэрцитивная сила H_c возрастает, начальная проницаемость μ_a уменьшается [1]. Коэффициент прямоугольности петли гистерезиса $K_r = B_r/B_s$, который до изгиба составлял 20–30%, при этом увеличился примерно до 50%, что отвечает магнитно-изотропному состоянию ферромагнетика. Все эти закономерности отвечают предсказаниям теоретического анализа, проведенного на основе двуосной модели магнитно-анизотропного состояния аморфных лент [2-4].

В случае, если аморфные сплавы обладают такой низкой магнитострикцией (ниже "критического" значения λ_s^0), что энергия магнитоупругой анизотропии K_{σ} , обусловленная закалочными напряжениями σ_i и напряжениями изгиба σ_u и которая в рассматриваемом случае равна

$$K_{\sigma} = 1.5\lambda_s^0(\sigma_i + \sigma_u), \qquad (1)$$

становится меньше энергии размагничивающего фактора ленточных тороидальных образцов

$$K_N = 0.5 N I_s^2, \qquad (2)$$

зависимость ГМС (H_c, K_r) от диаметра тороида будет отсутствовать [5]. Оценки показывают, что "критические" значения магнитострикции λ_s^0 для аморфных лент типичных геометрических размеров составляют около 10^{-8} . Вследствие выполнения условия $K_{\sigma} < K_N$ даже в сильно изогнутой ленте во всем ее объеме доменная структура будет состоять из продольных пластинчатых доменов. Это предопределяет величину $K_r \ge 0.9$ (острую продольную магнитную текстуру), отсутствие зависимости ГМС от величины диаметра тороидов D, а также низкие значения начальной проницаемости µ_a. Последнее обстоятельство обусловлено тем, что величина начальной проницаемости зависит не только от пиннинга границ доменов (ГД), но и от удельной плотности ГД (S — фактор), поскольку выражение для этого свойства с точностью до числового множителя имеет вид [6]

$$\mu_{\alpha} \sim \frac{I_s^2 S}{\alpha},\tag{3}$$

где *S* — удельная плотность ГД, $\alpha = (d^2 E/dx^2)_{x_0}$ — так называемый коэффициент жесткости (α — фактор), определяющий сопротивление смещению ГД (пиннинг ГД) из положения равновесия x_0 (дна потенциальной ямы), *E* — удельная энергия ГД.

В ряде работ изучались динамические магнитные свойства аморных сплавов, т.е. свойства, измеренные в переменных магнитных полях. Так, например, в работе [7] весьма подробно изучили зависимость динамической коэрцитивной силы аморфной проволоки сплава Fe_{77.5}Si_{12.5}B₁₅ в частотном диапазоне 0–1 kHz, а в работе [1] — частотную зависимость составляющих комплексной проницаемости $\tilde{\mu}(f)$ аморфного сплава Co₇₀Fe₅Si₁₅B₁₀. В последней работе измерения составля-

ющих $\tilde{\mu}(f)$, а именно μ' и μ'' , проводились при разных диаметрах тороидальных образцов. В работах [8,9] зависимость начальной проницаемости аморфных сплавов на основе кобальта от частоты магнитного поля изучали в весьма широком диапазоне частот — вплоть до 10⁷ Hz. Однако эксперименты выполнялись на тороидальных образцах одного диаметра.

В представленной работе приводятся результаты исследования аморфного сплава состава $Co_{69}Fe_{3.7}Cr_{3.8}Si_{12}B_{11}$ с чрезвычайно низкой магнитострикцией ($|\lambda_s| < 10^{-7}$), так что можно ожидать, что ее значение ниже или сравнимо с λ_s^0 . Эксперименты проводились при разных частотах f (от 0.1 до 20 kHz) на образцах, находящихся в разных исходных состояниях. В таком контексте, насколько нам известно, исследования еще не проводились.

Изученный аморфный сплав был получен спиннингованием в виде ленты толщиной около $25\,\mu$ m и шириной 5 mm. Аморфное состояние сплава контролировали рентгеновским методом. Гистерезисные магнитные свойства, а именно μ_5 (H = 5 mOe) и H_c , измеряли в динамическом режиме на тороидальных образцах с диаметром от 1.75 до 9.8 cm с помощью автоматизированной установки, позволяющей определять эти свойства на разных частотах. Измерения в статическом режиме осуществляли обычным баллистическим методом.

Изгибные напряжения σ_u на поверхности аморфной ленты толщиной h можно рассчитать по формуле

$$\sigma_u = hED^{-1},\tag{4}$$

где E — модуль упругости. Величина этих напряжений в ленте, свернутой в тороид с диаметром D = 1.75 cm, равна около 125 MPa, а с диаметром D = 8.9 cm около 31.3 MPa.

Релаксацию изгибных напряжений оценивали по параметру

$$\gamma = 1 - R_0 R_{T,t}^{-1}, \tag{5}$$

где R_0 — радиус кварцевой оправки, на которую навивают ленту, $R_{T,t}$ — остаточный радиус кривизны ленты после отжига при температуре T в течение времени t.

Склонность к охрупчиванию (вязко-хрупкому переходу) оценивали по температуре T_f , при которой деформация разрушения ленты ε_f при ее изгибе резко уменьшалась. Величину ε_f определяли по формуле

$$\varepsilon_f = h(D-h)^{-1},\tag{6}$$

где h — толщина ленты, D — расстояние между сжимающими поверхностями в момент разрушения ("абсолютная" пластичность $\varepsilon_f = 1$ наблюдается при плотном прилегании изогнутой ленты, когда D = 2h).

Магнитострикцию насыщения λ_s измеряли методом малоуглового вращения намагниченности (SAMRmethod)¹. Временной спад начальной проницаемости

6 Журнал технической физики, 2015, том 85, вып. 12

(ВСП) оценивали по величине относительного спада проницаемости μ_5 за период времени t = 30 min, т.е. величиной $\Delta \mu / \mu$ ($\Delta \mu = \mu_{t=15 \text{ c}} - \mu_{t=30 \text{ min}}, \mu = \mu_{t=15 \text{ c}}$).

Результаты экспериментов и их интерпретация

Изменение ГМС изученного сплава в зависимости от температуры изохронного отжига T_a описывается немонотонными кривыми (рис. 1, a-c). Это обусловлено

Рис. 1. Влияние температуры изохронного отжига T_a $(t_a = 0.5 \text{ h})$ на магнитные свойства (H_c, K_r, λ_s) (позиции a-d), релаксацию напряжений (кривая I) и пластичность (кривая 2) (позиция e) аморфного сплава Co₆₉Fe_{3.7}Cr_{3.8}Si_{12.5}B₁₁: H_c и K_r измерялись в статическом режиме; проницаемость μ_5 (H = 5 mOe) измерялась при частоте f = 1 kHz; диаметр тороидальных образцов D = 1.75 cm.

 $^{^1}$ См. например, работу: Hernando A., Madurga V. et al. // J. Magn. Mater. 1982. Vol. 28. Р. 109–114.

Рис. 2. Зависимость коэрцитивной силы H_c и проницаемости μ_5 от частоты f магнитного поля (указана на рисунке) и диаметра тороида D: a — исходное состояние, b — после отжига при 125°C, c — после отжига при 175°C. Время выдержки $t_a = 0.5$ h, охлаждение на воздухе.

развитием при нагреве таких релаксационных процессов, как стабилизация ГД вследствие направленного упорядочения (при $T_a < T_c$), кластеринга (при $T_a > T_c$) [10], а также изотропного упорядочения, которое вызывает весьма сложного характера зависимость λ_s от температуры отжига $T_a(d)$. Эту зависимость можно интерпретировать на основе модели равновесных значений свойств, сформулированной Эгами [11] (см. также [12]).

На рис. 1 представлены также данные по развитию релаксации напряжений и по склонности к охрупчиванию для изученного сплава. Приведенные данные дают достаточно полное представление о свойствах этого сплава, а также позволяют обоснованно выбрать режимы отжига. Штриховыми линиями показано предполагаемое изменение ГМС в отсутствие стабилизации ГД и пиннинга ГД вследствие развития кластеринга.

Измерения, проведенные в статическом режиме, показали, что такие ГМС, как H_c и K_r , не зависят заметным образом от диаметра тороидов D (см. ниже), что отвечает условию $K_{\sigma} < K_N$ и объясняет высокое значение коэффициента K_r (≥ 0.9).

Как и следовало ожидать, с увеличением частоты магнитного поля f независимо от состояния образцов (исходное или отожженное) происходит деградация ГМС (H_c , μ_5). Однако характер зависимости этих свойств от D определяется частотой f (рис. 2). Вид-

но, что в случае исходных образцов (позиция a) при низких частотах (НЧ), т. е. при f < 1 kHz, динамическая коэрцитивная сила подобно статической коэрцитивной силе (f = 0) практически не зависит от D. Однако при высоких частотах (ВЧ) динамическая коэрцитивная сила уменьшается с ростом диаметра D.

Проницаемость μ_5 исходных образцов ведет себя иначе: при ВЧ она, наоборот, очень слабо зависит от *D*, а при НЧ — она существенно возрастает с увеличением *D*. Коэффициент K_r при этом практически не зависит от диаметра *D* (см. ниже). Последнее обстоятельство означает, что изгибные напряжения не повлияли на характер доменной структуры и что они не изменили соотношение между константами K_{σ} и K_N , т.е. продолжает выполняться условие $K_{\sigma} < K_N$.

В образцах, отожженных при температурах 125 и 175°С ($T_a < T_c$), наблюдаются закономерности частотного характера, качественно подобные таковым в исходных образцах. Температура отжига $T_a = 125$ °С была выбрана из условия, что стабилизация ГД при этом отжиге в заметной степени еще не проявляется, а изменение ГМС (рост μ_5 и уменьшение H_c) обусловлено начальными стадиями гомогенизации аморфной фазы. Отжиг же при $T_a = 175$ °С выбран потому, что он отвечает максимальной стабилизации ГД вследствие направленного упорядочения (рис. 1, позиции a-c).

Рис. 3. Зависимость проницаемости μ_5 и коэрцитивной силы H_c от частоты для тороидальных образцов с D = 1.75 (1) и 8.9 cm (2): a — исходное состояние, b — после отжига при 125°С, c — после отжига при 175°С.

Чтобы выявить особенности влияния частоты магнитного поля f на ГМС в наглядном виде, экспериментальные данные представлены в виде кривых зависимости ГМС (H_c, μ_5) от частоты f (рис. 3) для образцов с диаметром D, равным 1.75 и 8.9 cm, т.е. с наименьшим и наибольшим диаметрами, которые использовались в настоящей работе. Видно, что разница между кривыми $H_c(f)$ и для образцов разного диаметра возрастает с увеличением частоты. Наибольшее различие между этими кривыми наблюдается в образцах, прошедших отжиг при 175°С, т.е. в образцах, в которых эффект стабилизации ГД вследствие направленного упорядочения проявляется в максимальной степени (рис. 1, позиции a-c). Наоборот, разница между кривыми $\mu_5(f)$, полученными на тороидах разного диаметра, с увеличением частоты уменьшается.

Различие в поведении динамической проницаемости и динамической коэрцитивной силы под влиянием изгибных напряжений, в частности, может означать, что на параметры, которые определяют эти магнитные свойства (μ_a и H_c), а именно $(d^2E/dx^2)_{x_0}$ и $(dE/dx)_{max}$ соответственно [6], изгибные напряжения действуют поразному, а характер их влияния зависит от частоты перемагничивания.

Отметим роль магнитострикции в формировании ГМС, зависимость которой в изученном сплаве от температуры изохронного отжига представлена на рис. 1, (позиция d). Характер влияния магнитострикции на прямоугольность петли гистерезиса (коэффициент K_r) тороидальных образцов в зависимости от вида их исходной магнитной текстуры был проанализирован в работе [2]. В частности, было показано, что в случае магнитноизотропного состояния аморфных лент ($K_r = 0.5$) величина коэффициента K_r не должна зависить от магнитострикции, а в случае магнитно-анизотропного материала с осью легкого намагничивания вдоль длины ленты $(K_r = 1)$ увеличение магнитострикции приводит к снижению прямоугольности петли гистерезиса коэффициента K_r. Как видно из рис. 4, последний случай, очевидно, соотносится к изученному сплаву: в исходном состоянии $K_r > 0.9$, а увеличение λ_s с ростом температуры изохронного отжига Т_а вызывает существенное понижение величины Kr. Однако следует отметить, что весьма резкое падение K_r при $T_a > 125^{\circ}$ С обусловлено не только λ_s -фактором, а связано также со стабилизацией ГД вследствие направленного упорядочения [6], что видно также из данных, приведенных на рис. 1 (позиция *b*).

На рис. 4 показано, как диаметр тороида D влияет на зависимость K_r от температуры отжига T_a (позиция a) и как температура отжига T_a сказывается на зависимости коэффициента K_r от диаметра тороида D (позиция b). Видно, что в исходных образцах и образцах, отожженных при $T_a = 125^{\circ}$ С, наряду с высоким значением коэффициента K_r (~ 0.9) практически отсутствует его зависимость от D. Это в соответствии с изложенными выше соображениями означает, что для этих образцов все еще выполняется неравенство $K_N > K_{\sigma}$. Однако уже

Рис. 4. Закономерности влияния изгибных напряжений (диаметра тороидальных образцов D) и температуры отжига T_a на коэффициент прямоугольности K_r : a — зависимость коэффициента K_r от температуры отжига для тороидальных образцов с диаметром D = 1.75 (I) и 8.9 cm (2), b — зависимость коэффициента K_r от диаметра тороида D в исходном образце (позиция I) и в образцах, отожженных при температурах 125 (позиция 2), 175 (позиция 3) и 390°C (позиция 4). Охлаждение на воздухе.

для образцов, прошедших отжиг при $T_a \ge 175^{\circ}$ С, изза увеличения магнитострикции (рис. 4, позиция *d*) и соответственно энергии магнитоупругой анизотропии K_{σ} , скорее всего, выполняется условие $K_N < K_{\sigma}$ со всеми вытекающими отсюда последствиями: резким уменьшением коэффициента K_r и появлением отчетливой зависимости K_r от *D*.

До сих пор рассматривались закономерности, связанные с влиянием частоты магнитного поля и диаметра тороида на ГМС в образцах изученного сплава, отожженных при температурах ниже точки Кюри (260°C), т.е. при температурах, при которых скорость охлаждения после отжига в соответствии с теорией стабилизации ГД вследствие направленного упорядочения [6,10] не должна сказываться сколь-либо существенно на уровне магнитных свойств. Интерес могут представлять данные экспериментов, полученные на образцах, прошедших отжиг при температурах, превышающих точку Кюри, когда скорость охлаждения должна сильно влиять на закономерности формирования ГМС. В самом деле, как видно из рис. 5, после высокотемпературного отжига при 390°С не только уровень проницаемости, но и сам характер влияния диаметра тороида на ее величину зависят от скорости охлаждения после отжига. Так, например, величина μ_5 в тороидах с D = 1.75 ст при частоте f = 0.1 kHz составляет 130 000, 75 000 и 20 000 соответственно после охлаждения в воде, на воздухе и с печью. Видно также, что при относительно медленном охлаждении (на воздухе или с печью) наблюдаются качественно те же закономерности, которые присущи исходным образцам и образцам, отожженным при температурах 125 и 175°С (рис. 1), а именно: значение μ_5 возрастает с увеличением диаметра тороида D при

малых частотах, а при высоких частотах зависимость μ_5 от D фактически отсутствует.

Совсем другая, воистину парадоксальная картина наблюдается в случае быстрого охлаждения (позиция *a*). Во-первых, при всех применяемых в работе частотах наблюдается весьма четко выраженная зависимость μ_5 от *D*. Во-вторых, μ_5 не уменьшается, как при относительно медленном охлаждении, а возрастает с уменьшением *D*, т.е. проницаемость возрастает с уменьшением *D*, т.е. проницаемость возрастает с увеличением напряжений изгиба. Такое поведение проницаемости, естественно, не может быть описано в рамках классической модели перемагничивания (модели Кондорского– Керстена), основанной на механизме перемагничивания путем смещения жестких ГД [6].

Структурное состояние аморфной фазы образцов, прошедших закалку в воде, характеризуется тем, что в ней, во-первых, в минимальной степени выражен композиционный ближний порядок изотропного типа [12], вовторых, в ней отсутствует магнитно-необратимый композиционный ближний порядок анизотропного типа [10], обусловленный направленным упорядочением под действием сил магнитной природы (сил квазидипольного взаимодействия). Кроме того, как следует из рис. 1, d, отжиг в районе 390°C изменяет знак магнитострикции λ_s . Этому, ествественно, сопутствует кардинальная перестройка доменной структуры, а следовательно, относительный вклад процессов смещения ГД и вращения векторов I_s доменов в намагничивание таких аморфных лент. Можно предположить, что отмеченные особенности структурно-магнитного состояния аморфной фазы после закалки от температуры 390°С способствуют проявлению тех механизмов перемагничивания, которые потенциально могут обусловливать необычные ("ано-

Рис. 5. Влияние скорости охлаждения после отжига при температуре 390° С на величину проницаемости μ_5 и ее зависимость от диаметра тороидальных образцов при разных частотах (указаны на рисунке): *a* — охлаждение в воде, *b* — охлаждение на воздухе, *c* — охлаждение с печью.

мальные") закономерности в поведении проницаемости образцов, прошедших такую термическую обработку.

Одним из таких механизмов перемагничивания, если ориентироваться на выводы работ [8,9], может быть механизм, основанный на модели перемагничивания путем смещения гибких ГД, предложенной Поливановым [13]. Частотная зависимость комплексной проницаемости $\tilde{\mu}(f)$ в рамках предложенной модели связывается с индуцированными микровихревыми токами, возникающими при перемагничивании. Именно этот механизм, по мнению автора работ [8,9], дает наиболее адекватное описание релаксационных по своей природе спектров упругой $\mu'(f)$ и вязкой $\mu''(f)$ составляющих комплексной проницаемости $\tilde{\mu}(f)$. Особенности влияния диаметра тороида D на эти спектры отражают перестройки доменной структуры и обусловленные этим изменения в пространственном распределении микровихревых токов и в протекании вихретоковой релакскации.

На основе представлений об определяющей роли микровихревых токов в формировании релаксационных спектров составляющих $\mu'(f)$ и $\mu''(f)$ была также сформулирована модель для случая, когда микровихревые токи индуцируются обратимым вращением векторов I_s поперечных доменов, т.е. для образцов с поперечной магнитной текстурой. Причем показано, что поведение микротоков при таком перемагничивании, а следовательно, и динамическая проницаемость зависят от дисперс-

ности доменной структуры, отвечающей поперечной магнитной текстуре.

Однако в рамках описанных выше представлений не удается отличить динамическую проницаемость, связанную с процессом вращения векторов I_s , от проницаемости, обусловленной смещением гибких ГД. Тем не менее экспериментальные данные [8,9] дают основание считать, что относительный вклад в измеряемую проницаемость процесса вращения векторов I_s возрастает по мере увеличения частоты перемагничивания.

Поскольку в результате изгиба в аморфной ленте действуют как растягивающие (выше средней плоскости ленты), так и сжимающие (ниже средней плоскости ленты) напряжения, которые создают полосовую доменную структуру с разным направлением векторов I_s , то ясно, что проницаемость таких образцов будет зависеть от относительного вклада процесса смещения гибких ГД и процесса вращения векторов Is в ее величину. В работе [2] показано, что относительный вклад этих процессов может изменяться под действием изгибных напряжений из-за того, что могут изменяться объемы, где действуют разные механизмы перемагничивания и соответственно вступают в игру микровихревые токи, связанные с этими механизмами. Такая ситуация возникает тогда, когда в аморфной ленте существует магнитная анизотропия того или иного происхождения.

Следует обратить внимание на то весьма очевидное обстоятельство, что динамическая проницаемость и ее

Рис. 6. Влияние диаметра тороидального образца D и температуры отжига на временной спад проницаемости $\Delta \mu/\mu$ за период времени 30 min (a) и влияние температуры отжига T_a ($t_a = 0.5$ h) на величину $\Delta \mu/\mu$ в образцах с разным диаметром: a: I — исходное состояние, 2 — после отжига при 125°C, 3 — после отжига при 175°C, 4 — после отжига при 390°C. b: I — D = 1.75 сm, 2 - 4.8, 3 - 8.9 сm. Частота магнитного поля f = 1 kHz. Охлаждение на воздухе.

частотные спектры не только связаны с изменением пространственного распределения микровихревых токов вследствие перестройки доменной структуры, но определяются также магнитной жесткостью аморфной фазы (α-фактором) — концентрацией дефектов аморфной структуры (центров пиннинга) различного пространственного диапазона [14].

Обнаруженные и описанные выше "аномалии" можно рассматривать как проявление преобладающей микровихревой релаксации, порождаемой процессами перемагничивания путем смещения гибких ГД и путем вращения векторов I_s доменов поперечной ориентации. Однако пока нет предпосылок для объяснения того, почему вихревые токи, порождаемые этими механизмами перемагничивания, при определенном структурно-магнитном состоянии аморфных сплавов могут вызывать именно те необычные закономерности, которые наблюдаются в экспериментах, проведенных на быстроохлажденных образцах.

Остановимся на закономерностях, связанных с временным спадом проницаемости (ВСП), величина которого оценивается относительным ее спадом в течение 30 min, т. е. величиной $\Delta \mu/\mu$ ($\Delta \mu = \mu_{t=15c} - \mu_{t=30 \text{ min}}$, $\mu = \mu_{t=15c}$). Соответствующие данные приведены на рис. 6. Видно, что независимо от состояния (исходное или отожженное) в тороидальных образцах с наиболее малым диаметром (D = 1.75 cm), т.е. в образцах со сравнительно высокими изгибными напряжениями, ВСП выражен очень слабо (величина $\Delta \mu/\mu$ составляет не более 2%) и практически не зависит от температуры отжига (позиция *b*, кривая *1*).

Однако, как следует из рис. 6 (позиция *b*, кривые 2 и 3), совсем другие закономерности наблюдаются в тороидальных образцах с диаметрами D = 4.8и D = 8.9 cm, т. е. в случае более низких изгибных напряжений, чем в лентах, навитых в тороид с D = 1.75 сm (кривая 1). В первую очередь отметим отчетливо демонстрируемую зависимость ВСП от уровня изгибных напряжений: чем ниже эти напряжения (больше диаметр D) и чем выше соответственно проницаемость, тем больше $\Delta \mu/\mu$ при комнатных температурах. Так, если в исходных образцах с D = 1.75 сm $\Delta \mu/\mu \approx 2\%$, то в образцах с D = 8.9 сm $\Delta \mu/\mu$ достигает 20%. Эта закономерность полностью отвечает теоретическим предсказаниям для лент аморфных сплавов с высокой прямоугольностью петли гистерезиса [15], каковой и обладает изученный сплав в исходном состоянии.

В случае тороидов с диаметром 4.8 и 8.9 ст наблюдается весьма своеобразная зависимость $\Delta \mu / \mu$ от температуры отжига (позиция b). Видно, что величина $\Delta \mu / \mu$ после низкотемпературных отжигов при температурах 125 и 175°C или не изменяет свое исходное значение (~ 20%), что характерно для тороидов с $D = 8.9 \, \text{сm}$ (кривая 3), или ее изменение весьма мало, как это имеет место для образцов с $D = 4.8 \,\mathrm{cm}$ (кривая 2). Но в любом случае наблюдается достаточно резкое уменьшение ВСП после высокотемпературного отжига при температуре 390°С, т.е. при температуре, превышающей точку Кюри (величина $\Delta \mu / \mu$ приобретает значение 5-8% — в 2.5-3 раза меньше, чем в исходных образцах). Последняя закономерность связана с тем обстоятельством, что, несмотря на гомогенизацию аморфной фазы вследствие релаксации закалочных и изгибных напряжений и выхода избыточного свободного объема, уже в процессе сравнительно медленного охлаждения после отжига при 390°С (охлаждение осуществляли на воздухе) протекает необратимая стабилизация ГД, которая приводит к уменьшению как проницаемости (рис. 5), так и величины $\Delta \mu / \mu$, поскольку эти характеристики прямо пропорциональны друг другу [15].

Выводы

1. Показано, что для аморфных сплавов на основе кобальта со столь низкой магнитострикцией, что в исходном состоянии выполняется условие $K_{\sigma} < K_N$ и поэтому, соответственно коэффициент K_r близок к единице, наблюдаются весьма своеобразные ("аномальные") закономерности в поведении динамических (измеренных в переменных магнитных полях) таких гистерезисных магнитных свойств, как проницаемость μ и Н_с. В свежезакаленных тороидальных образцах и в образцах, прошедших отжиг с последующим медленным охлаждением, зависимость динамической коэрцитивной силы от диаметра тороида D практически отсутствует при низких частотах ($f < 1 \, \text{kHz}$), а при высоких частотах эта зависимость отчетливо выражена: H_c уменьшается с увеличением *D*. В случае проницаемости μ_5 наблюдаются закономерности обратного характера: зависимость μ_5 от D отсутствует при высоких частотах и наблюдается рост μ_5 от величины D при низких частотах перемагничивания.

2. В образцах, подвергнутых высокотемпературному отжигу при температуре $T_a > T_c$, сильно выражена зависимость проницаемости от скорости последующего охлаждения. После отжига образцов, например с $D = 1.75 \,\mathrm{cm} \ (f = 0.1 \,\mathrm{kHz})$ при $T_a = 390^\circ\mathrm{C}$ с последующим охлаждением в воде, когда стабилизация ГД подавляется, $\mu_5 = 130\,000$. После охлаждения с печью $\mu_5 = 20\,000$.

3. В образцах, подвергнутых высокотемпературному отжигу ($T_a = 390^{\circ}$ C) с последующей закалкой в воде, возникает аномальное явление, а именно μ_5 возрастает с увеличением изгибных напряжений.

4. Величина временного спада проницаемости зависит от диаметра тороидальных образцов — величина $\Delta \mu/\mu$ уменьшается от значения 8% при D = 8.9 сm, до примерно 2% при D = 1.75 сm, при этом низкое исходное значение $\Delta \mu/\mu$ в образцах с D = 1.75 сm сохраняется и после отжигов вплоть до предкристаллизационных температур.

Работа выполнена в рамках Государственного задания № 2014/113 на выполнение государственных работ в сфере научной деятельности в рамках базовой части Государственного задания Минобрнауки РФ.

Список литературы

- Кекало И.Б., Жданов А.И., Цветков В.Ю. Структура, структурные превращения и магнитные свойства аморфных металлических сплавов. М.: Металлургия, 1986. С. 118–130.
- [2] Введенский В.Ю., Кекало И.Б. // ФММ. 1992. № 4. С. 99– 110.
- [3] Введенский В.Ю., Кекало И.Б. // ФММ. 1996. Т. 81. № 1. С. 73–83.
- [4] Введенский В.Ю., Кекало И.Б. // ФММ. 1998. Т. 86. № 5. С. 80–90.

- [5] Кекало И.Б., Клычева В.А., Тараничев В.Е. // ФММ. 1989. Т. 67. № 4. С. 700–707.
- [6] Кекало И.Б., Самарин Б.А. Физическое материаловедение прецизионных сплавов. Сплавы с особыми магнитными свойствами. М.: Металлургия, 1989. 496 с.
- [7] Aragoneses P., Blanco J.M., Dominguez L. et.al. // J. Phys. D: Appl. Phys. 1988. Vol. 31. P. 494–497.
- [8] Соколовский С.Е. Проблемы исследовании структуры аморфных металлических сплавов. М.: МИСиС, 1984. С. 192–194.
- [9] Соколовский С.Е. // Изв. вузов. Черн. металл. 1987. № 9. С. 136–138.
- [10] Кекало И.Б. Аморфные (стеклообразные) металлические материалы. М.: Наука, 1992. С. 107–112.
- [11] Грамах С.Д., Эгами Т. Быстрозакаленные металлы. М.: Металлургия, 1983. С. 269–275.
- [12] Кекало И.Б. Процессы структурной релаксации и физические свойства аморфных сплавов. М.: Изд. дом МИСиС, 2014. Т. 1. С. 40–56.
- [13] Поливанов К.М. Ферромагнетики. Основы теории технического применения. М.; Л.: ГЭИ, 1957. 254 с.
- [14] Кекало И.Б. Атомная структура аморфных сплавов и ее эволюция. М.: Изд. "Учеба" МИСиС, 2006. С. 275–318.
- [15] Введенский В.Ю., Кекало И.Б. // ФММ. 1997. Т. 83. № 4. С. 41–50.