14,16

Ближний порядок и фрактальная кластерная структура агрегатов микрочастиц титаната бария в композите на основе цианэтилового эфира поливинилового спирта

© А.Н. Красовский¹, Д.В. Новиков², Е.С. Васина³, П.В. Матвейчикова³, М.М. Сычев³, Н.Н. Рожкова⁴

 ¹ Институт аналитического приборостроения РАН, Санкт-Петербург, Россия
² Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия
³ Санкт-Петербург, Россия
⁴ Институт геологии Карельского научного центра РАН, Петрозаводск, Россия
E-mail: alex-krasovski@yandex.ru

(Поступила в Редакцию 2 июня 2015 г.)

Методами сканирующей электронной микроскопии и краевых углов смачивания исследованы распределение микрочастиц титаната бария (BaTiO₃) в матрице цианэтилового эфира поливинилового спирта и изменение поверхностной энергии при введении в диэлектрический композит нанокластеров шунгитового углерода. В результате компьютерной обработки электронно-микроскопических данных показано, что при введении в композит 0.04% наночастиц шунгитового углерода снижается пространственная однородность квазирешетки и возрастают локальная плотность распределения микрочастиц BaTiO₃ и радиус корреляции, соответствующий образованию бесконечного кластера частиц BaTiO₃. При этом наблюдается экстремальный рост поверхностной энергии и диэлектрической проницаемости композита.

Работа проводилась при поддержке грантов РФФИ (№ 15-03-04643), Минобрнауки РФ (соглашение 14.574.21.0002, уникальный идентификатор RFMEFI57414X0002) и программы ОХНМ РАН № 7.

1. Введение

Полимерно-неорганический композиционный материал на основе цианэтилового эфира поливинилового спирта (ЦЭПС) и титаната бария (BaTiO₃) представляет интерес для получения диэлектрических покрытий в конструкциях конденсаторов, дисплеев, электролюминесцентных источников света и других устройств электроники [1–3].

Известно [1], что ЦЭПС имеет наивысшие среди промышленных полимеров значения диэлектрической проницаемости ε за счет высокого содержания полярных цианэтильных функциональных групп. Микрочастицы ВаТіО₃ характеризуются высокой диэлектрической проницаемостью $\varepsilon \approx 1500-4500$, что позволяет создавать композиты с высокими значениями ε .

В работах [2–4] показано, что модифицирование поверхности частиц ВаТіО₃ позволяет управлять межфазным взаимодействием полимер—наполнитель и существенно повышать диэлектрическую проницаемость композитов. В работе [4] в качестве модификатора поверхности ВаТіО₃ использованы нанокластеры шунгитового углерода (ШУ), структурные элементы которого характеризуются многоуровневой организацией в области 1–100 nm [5]. Установлено, что введение определенной концентрации ШУ $c^* = 0.04\%$ приводит к экстремальному росту диэлектрической проницаемости композита, причем этот эффект не связан с изменением электропроводности системы и, следовательно, обусловлен изменением ее структуры.

В настоящей работе изучена структура композиционного материала — полимерной матрицы ЦЭПС с распределенными в ней микрочастицами ВаТіО₃, модифицированными нанокластерами ШУ. Цель работы исследование распределения микрочастиц ВаТіО₃ и закономерностей формирования бесконечного кластера в композитных пленках на масштабах, близких по порядку величины к размеру микрочастиц ВаТіО₃. В приближении кластерной решеточной модели проведен анализ концентрационных кривых дисперсионной и полярной компонент поверхностной энергии диэлектрического композита на основе микрочастиц ВаТіО₃, модифицированных ШУ.

2. Объекты и методы исследования

Использовались образцы титаната бария ("Fuji Titanium", Япония) со средним диаметром частиц $0.58 \pm 0.18 \,\mu$ m и ЦЭПС со среднечисленной молекулярной массой 50 000 и степенью замещения 73% гидроксильных групп поливинилового спирта цианэтильными (ОАО "Пластполимер", Россия). Композитные пленки ЦЭПС — ВаТіО₃ (40 vol.%) толщиной 100 μ m получены путем диспергирования микрочастиц ВаТіО₃, модифицированных нанокластерами ШУ, в 30% растворе

Рис. 1. Изображения поверхности образцов композитных пленок ЦЭПС-ВаТіО₃ (40 vol.%) с содержанием не менее 2000 микрочастиц ВаТіО₃: без ШУ (*a*) и при c = 0.04% ШУ в расчете на неорганическую фазу композита (*b*).

ЦЭПС в диметилформамиде, затем полива композиции на плоскую проводящую подложку и вакуумной сушки композитных пленок при температуре 298 К [1]. Концентрация c ШУ в смеси ВаТіО₃ — ШУ составляла 0.2–2.48 mg в расчете на 1 g микрочастиц ВаТіО₃, что соответствует c = 0.02-0.248 mass.% ШУ в расчете на неорганическую фазу композита.

Изображения воздушной поверхности композиционных пленок получены на сканирующем электронном микроскопе JSM-35CF. С помощью компьютерной оцифровки изображений, представленных на рис. 1 и 2, получались двумерные массивы координат геометрических центров, содержащих соответственно не менее ~ 2000 (рис. 1) и ~ 250 (рис. 2) микрочастиц BaTiO₃. При этом учитывались наложение проекций и взаимопроникновение частиц вследствие их агрегации.

Ближний порядок частиц на расстояниях порядка их размера и пространственные корреляции типа "плотность—плотность" в микрометровом диапазоне определялись с помощью радиальных функций распределения g(R) отдельных частиц и кластеров фазы микрочастиц ВаТіО₃ соответственно. Такие функции получались при сканировании плотности распределения частиц с шагом 0.2 и 1 μ m. По первому пику функции g(R) (рис. 3) определялись параметры квазирешетки микрочастиц: наиболее вероятное расстояние r между частицами и среднее координационное число $\langle m \rangle$ (число ближайших соседей частицы в "координационной сфере" радиусом r_s). Средняя решеточная плотность частиц отождествлялась с объемной долей кластеров фазы BaTiO₃. Для анализа локальной пространственной однородности квазирешетки использовались кривые f(m) распределения микрочастиц по координационному числу (рис. 4). По функциям g(R), построенным для кластеров микрочастиц BaTiO₃ (рис. 5), определялись корреляционный радиус ξ , а на основе степенной асимптотики $g(R) \sim R^{D-2}$ — фрактальная размерность D кластеров микрочастиц [6].

Контактные углы θ смачивания водой и глицерином (Gl) поверхности композитных пленок, содержащих исходный ВаТіО₃ и ВаТіО₃, модифицированный нанокластерами ШУ, определялись методом регистрации изображения лежащей капли [7,8], реализованным с помощью лабораторной установки, аналогичной прибору DSA14 ("Kruss", Германия). Измерялись диаметр основания и высота капли для 4–6 капель жидкости на поверхности каждой композитной пленки [9]. Усредненные контактные углы θ смачивания композитных пленок жидкостями рассчитывались по способу [7] с погрешностью $\pm 1^\circ$.

Дисперсионная γ^d и полярная γ^p компоненты поверхностной энергии γ композитных пленок определялись по

Рис. 2. Изображения участков поверхности композитных пленок ЦЭПС-ВаТіО₃ с содержанием не менее 250 микрочастиц ВаТіО₃: без ШУ (*a*) и при c = 0.04% ШУ (*b*).

Рис. 3. Радиальные функции g(R) распределения микрочастиц ВаТіО₃ в образцах композитов: без ШУ (a) и при c = 0.04%ШУ (b).

контактным углам θ смачивания образцов водой и Gl по методу Фоукса [7]. При этом были приняты значения дисперсионной и полярной компонент поверхностной энергии воды (γ_1^d , γ_1^p) и Gl (γ_2^d , γ_2^p) на границе с воздухом, равные соответственно 22, 50.2 и 34, 25.4 mJ/m² (283 K) [9].

3. Результаты и их обсуждение

Функция g(R) микрочастиц ВаТіО₃ в исходном образце композитной пленки (рис. 1, *a* и 3, *a*) иллюстрирует влияние агрегации на ближний порядок распределения микрочастиц, в результате которой за счет взаимопроникновения простых частиц формируются более сложные агрегаты. Об этом свидетельствуют как значительное расщепление первого пика на две компоненты в области $R = 0.7-0.9\,\mu$ m, так и следующий за первым пиком побочный максимум, положение которого ($R \approx 1.3\,\mu$ m) соответствует удвоению позиции одной из компонент первого пика. Значительную роль агрегации в процессе образования квазирешетки микрочастиц подтверждает функция f(m) распределения частиц по координационному числу m (рис. 4, *a*): кривая f(m)асимметрична, при этом $\langle m \rangle \approx 4$ соответствует квадратной решетке. Рассчитанная для квадратной решетки и $r = 0.86 \,\mu$ m средняя решеточная плотность микрочастиц равна 0.65 ± 0.02 .

В присутствии ШУ функция g(R) микрочастиц ВаТіО₃ трансформируется (рис. 3, b) и показывает уменьшение вклада агрегации в процесс формирования квазирешетки частиц. Расщепление первого пика становится менее выраженным, побочный максимум пропадает, плотность ρ_s распределения частиц увеличивается от 2.8 µm⁻² (для исходного образца) до $3.3\,\mu m^{-2}$ (для образца, содержащего ШУ). Кривая f(m) становится более симметричной (рис. 4, b), а величина $\langle m \rangle \approx 6$ соответствует более плотной треугольной решетке в образце, содержащем 0.04% ШУ в расчете на неорганическую фазу. При этом средняя решеточная плотность ρ микрочастиц BaTiO₃, рассчитанная для треугольной решетки при том же значении r, равна 0.63 ± 0.02 и, таким образом, в пределах погрешности расчета практически не изменяется по сравнению с исходным образцом.

Значение 0.65 ± 0.02 для решеточной плотности частиц находится несколько выше порога протекания при случайном (однородном) заполнении узлов треугольной и квадратной решеток [10], однако не может гарантировать протекание по узлам в неоднородной решетке.

В общем случае для обоснования перколяции микрочастиц в структурно-неоднородных системах удобно

Рис. 4. Кривые f(m) для микрочастиц ВаТіО₃ в образцах композитов без ШУ (a) и при c = 0.04% ШУ (b).

использовать модель протекания по связанным окружностям с центрами в частицах [10]. Перколяции должна соответствовать монотонная зависимость средневзвешенного размера $\langle n^2 \rangle / \langle n \rangle$ кластеров из связанных окружностей от величины их радиуса R_c [11]. Такие зависимости для образцов композитов приведены на рис. 6. Кривые для образцов без ШУ и с содеражанием ШУ 0.04%, полученные с использованием безразмерного радиуса окружностей $t = R_c \rho_s^{1/2}$, практически совпадают друг с другом и являются монотонными в области t = 0.2-0.5, что подтверждает существование бесконечного кластера микрочастиц ВаТіО₃ в композитных пленках. Насыщение кривых в области t > 0.5 связано с ограниченным размером электронно-микроскопических изображений композитных пленок.

На рис. 5 представлены функции g(R) для кластеров микрочастиц ВаТіО₃ (неорганической фазы) в исходном композите и в образце, содержащем 0.04% ШУ в расчете на неорганическую фазу композита. Функции имеют аналогичный вид, характерный для структурнонеоднородных систем: положение максимума соответствует корреляционному радиусу ξ , а на масштабе $R > \xi$ функции уменьшаются по степенному закону, справедливому для фрактальных кластеров [6,12]. Подобные функции были получены ранее [6] при изучении структуры сшитого эпоксифенольного полимера.

Полимерно-неорганический композит ЦЭПС-ВаТіО₃ можно рассматривать как фазово-разделенную систему типа полимер-сегнетоэлектрик (ВаТіО₃). В бесконечном кластере частиц неорганической фазы композита можно выделить два характерных масштаба: на масштабе $R < \xi$ кластер является однородно неупорядоченным. Напротив, на масштабе $R > \xi$ структура кластера формируется в результате периодического чередования агрегатов частиц с периодом, равным ξ . Ближний порядок узлов в таких агрегатах (решеточных кластерах) зависит от интенсивности агрегации частиц сегнетоэлектрика, проходящей под влиянием ШУ.

Рис. 5. Радиальные функции g(R) распределения кластеров микрочастиц ВаТіО₃ в композитах без ШУ (*a*) и при c = 0.04% ШУ (*b*).

Рис. 6. Зависимости логарифма средневзвешенного размера $\langle n^2 \rangle / \langle n \rangle$ кластеров из связанных окружностей (с центрами в микрочастицах ВаТіО₃) от величины их безразмерного радиуса $R_c \rho^{1/2}$ для образцов композитов без ШУ (1) и при c = 0.04% ШУ (2).

Рис. 7. Степень агрегации *s* микрочастиц BaTiO₃ как функция отношения R/R_0 (R — радиус окружности, вмещающей кластер) в логарифмических координатах. Прямые удовлетворяют выражению $s \sim (R/R_0)^D$ с угловым коэффициентом $D = 1.94 \pm 0.04$ для исходного композита (I) и $D = 1.90 \pm 0.04$ для образца, содержащего 0.04% ШУ в расчете на неорганическую фазу композита (2). Погрешности соответствуют стандартному отклонению от среднего значения.

На масштабе $R > \xi$ функции g(R) можно аппроксимировать степенными выражениями $g(R) \sim R^{-0.06}$ и $g(R) \sim R^{-0.1}$ для исходного образца и композита, содержащего 0.04% ШУ в расчете на неорганическую фазу, соответственно (рис. 5). Кластерам микрочастиц ВаТіО₃ можно сопоставить величины фрактальной размерности $D = 1.94 \pm 0.04$ (исходный образец) и 1.90 ± 0.04 (композит, содержащий ШУ).

Аналогичные значения фрактальной размерности D кластеров микрочастиц BaTiO₃, соответственно равные 1.94 ± 0.04 для исходного композита без ШУ и 1.90 ± 0.04 для композита, содержащего 0.04% ШУ в расчете на неорганическую фазу, были получены из зависимостей степени агрегации *s* микрочастиц BaTiO₃

Полярная γ^{p} и дисперсионная γ^{d} компоненты полной поверхностной энергии ($\gamma = \gamma^{p} + \gamma^{d}$), полярность γ^{p}/γ и диэлектрическая проницаемость ε композитных пленок толщиной 100 μ m на основе ЦЭПС и микрочастиц титаната бария, модифицированных нанокластерами ШУ (c — концентрация ШУ)

c, %	γ^{p}	γ^{d}	γ	γ^p/γ	ε	ξ/ξ0
	mJ/m ²			(±5%)	$(\pm 10\%)$ [1]	$(\pm 10\%)$
0.00	9.4	14.8	24.2	0.39	130	1.0
0.020	13.8	22.5	36.3	0.38	150	1.15
0.041*	46.8	8.0	54.8	0.85	248	1.35
0.062	24.4	12.3	36.7	0.67	103	1.1
0.083	11.0	19.2	30.2	0.36	107	0.9
0.120	10.5	23.1	33.6	0.31	114	0.8
0.248	23.7	8.07	32.4	0.73	68	1.3
				-		

Примечание. Звездочкой отмечена пороговая концентрация ШУ в расчете на неорганическую фазу композита: $c^* = 0.041\%$; ξ/ξ_0 — отношение корреляционных радиусов для композитных пленок, содержащих ШУ и в отсутствие ШУ. Погрешность определения поверхностной энергии γ равна $\pm 5\%$.

от радиуса *R* окружности, вмещающей кластер микрочастиц [12] (рис. 7). В области масштаба $1 < R < 6 \mu m$ кривые $s(R/R_0)$ (R_0 — минимальный радиус окружности, равный $1 \mu m$), рассчитанные для конечных участков размером $6 \times 8 \mu m$ на поверхности композиционных пленок (рис. 2, *a*, *b*), удовлетворяют степенному выражению $s \sim (R/R_0)^D$ [12] и поэтому в логарифмическом масштабе прямолинейны.

Ранее в работе [13] было получено скейлинговое выражение, связывающее поверхностную энергию γ полимерных пленок со средней решеточной плотностью ρ кластеров микрочастиц,

$$\gamma = \gamma_0 [\rho(\xi)/\rho_0]^{\beta}, \tag{1}$$

где индекс $\beta = D/(E - D), E = 2$ — эвклидова мерность пространства, γ_0 и ξ_0 — полная поверхностная энергия и корреляционный радиус кластеров, соответствующие локальной плотности ρ_0 кластеров микрочастиц ВаТіО₃ в исходном композите, а γ, ρ и ξ — аналогичные параметры для композитных пленок, которые содержат ШУ.

В первом приближении, учитывая выражение $\rho/\rho_0 \sim (\xi/\xi_0)^{D-E}$ [12], относительное изменение корреляционного радиуса ξ/ξ_0 фрактальных кластеров микрочастиц ВаТіО₃, вызванное введением ШУ в композитные пленки, можно определить по соотношению [13]

$$\xi/\xi_0 \sim (\gamma/\gamma_0)^{-1/D}.$$
 (2)

Согласно выражению (2), экстремальный вид концентрационных кривых полярной γ^p и дисперсионной γ^d компонент полной поверхностной энергии γ композитных пленок обусловлен [13] экстремальным изменением корреляционного радиуса ξ бесконечного кластера частиц ВаТіО₃ при введении ШУ в композит (см. таблицу).

Вблизи пороговой концентрации c^* ШУ в композите, равной 0.04%, полярная γ^p компонента полной поверх-

ностной энергии композита максимальна, а дисперсионная компонента γ^d минимальна. При этом отношение корреляционных радиусов ξ/ξ_0 увеличивается экстремально с ростом концентрации с ШУ. Причины такого разнонаправленного изменения $\gamma^p(c)$ и $\gamma^d(c)$ связаны с различными диэлектрическими свойствами компонентов композита на межфазных границах ЦЭПС–ВаТіО₃ и ВаТіО₃–ШУ [14,15].

Симбатное изменение полярной компоненты γ^p поверхностной энергии и диэлектрической проницаемости ε композитных пленок указывает на перераспределение нанокластеров ШУ на границах раздела полимер—ВаТіО₃ и ВаТіО₃—ШУ с ростом содержания ШУ (рис. 8, *a*). Снижение полярности γ^p/γ поверхности и диэлектрической проницаемости ε композита выше порога перколяции ШУ в области концентрации $c > c^*$, вероятно, связано с формированием микрофазы ШУ (см. таблицу).

Полярная компонента γ^{p} полной поверхностной энергии γ композитных пленок вблизи пороговой концен-

Рис. 8. *а*) Концентрационные зависимости полярной компоненты $\gamma^{p}(1)$ полной поверхностной энергии и диэлектрической проницаемости ε (2). *b*) Полярная компонента γ^{p} полной поверхностной энергии композитных пленок, содержащих ШУ, как функция параметра $|c/c^*|$ в области c = 0.02 - 0.12%. Угловой коэффициент наклона прямой $v = 1.7 \pm 0.1$.

трации ШУ $c^* = 0.04\%$ возрастает по скейлинговому закону: $\gamma^p \sim |c/c^* - 1|^{-v} \approx |\ln(c/c^*)|^{-v}$, где индекс v равен 1.7 ± 0.1, что согласуется с представлениями [16] (рис. 8, *b*).

Отметим, что отношение корреляционных радиусов ξ/ξ_0 , рассчитанное по уравнению (2) из дисперсионной γ^d компоненты полной поверхностной энергии γ при концентрации ШУ $c^* = 0.04\%$, равно 1.35 ± 0.10 ($\xi_0 = 3.5 \pm 0.4 \,\mu$ m), что с учетом погрешности определения γ^d практически совпадает с величиной 1.3 ± 0.1 , полученной по данным электронной микроскопии для соответствующих композитных пленок (рис. 5). При этом средняя решеточная плотность ρ микрочастиц ВаТіО₃ в композите, рассчитанная по выражению (1), увеличивается на ~ 5%.

4. Заключение

В бесконечном кластере частиц неорганической фазы композита ЦЭПС-ВаТіО₃-ШУ можно выделить два характерных масштаба. На масштабе меньше корреляционного радиуса ($R < \xi$) такой кластер является однородно неупорядоченным. На масштабе $R > \xi$ структура кластера формируется в результате периодического чередования агрегатов частиц с периодом, равным ξ . Ближний порядок узлов в таких агрегатах (решеточных кластерах) микрочастиц ВаТіО₃ зависит от степени агрегации частиц, проходящей под влиянием ШУ.

Введение 0.04% ШУ в композит приводит к существенным структурным изменениям: увеличиваются среднее координационное число и решеточная плотность кластеров частиц, причем квазирешетка микрочастиц ВаТіО₃ из квадратной превращается в треугольную.

При введении ШУ в композит происходит разнонаправленное концентрационное изменение компонент поверхностной энергии γ : рост полярной γ^p и снижение дисперсионной γ^d компоненты, что обусловлено различными диэлектрическими свойствами компонентов композита.

Вблизи пороговой концентрации ШУ ($c^* = 0.04\%$) нанокластеры ШУ, локализованные на поверхности частиц ВаТіО₃, вызывают резкий рост полярной компоненты поверхностной энергии и диэлектрической проницаемости композитных пленок по скейлинговому закону. При этом корреляционный радиус ξ композита возрастает от 3.5 до 4.2 μ m.

Список литературы

- [1] В.Ф. Бородзюля, С.В. Мякин, Н.Т. Сударь, Н.Б. Шейко, А.Г. Родионов, М.М. Сычев. ФТТ **55**, 1536 (2013).
- [2] С.В. Мякин, Е.С. Коловангина, М.М. Сычев, Т.В. Хамова, О.А.Шилова, А.А. Романов. ФХС 39, 5, 840 (2013).
- [3] М.М. Сычев, Т.С. Минакова, С.В. Мякин, Е.С. Васина, К.А. Фролкина, Т.В. Хамова, О.А. Шилова. Изв. вузов. Физика 57, 7/2, 179 (2014).

- [4] M. Sychov, Y. Nakanishi, T. Vasina, A. Eruzin, S. Mjakin, T. Khamova, O. Shilova, H. Mimura. Chem. Lett. 44, 2, 197 (2015).
- [5] Е.А. Голубев. ФТТ 55, 995 (2013).
- [6] Д.В. Новиков, А.Н. Красовский, В.Н. Филиппов. ФТТ 56, 2246 (2014).
- [7] П.П. Пугачевич, Э.М. Бегляров, И.А. Лавыгин. Поверхностные явления в полимерах. Химия, М. (1982). 200 с.
- [8] S. Wu. Polymer interfaces and adhesion. Marcel Dekker, N.Y. (1982). 580 p.
- [9] А.А. Рычков, Д.А. Рычков, С.А. Трифонов. Полимерные диэлектрики. Книжный дом, СПб. (2005). 156 с.
- [10] Дж. Займан. Модели беспорядка. Мир, М. (1982). 529 с. [J.M. Ziman. Models of disorder. Cambridge Univ. Press, London (1979). 480 p.].
- [11] Д.В. Новиков, А.Н. Красовский. Коллоид. журн. **65**, 1 (2003).
- [12] Е. Федер. Фракталы. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y.–London (1988). 260 p.].
- [13] А.Н. Красовский, В.К. Лаврентьев, Д.В. Новиков, Н.А. Осмоловская. ФТТ 52, 806 (2010).
- [14] Н.Н. Трофимов, М.З. Канович, Э.М. Карташов, В.И. Натрусов, А.Т. Пономаренко, В.Г. Шевченко, В.И. Соколов, И.Д. Симонов-Емельянов. Физика композиционных материалов. Мир, М. (2005). 344 с.
- [15] I.A. Tchmutin, A.T. Ponomarenko, V.G. Shevchenko, N.G. Ryvkina, C. Klason, D. McQueen. J. Polym. Sci. Polymer Phys. 36, 1847 (1998).
- [16] П. де Жен. Идеи скейлинга в физике полимеров. Мир, M. (1982). 368 с. [P.-G. de Gennes. Scaling concepts in polymer physics. Cornell University Press, Ithaca–London (1979). 360 p.].