13

Влияние давления кислорода на текстуру пленки магнетита, выращенного методом реактивного осаждения на поверхности SiO₂/Si(001)

© В.В. Балашев^{1,2}, В.А. Викулов¹, Т.А. Писаренко^{1,2}, В.В. Коробцов^{1,2}

¹ Институт автоматики и процессов управления ДВО РАН,

Владивосток, Россия ² Школа естественных наук Дальневосточного федерального университета, Владивосток, Россия

E-mail: balashev@mail.dvo.ru

(Поступила в Редакцию 2 июня 2015 г.)

Методом реактивного осаждения Fe в атмосфере кислорода на окисленной поверхности подложки кремния Si(001) выращены пленки магнетита (Fe₃O₄) толщиной 75 nm. Рост пленок оксида железа проводился при разных значениях давления O₂. Структура пленок контролировалась в процессе их роста методом дифракции быстрых электронов на отражение. Установлено, что только в определенном диапазоне давлений O₂ наблюдается рост пленок магнетита с текстурой. Уменьшение давления кислорода приводит к росту пленки Fe₃O₄ без текстуры, тогда как реактивное осаждение при значениях давления выше верхней границы указанного диапазона приводит к формированию кристаллитов гематита (α -Fe₂O₃) в пленке Fe₃O₄.

1. Введение

Магнетит является известным полуметаллом, обладающим высокой температурой Кюри (~ 580°С). Согласно расчетам зонной структуры [1], данный материал характеризуется полной спиновой поляризацией электронов проводимости и является перспективным с точки зрения создания спиновых приборов. В частности, Fe₃O₄ может быть использован как инжектор спинполяризованных электронов проводимости в полупроводник в случае таких гибридных структур, как ферромагнетик/полупроводник. Поэтому огромное количество исследовательских работ было посвящено росту Fe₃O₄ на подложках кремния [2,3]. Однако было обнаружено, что на начальной стадии роста пленки Fe₃O₄ на чистой поверхности Si образуется как силицид железа, так и аморфный оксид кремния [4]. Для того чтобы избежать образования такого нежелательного слоя, в некоторых работах были использованы различные буферные слои на границе раздела Fe₃O₄/Si. Также исследовался рост Fe₃O₄ на буферном слое SiO₂ [5–7].

Анализ экспериментальных данных, полученных в ряде работ, указывает на то, что рост магнетита на пленке SiO₂ может приводить к росту поликристаллической пленки Fe₃O₄ как с преимущественной ориентацией кристаллитов (пленки с текстурой), так и без нее. Следует заметить, что текстура в пленках магнетита зависит от методики осаждения и условий роста пленок. Так, в случае импульсного лазерного распыления из источника α -Fe₂O₃ пленка магнетита может иметь как текстуру (111) [2], так и текстуру (311) [6]. В случае магнетронного распыления Fe в атмосфере Ar–O₂ никакой текстуры не наблюдалось [8,9]. С другой стороны, в работе [10], где использовалась подобная методика напыления Fe₃O₄, был показан рост пленок с текстурами (110), (100) и (111) в зависимости от доли кислорода в газовой смеси $Ar-O_2$. Появление текстуры в пленках Fe₃O₄ может быть связано с более высоким содержанием кислорода в смеси $Ar-O_2$.

В наших предыдущих работах [11,12] с использованием метода реактивного осаждения была продемонстрирована возможность роста пленки Fe₃O₄ с текстурой (311) на поверхности SiO₂/Si(001). Данная текстура сохранялась в температурном диапазоне роста (200–400°C). В этих экспериментах скорость осаждения Fe и давление кислорода были фиксированными: 0.8 nm/min и $1.3 \cdot 10^{-6}$ Torr. В настоящей работе исследовано влияние давления кислорода на структурные свойства напыленных пленок.

2. Методика эксперимента

Эксперименты проводились на сверхвысоковакуумной установке "Катунь", оснащенной системами, позволяющими проводить диагностику методами дифракции быстрых электронов (ДБЭ) на отражение и спектральной эллипсометрии. Базовое давление не превышало 10^{-10} Torr. В качестве подложек использовались монокристаллические пластины кремния размером $0.5 \times 10 \times 20$ mm *n*-типа (удельное сопротивление 7.5 $\Omega \cdot$ cm) с ориентацией (001). До загрузки подложек в установку очистка их поверхности, а также формирование на ней слоя SiO₂ толщиной 1.5 nm проводились тем же способом, что и в работе [11]. После загрузки в вакуумную камеру образец прогревался при 500°C в течение часа.

Пленки магнетита толщиной 75 nm были выращены на поверхности SiO₂/Si(001) путем реактивного осаждения Fe в атмосфере O₂ при температуре подложки 300°C. Осаждение Fe проводилось со скоростью 2.5 nm/min путем его термического испарения необходимого для формирования слоя магнетита толщиной 75 nm из ячейки Кнудсена с тиглем из оксида алюминия (Al₂O₃). Количество осажденного Fe составляло приблизительно половину толщины слоя Fe₃O₄ — 37 nm. Парциальное давление кислорода варьировалось в диапазоне $1 \cdot 10^{-6} - 5 \cdot 10^{-5}$ Torr. Картины ДБЭ были получены в процессе напыления пленок при углах скольжения электронного пучка к поверхности ~ 0.5–1°. После извлечения образцов из вакуумной камеры для анализа морфологии была использована атомно-силовая микроскопия (ACM).

3. Результаты и обсуждение

На начальной стадии осаждения Fe при низком давлении кислорода $\sim 1 \cdot 10^{-6}$ Torr на картине ДБЭ (рис. 1, *a*) от поверхности SiO₂/Si(001) видны кольца Дебая, характерные для поликристаллической пленки вюстита (FeO). Радиусы наиболее интенсивных колец согласуются с обратными значениями межплоскостных расстояний для отражений (111), (200) и (220) (обозначены вертикальными штрихами на рис. 1, а). При осаждении более чем половины толщины слоя Fe $(d_{\text{Fe}} = 18.5 \,\text{nm})$ наблюдался переход к другой группе колец Дебая (рис. 1, b), которые сохранялись на картине ДБЭ до конца осаждения ($d_{\rm Fe} = 37 \, {\rm nm}$). Положение этой группы колец хорошо согласуется с положением теоретических колец (вертикальные штрихи на рис. 1, b), рассчитанным для ГЦК-решетки магнетита со структурой инверсионной шпинели [13]. Равномерное распределение интенсивности вдоль колец указывает на случайную ориентацию кристаллитов Fe₃O₄ в пленке, а высокая резкость колец свидетельствует об их крупных размерах. Появление колец от Fe₃O₄ может объясняться как доокислением кристаллитов FeO, так и процессом диссоциации FeO на Fe и Fe₃O₄. Так, в работе [14] отмечается, что FeO является нестабильным соединением при низком давлении и температуре менее чем ~ 570°С. Таким образом, присутствие некоторого количества железа в пленке оксида железа, выращенной нами при давлении $\sim 1 \cdot 10^{-6}$ Torr, не может быть исключено. Как показано в работе [15], присутствие Fe может не проявляться в рентгеновском дифракционном спектре, в то время как месбауэровский спектр показывает наличие железа в пленке помимо Fe₃O₄.

Во время осаждения Fe при более высоком давлении кислорода $(3 \cdot 10^{-6}$ и $7 \cdot 10^{-6}$ Torr) на картинах ДБЭ (рис. 2, *а* и *b*) наблюдались дуги, которые располагались вдоль линии колец Дебая, соответствующих магнетиту. Данные дуги наблюдались с самого начала и свидетельствуют о зарождении и росте кристаллитов с преимущественной ориентацией, т.е. текстурированной пленки [16]. Экспериментальная картина ДБЭ, полученная

Рис. 1. Картины ДБЭ, полученные после осаждения Fe в атмосфере кислорода при $P = 1 \cdot 10^{-6}$ Torr: a — после осаждения половины слоя Fe ($d_{\text{Fe}} = 18.5 \text{ nm}$), b — в конце осаждения ($d_{\text{Fe}} = 37 \text{ nm}$).

от пленки, осаждавшейся при давлении $P = 3 \cdot 10^{-6}$ Torr (рис. 2, a), согласуется с теоретической картиной для пленки с текстурой (311), рассчитанной в работе [11]. Ось данной текстуры совпадает с нормалью n к поверхности, а отражение (311) (в отличие от отражений другого порядка) располагается симметрично относительно нормали, образуя соответствующую дугу, как показано стрелкой на рис. 2, a. Измерение углового уширения $\Delta \phi$ отражения (311) показывает, что отклонение оси [311] решетки кристаллитов от нормали **n** к поверхности варьируется в пределах ±15°. С другой стороны, было обнаружено, что осаждение железа при более высоком давлении кислорода (7 · 10⁻⁶ Torr) приводит к формированию пленки с другим положением дифракционных дуг на картине ДБЭ (рис. 2, b). Их положение согласуется с положением дуг теоретической картины дифракции, рассчитанной для текстуры (110) в работе [17]. Ось текстуры (110), так же как и ось текстуры (311), параллельна нормали n. В связи с этим дифракционные дуги (220) и (440) располагаться симметрично относительно нормали (отмечены стрелками на рис. 2, b). В случае текстуры (110) угловое уширение ($\Delta \phi$) рефлексов (220) и (440) относительно нормали **n** к поверхности составляет $\sim \pm 20^{\circ}$. Было замечено, что значение $\Delta \phi$ для этой текстуры уменьшалось с увеличением давления кислорода при реактивном осаждении Fe, что свидетельствует

Рис. 2. Картины ДБЭ, полученные после осаждения слоя Fe толщиной 37 nm при давлении кислорода $3 \cdot 10^{-6}$ (*a*), $7 \cdot 10^{-6}$ (*b*) и $5 \cdot 10^{-5}$ Torr (*c*).

о более высоком упорядочении кристаллитов Fe₃O₄. При последующем увеличении давления кислорода до $\sim 5 \cdot 10^{-5}$ Тогт помимо колец 220 и 440, характерных для пленки магнетита с текстурой (110), наблюдалось появление новой группы колец, которые отмечены на рис. 2, *с* стрелками, направленными слева направо. Анализ показал, что радиусы новых колец хорошо согласуются с обратными значениями межплоскостных расстояний $1/d_{hkl}$ кристаллической решетки гематита α -Fe₂O₃. Наиболее интенсивные кольца наблюдаются для брэгтовских отражений (012), (104), (024), (113) и (116). Недавно в работе [18] брэгтовские пики для соответствующих отражений также наблюдались на рентгеновском спектре от пленки гематита, полученной при более высоком давлении кислорода (7.5 $\cdot 10^{-4}$ Torr).

На рис. 3 показаны картины, полученные методом ACM, от поверхности пленки магнетита с текстурой (311) (рис. 3, *a*) и (110) (рис. 3, *b*). Из анализа данных ACM обнаружено, что средний латеральный размер кристаллитов для указанных выше пленок составляет \sim 30 и 40 nm, соответственно. Больший размер кристаллитов в случае роста пленки с текстурой (110) свидетельствует о более высокой диффузионной подвижности адсорбата на поверхности роста. Таким образом, на основании данных ACM можно сделать вывод, что при увеличении парциального давления O₂ диффузионная подвижность адсорбата возрастает и наблюдается переход к текстуре (110).

В случае магнетронного распыления Fe в газовой смеси Ar-O₂ в работе [10] были также получены пленки магнетита с текстурой, которая изменялась в зависимости от парциального давления кислорода. Для данного

Рис. 3. АСМ-изображения поверхности пленок магнетита, выращенных при давлении кислорода $3 \cdot 10^{-6}$ (*a*) и $7 \cdot 10^{-6}$ Torr (*b*).

метода осаждения пленка Fe₃O₄ могла иметь текстуру (110) (как в настоящей работе) и текстуры (100) и (111) при увеличении давления кислорода. Интересно отметить тот факт, что изменение текстуры в полученных пленках с ростом давления сопровождалось увеличением размера кристаллитов, как и в нашей работе. Соответствующая эволюция текстуры пленки имела место при увеличении соотношения потоков $F(O_2) : F(Ar)$ от 0.6 : 0.5 до 0.7 : 0.5 в смеси Ar–O₂. Кроме того, в работе [19] было показано, что увеличение парциального давления кислорода при магнетронном распылении Fe ведет к развитию более совершенной текстуры (111) у пленки Fe₃O₄.

В работе [20] изменение текстуры с увеличением потока реактивного газа (по сравнению с потоком металла) предлагается объяснять усилением процесса диссоциации и хемосорбции ионизованных молекул газа на гранях кристаллитов с низкой потенциальной энергией. Данные грани характеризуются низкой диффузионной подвижностью молекул. Только после этого процесса адсорбированные атомы газа становятся центрами зародышеобразования и взаимодействуют с адатомами металла. Тогда как на гранях с высокой диффузионной подвижностью величина хемосорбции остается неизменной. В результате увеличения потока газа конкурентная мода роста становится более выраженной, а "выживают" только те кристаллиты, грани которых имеют низкую энергию. Поскольку для ГЦК-структуры, грани {111} кристаллов характеризуются более высокой потенциальной энергией, чем грани {100}, {110}, {311}, увеличение давления реактивного газа должно приводить к переходу от текстуры (111) к (100), (110), (311) соответственно.

Однако, как было показано выше, в случае роста магнетита увеличение давления кислорода ведет к росту пленок с более высокой потенциальной энергией, имеющих текстуру (111) в [10,19] и (110) в настоящей работе. Мы полагаем, что при реактивном осаждении Fe в атмосфере O2 рост пленки магнетита может иметь иной механизм, отличающийся от предложенного в работе [20]. Так, можно предположить, что адсорбированные молекулы О2, минуя стадию хемосорбции, взаимодействуют с адатомами Fe. В результате этого на поверхности роста образуются молекулы оксида железа FeO_x, обладающие более высокой диффузионной подвижностью, чем у молекул кислорода. Изменение процесса взаимодействия Fe и O₂ в сторону образования на поверхности молекул FeO_x должно, по всей видимости, приводить к изменению механизма роста пленки Fe₃O₄. Мы считаем, что при увеличении парциального давления кислорода образование молекул FeO_x становится доминирующим, а рост пленки Fe₃O₄ реализуется за счет коалесценции [21]. При таком росте грани кристаллов с наибольшей потенциальной энергией должны быть параллельны поверхности подложки, а ось текстуры параллельна соответствующим кристаллографическим направлениям. Рост пленок за счет коалесценции будет происходить благодаря преимущественному боковому

разрастанию той части кристаллитов Fe₃O₄, которая была ориентирована гранями с высокой потенциальной энергией параллельно поверхности подложки. Данный механизм роста характеризуется высокой диффузионной подвижностью адсорбата на соответствующих гранях и разрастанием кристаллитов за счет них. В случае магнетита грани с ориентацией (111) имеют наибольшую диффузионную подвижность.

Наше предположение о высокой подвижности соединений FeO_x на поверхности роста может объяснять рост пленок только с текстурой (111) (независимо от типа подложки), полученных методом импульсного лазерного распыления (PLD) при температурах подложки 300-450°С [2,22]. Так, в работе [23] установлено, что при использовании метода PLD формирование кристаллических пленок магнетита определяется процессом миграции на поверхности роста соединений FeO_x (Fe(II) и Fe(III)), осаждаемых из источника α -Fe₂O₃ (или Fe₃O₄). Образование соединений FeO_r в лучае PLD возможно также и в связи с высоким содержанием ионов и атомов, находящихся в возбужденном состоянии в абляционной лазерной плазме. Присутствие текстуры (311) в пленках Fe₃O₄, выращенных методом PLD, наблюдалось в работах [6,22]. Ее появление может связываться с уменьшением диффузионной подвижности адсорбата вследствие низкой температуры подложки (150°С) [22] либо высокой скорости осаждения 1-2 nm/s [6].

В случае магнетронного распыления Fe в атмосфере $Ar-O_2$ образование на поверхности источника Fe соединений FeO_x, а также их распыление из источника при некоторых условиях возможно [24]. Однако анализ оптических спектров эмиссии распыляемого вещества как из источника Fe [19], так и из оксидов железа (Fe₂O₃, Fe₃O₄) [25] показывает присутствие только атомарного железа. С другой стороны, благодаря высокой химической активности ионизованных молекул O₂, образование молекул FeO_x может активно происходить и на поверхности роста. Возможно, образование соединений FeO_x на поверхности, а также их довольно высокая диффузионная подвижность при температуре подложки 400°C, приводят к росту пленок с текстурой (111) независимо от типа подложки [4,26].

При напуске молекулярного кислорода, как в настоящей работе, молекулы O_2 имеют низкую химическую активность, а также малое время жизни на поверхности роста. Мы полагаем, что при давлении $3 \cdot 10^{-6}$ Torr рост магнетита реализуется за счет процесса диффузии адатомов металла (Fe) к местам хемосорбции молекул газа (кислорода) [20]. В данном случае наиболее вероятными местами диссоциации и хемосорбции O_2 будут грани {311} кристаллитов, имеющие низкую диффузионную подвижность (низкую потенциальную энергию). Рост кристаллитов в направлении, нормальном плоскости (311), будет идти быстрее, что соответствует конкурентной моде роста. При увеличении давления кислорода до $7 \cdot 10^{-6}$ Torr плотность адсорбированных молекул О2 на поверхности роста возрастает, что приводит к взаимодействию их с адатомами Fe и образованию молекул FeO_x. Из-за высокой диффузионной подвижности молекул FeO_x рост пленки происходит благодаря преимущественному боковому разрастанию той части кристаллитов Fe₃O₄, которая была ориентирована гранями {110} параллельно поверхности подложки. В результате этого рост пленки Fe₃O₄ осуществляется за счет коалесценции кристаллитов, что приводит к возникновению текстуры (110). Мы считаем, что в случае магнетронного распыления [10] окисление адатомов Fe ионизованными молекулами кислорода и образование молекул FeO_x происходят более интенсивно, а эволюция текстуры пленки с давлением имеет следующий характер: $(110) \rightarrow (100) \rightarrow (111)$. В нашей работе при дальнейшем увеличении давления кислорода до $\sim 5 \cdot 10^{-5}$ Torr на поверхности роста наблюдается процесс образования α-Fe₂O₃.

Из рис. 3, b можно видеть (показано стрелками), что за счет бокового разрастания некоторых граней в центре кристаллитов (или участков поверхности) присутствуют углубления. Можно предположить, что данные грани для пленки с текстурой (110) соответствуют ориентации (111) решетки магнетита. В случае текстуры (110) грани {111} кристаллитов должны располагаться либо нормально к поверхности, либо под углом 35.3°. Анализ АСМ-изображения показал, что грани кристаллитов располагаются под углами, близкими к значению 35° либо близкими к нормали к поверхности. С учетом разориентации кристаллитов относительно нормали к поверхности (±20°) наблюдаемые грани вполне могут соответствовать плоскостям {111} ГЦК-решетки магнетита. Боковое разрастание граней {111} в результате более высокой диффузионной подвижности адсорбата на них будет приводить к образованию углублений на участках поверхности, ограниченных этими гранями.

4. Заключение

С использованием метода ДБЭ нами проведен анализ структурно-фазового состава тонких пленок магнетита, сформированных на поверхности SiO₂/Si(001) в результате реактивного осаждения Fe в атмосфере O₂. Установлено, что величина давления кислорода влияет как на механизм роста поликристаллических пленок Fe₃O₄, так и на ориентацию кристаллитов в них. Так, в случае недостаточно высокого давления О2 наблюдается образование кристаллитов FeO на начальной стадии роста пленки Fe₃O₄. Выращенная таким образом пленка Fe₃O₄ характеризуется случайной ориентацией кристаллитов в ней. При более высоких значениях давления О2 рост пленки Fe₃O4 реализуется с самого начала, а кристаллиты имеют преимущественную ориентацию. Пленки Fe₃O₄ имели текстуру (311) или (110), ось которой совпадала с нормалью к поверхности. Обнаружено, что с увеличением давления О₂ текстура (311)

сменяется на текстуру (110). Рост пленки Fe₃O₄ при высоком давлении O₂ приводит к образованию в ней кристаллитов гематита.

Список литературы

- [1] Z. Zhang, S. Satpathy. Phys. Rev. B 44, 13 319 (1991).
- [2] S. Tiwari, R. Prakash, R.J. Choudhary, D.M. Phase. J. Phys. D 40, 4943 (2007).
- [3] M.L. Parames, J. Mariano, Z. Viskadourakis, N. Popovici, M.S. Rogalski, J. Giapintzakis, O. Conde. Appl. Surf. Sci. 252, 4610 (2006).
- [4] C. Boothman, A.M. Sanchez, S. van Dijken. J. Appl. Phys. 101, 123 903 (2007).
- [5] C. Park, Y. Peng, J-G. Zhu, D.E. Laughlin, R.M. White. J. Appl. Phys. 97, 10C303 (2005).
- [6] X. Wang, Y. Sui, J. Tang, C. Wang, X. Zhang, Z. Lu, Z. Liu, W. Su, X. Wei, R. Yu. Appl. Phys. Lett. 92, 012 122 (2008).
- [7] Z.L. Lu, M.X. Xu, M.Q. Zou, S. Wang, X.C. Liu, Y.B. Lin, J.P. Xu, Z.H. Lu, J.F. Wang, L.Y. Lv, F.M. Zhang, Y.W. Du. Appl. Phys. Lett. **91**, 102 508 (2007).
- [8] W.B. Mi, Hui Liu, Z.Q. Li, P. Wu, E.Y. Jiang, H.L. Bai. J. Phys. D: Appl.Phys. 39, 5109 (2006).
- [9] Y. Kim, M. Oliveria. J. Appl. Phys. 75, 431 (1994).
- [10] G. Zhang, C. Fan, L. Pan, F. Wang, P. Wu, H. Qiu, Y. Gu, Y. Zhang, J. Magn. Magn. Mater. 293, 737 (2005).
- [11] В.В. Балашев, В.В. Коробцов, Т.А. Писаренко, Л.А. Чеботкевич. ЖТФ 81, 10, 122 (2011).
- [12] В.А. Викулов, В.В. Балашев, Т.А. Писаренко, А.А. Димитриев, В.В. Коробцов. Письма в ЖТФ 38, 7, 73 (2012).
- [13] E.J.W. Verwey, E.L. Heilmann. J. Chem. Phys. 15, 174 (1947).
- [14] R.M. Cornell, U. Schwertmann. The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weomjeim, N.Y. (1996). P. 34.
- [15] Y. Bando, S. Horio, T. Takada. Jap. J. Appl. Phys. 17, 1037 (1978).
- [16] F. Tang, T. Parker, G.-C. Wang, T.-M. Lu. J. Phys. D 40, 427 (2007).
- [17] T.A. Pisarenko, V.V. Korobtsov, V.A. Vikulov, A.A. Dimitriev, V.V. Balashev. Solid State Phenomena 213, 51 (2014).
- [18] M.-F.Al-Kuhaili, M. Saleem, S.M.A. Durrani. J. Alloys Compd. 521, 178 (2012).
- [19] C. Ortiz, G. Lim, M.M. Chen, G. Castillo. J. Mater. Res. 3, 344 (1988).
- [20] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene. J. Vac. Sci. Technol. A 21, 117 (2003).
- [21] P.B. Barna, M. Adamik. In: Science and technology of thin films / Eds F.C. Matacotta, G. Ottaviani. World Scientific, Singapore. (1995). Pt. 1. P. 1–29.
- [22] X. Huang, J. Ding. J. Korean Phys. Soc. 62, 2228 (2013).
- [23] D. Yokoyama, K. Namiki, H. Fukasawa, J. Miyazaki, K. Nomura, Y. Yamada. J. Radioanal. Nucl. Chem. 272, 631 (2007).
- [24] J. Hrbek. Thin Solid Films 42, 185 (1977).
- [25] K. Hammoum, T.El Asri, A. Chahboune, H. Aouchiche, A. Kaddouri. Eur. Phys. J. D 61, 469 (2011).
- [26] S.M. Watts, K. Nakajima, S. van Dijken, J.M.D. Coey. J. Appl. Phys. 95, 7465 (2004).