05

Структура и свойства MnNi $_{1-x}$ Fe $_x$ Ge ($0.10 \le x \le 0.25$)

© М. Budzynski¹, В.И. Вальков², А.В. Головчан², В.И. Митюк³, Z. Surowiec¹, Т.М. Ткаченко³

¹ Институт физики, Университет М. Кюри-Склодовской,

Люблин, Польша

² Донецкий физико-технический институт им. А.А. Галкина НАН Украины,

³ НПЦ НАН Белоруссии по материаловедению,

Минск, Белоруссия

E-mail: mitsiuk@physics.by

(Поступила в Редакцию 25 мая 2015 г.)

Исследованы магнитные и структурные характеристики твердых растворов $MnNi_{1-x}Fe_xGe$ $(0.10 \le x \le 0.25)$. При T = 290 K растворы имеют гексагональную структуру типа Ni_2In . Магнитные характеристики $MnNi_{1-x}Fe_xGe$ $(0.10 \le x \le 0.25)$ слабо зависят от характера термообработки. На основании магнитометрических и мессбауэровских данных установлено, что в $MnNi_{1-x}Fe_xGe$ $(0.10 \le x \le 0.25)$ при содержании железа x = 0.10-0.15 атомы железа статистически распределены по октаэдрическим и тригонально-бипирамидальным позициях, при этом никель в тригонально-бипирамидальных позициях железом не замещается.

1. Введение

Разнообразие магнитных фаз и наличие структурных и магнитоструктурных фазовых переходов, сопровождающихся значительными магнитокалорическими и магнитострикционными эффектами, в полугейслеровых сплавах MnNi_{1-x}Fe_xGe являются причиной интереса многих исследователей к этим материалам [1-4]. При этом, с одной стороны, возможности использования магнитокалорического эффекта и магнитострикции для создания эффективных магнитных рефрижераторов и магнитострикторов делают систему MnNi_{1-x}Fe_xGe привлекательной для практических приложений. С другой стороны, особенности механизма гигантской спонтанной магнитострикции в MnNi_{1-x}Fe_xGe, сопровождающей магнитоструктурные фазовые переходы в этих сплавах, относятся к вопросам фундаментального характера в физике магнитных явлений. Действительно, в отличие от системы Mn_{2-x}Fe_xAs_{0.5}P_{0.5}, в которой спонтанная магнитострикция связана с разрушением магнитного момента Fe при исчезновении магнитного порядка [5], в MnNi_{1-x}Fe_xGe спонтанная магнитострикция, согласно предварительным расчетам из первых принципов, не связана с изменением локальных магнитных характеристик 3*d*-ионов. Можно только предполагать, что анизотропное изменение параметров решетки (от +10% вдоль гексагональной оси до -7% в базисной плоскости) [2], сопровождающее магнитное упорядочение в MnNi_{1-r}Fe_rGe, является следствием совмещения магнитного и структурного переходов, которые наблюдаются в тройной системе MnNiGe.

Структурные и магнитные свойства тройных соединений MnFeGe и MnNiGe изучены ранее. В [6] показано, что MnFeGe кристаллизуется в гексагональную структуру типа Ni₂In (пространственная группа *P*6₃/*mmc*) во всем температурном диапазоне. Результаты нейтронографических исследований порошка Mn_{0.95}Fe_{1.0}Ge показали, что магнитные моменты атомов Мп при температурах ниже 240 К упорядочены антиферромагнитно, тогда как моменты атомов Fe упорядочены ферромагнитно [7]. В то же время MnNiGe при комнатной температуре имеет орторомбическую структуру типа TiNiSi (пространственная группа Pnma) [8,9]. Ниже температуры Нееля ($T_N = 346 \,\mathrm{K}$) это спиральный антиферромагнетик. При температуре $T_{d,h} = 528$ K MnNiGe претерпевает кристаллографический переход первого рода типа смещения от низкотемпературной орторомбической структуры типа TiNiSi к высокотемпературной гексагональной структуре типа Ni₂In. Этот переход сопровождается большим температурным гистерезисом $(T_{d,h} - T_{d,0} = 45 \text{ K})$, гигантским анизотропным изменением параметров решетки и объема ($\Delta c_h/c_h \approx -10\%$, $\Delta a_h/a_h \approx +7\%$, $\Delta V_h/V_h \approx -3\%$). Подобные структурные переходы, сопровождающиеся изменением периода элементарной ячейки, описываются размягчением одной из фононных мод [10], которое в MnNiGe, как и в MnAs [11], может стимулироваться сильным электронфононным взаимодействием. В пользу такого предположения свидетельствует следующий факт. При замещении никеля железом в MnNiGe уже при комнатной температуре сплав кристаллизуется в гексагональную фазу, т.е. температуры структурного перехода $T_{d,h}$, $T_{d,0}$ значительно снижаются [8]. Поскольку радиусы Ni и Fe (1.24 и 1.25 nm) близки, столь сильное смещение температуры структурного перехода, по-видимому, обусловлено уменьшением электронного заполнения 3d-зоны и соответственно изменением электрон-фононной связи.

Электронная структура четырехкомпонентной системы MnNiFeGe в зависимости от содержания и распреде-

Донецк, Украина

Номер образца	Состав	Способ обработки	T_C , K	σ , emu/g		
1	MnNi _{0.75} Fe _{0.25} Ge	"Закалка на колесо"	234	67.60		
2	MnNi _{0.8} Fe _{0.2} Ge	То же	232	63.68		
3	MnNi _{0.85} Fe _{0.15} Ge	> >	220	62.86		
4	MnNi _{0.9} Fe _{0.1} Ge	$\gg \gg$	218	56.73		
5	MnNi _{0.75} Fe _{0.25} Ge	Закалка + отжиг	232	65.18		
		$(T - 850^{\circ}\text{C}, t = 6 \text{ h})$				
6	MnNi _{0.80} Fe _{0.20} Ge	То же	230	65.95		
7	MnNi _{0.85} Fe _{0.15} Ge	>>	219	59.61		
8	MnNi _{0.9} Fe _{0.1} Ge	>>	295	10.93		

Таблица 1. Магнитные характеристики твердых растворов $MnNi_{1-x}Fe_xGe$ (0.10 $\leq x \leq 0.25$)

ления 3*d*-компонент, заполнения 3*d*-зон $MnNi_{1-x}Fe_xGe$ практически не изучена.

В настоящей работе с целью получения информации, полезной для выяснения механизмов формирования магнитоструктурных фаз и их роли в возникновении гигантской магнитострикции, проведено исследование структуры, магнитных и мессбауэровских свойств системы твердых растворов $MnNi_{1-x}Fe_x$ Ge в области составов $0.10 \le x \le 0.25$.

2. Эксперимент

Образцы MnNi_{1-x}Fe_xGe четырех различных составов (x = 0.10, 0.15, 0.20 и 0.25) получены из расплава гомогенных смесей порошков чистотой не ниже 99.99% в атмосфере аргона с последующей скоростной закалкой из жидкого состояния на колесо, вращающееся с линейной скоростью 20 mm/s ("закалка на колесо"). Часть полученных образцов каждого состава затем отжигалась при температуре $T = 850^{\circ}$ С в течение 6 h.

Рентгенографический фазовый анализ на порошках образцов, выполненный в CuK_{α} -излучении, показал, что все полученные твердые растворы $MnNi_{1-x}Fe_xGe$ в области составов $0.10 \le x \le 0.25$ кристаллизовались в гексагональную структуру типа Ni_2In (пространственная группа $P6_3/mmc$) (рис. 1).

Измерения удельных намагниченностей твердых растворов $MnNi_{1-x}Fe_xGe~(0.10 \le x \le 0.25)$ проведены по

Рис. 1. Структура типа Ni₂In

Рис. 2. Мессбауэровские спектры образцов $MnNi_{1-x}Fe_x$ Ge $(0.10 \le x \le 0.25)$ при комнатной температуре. Номера кривых соответствуют номерам образцов в табл. 2.

методу Фарадея в поле 0.86 T и интервале температур 77 $\leq T \leq 500$ K. Температуры Кюри определены экстраполяцией линейной части кривой температурной зависимости квадрата удельной намагниченности к оси температур. Полученные величины удельных намагниченностей σ и температур Кюри T_C приведены в табл. 1.

Для уточнения характера распределения атомов металла по подрешеткам были проведены мессбауэровские исследования полученных твердых растворов MnNi_{1-x}Fe_xGe ($0.10 \le x \le 0.25$). Эксперимент проведен в обычной геометрии прохождения в режиме постоянных ускорений с использованием источника резо-

Номер образца	Состав		Первый	подспектр		Второй спектр			
		IS ₁ , mm/s	QS ₁ , mm/s	$\Gamma_1,$ mm/s	C ₁ , rel.units	IS ₂ , mm/s	QS ₂ , mm/s	Γ ₂ , mm/s	C ₂ , rel.units
1	MnNi _{0.75} Fe _{0.25} Ge (зкалка)	0.259	0.731	0.126	0.673	0.477	0.595	0.188	0.327
2	MnNi _{0.8} Fe _{0.2} Ge (закалка)	0.248	0.693	0.132	0.600	0.476	0.570	0.171	0.400
3	MnNi _{0.85} Fe _{0.15} Ge (закалка)	0.241	0.679	0.135	0.479	0.462	0.498	0.183	0.521
4	MnNi _{0.9} Fe _{0.1} Ge (закалка)	0.235	0.639	0.154	0.469	0.477	0.477	0.166	0.531
5	MnNi _{0.75} Fe _{0.25} Ge (закалка + отжиг)	0.257	0.739	0.123	0.767	0.479	0.570	0.169	0.233
6	MnNi _{0.8} Fe _{0.2} Ge (закалка + отжиг)	0.245	0.693	0.134	0.675	0.493	0.576	0.156	0.325
7	MnNi _{0.85} Fe _{0.15} Ge (закалка∔ отжиг)	0.235	0.675	0.146	0.603	0.476	0.524	0.152	0.397
8	MnNi _{0.9} Fe _{0.1} Ge (закалка + отжиг)	0.240	0.684	0.132	0.582	0.510	0.537	0.159	0.418

Таблица 2. Параметры мессбауэровских спектров закаленных образцов MnNi_{1-x}Fe_xGe $(0.10 \le x \le 0.25)$

Примечание. Величина изомерного сдвига IS дана относительно ⁵⁷Fe.

Таблица 3. Параметры мессбауэровских спектров образцов MnNi_{1-x}Fe_xGe при T = 77 K

Номер образца	Состав	IS ₁ , mm/s	IS ₂ , mm/s	QS ₁ , mm/s	QS ₂ , mm/s	<i>H</i> 1, Т	<i>H</i> ₂ , Т	$\Gamma_1,$ mm/s	Γ ₂ , mm/s	C ₁ , rel.units	C ₂ , rel.units
3	MnNi _{0.85} Fe _{0.15} Ge (закалка)	0.264	0.470	-0.312	-0.370	12.7	12.3	0.21	0.20	0.479	0.521
1	MnNi _{0.75} Fe _{0.25} Ge (закалка)	0.344	0.489	-0.317	-0.450	12.3	11.8	0.21	0.20	0.673	0.327
5	MnNi _{0.75} Fe _{0.25} Ge (закалка + отжиг)	0.340	0.489	-0.338	-0.454	12.2	11.7	0.22	0.19	0.767	0.233

нансного излучения 57m Fe/Rh, ширина линии которого составляла 0.11 mm/s. Температуры поглотителя составляли 77 и 290 К. Полученные спектры образцов при T = 290 К представлены на рис. 2, при T = 77 К — на рис. 3. В табл. 2, 3 приведены уточненные параметры спектров: IS — изомерный сдвиг подспектра относительно металлического железа при комнатной температуре, QS — квадрупольное расщепление, Γ — ширина линии.

3. Результаты и обсуждение

По характеру температурной зависимости удельной намагниченности образцы всех изученных составов MnNi_{1-x}Fe_xGe (0.10 $\leq x \leq$ 0.25) относятся к ферромагнетикам. Переходов типа антиферромагнетик-ферромагнетик не обнаружено, значительной зависимости магнитных свойств от способа термообработки сплавов также не выявлено. Величины удельных намагниченностей и температур Кюри для образцов одного состава, прошедших различную термообработку (закалка и закалка с отжигом), различаются слабо. Дополнительный

отжиг незначительно снижает (не более чем на 2 emu/g) удельную намагниченность и на ~ 1-2К температуру Кюри. Незначительное снижение магнитных параметров при отжиге образцов может быть связано с особенностями структуры типа Ni₂In (рис. 1). Атомы металлоида (в нашем случае германия) образуют гексагональный плотноупакованный каркас, в котором имеются поры двух сортов, занимаемые атомами металла: 2а — октаэдрические (MeI) и 2d — тригонально-бипирамидальные (*MeII*). В этих двух типах структурно-неэквивалентных пор в нашем случае могут располагаться атомы металлов трех сортов: марганца, никеля и железа. Свойства полученного сплава в целом зависят от того, каким образом распределяются металлические атомы по позициям. Структуре этого типа присуща высокая дефектность, особенно в условиях получения сплава "закалкой на колесо". Считается [5,8], что в подобных трехкомпонентных растворах с двумя сортами атомов металла (MnFeGe и MnNiGe) атомы марганца локализуются в позициях MeI, а атомы никеля (или железа) занимают только позиции MeII. Однако авторы [5] для MnFeGe со

Рис. 3. Мессбауэровские спектры образцов $MnNi_{1-x}Fe_x$ Ge при 77 К. 1 — $MnNi_{0.75}Fe_{0.25}$ Ge (закалка), 3 — $MnNi_{0.85}Fe_{0.15}$ Ge (закалка), 5 — $MnNi_{0.75}Fe_{0.25}$ Ge (закалка + отжиг).

структурой типа Ni₂In допускают возможность взаимного "перемешивания" (до 17 at.%) атомов по подрешеткам MeI и MeII. В нашем случае распределение атомов Мп, Ni, Fe по позициям может быть более сложным. Закалка ведет к повышению дефектности твердых растворов $MnNi_{1-x}Fe_xGe$ со структурой типа Ni_2In . Очевидно, что при закалке в подрешетках фиксируется некоторое количество вакантных структурных позиций. В свою очередь последующий отжиг ведет к "регуляризации" сплава, пустоты структуры заполняются атомами. Поскольку никеля в расчетной формуле меньше, чем в совокупности марганца и железа, атомы Mn и Fe при полностью заполненной подрешетке MeI частично заполняют подрешетку MeII. Из литературы известно, что в подрешетке MeII на атомах никеля магнитный момент не локализуется. Некоторое количество магнитных атомов железа и марганца, перейдя в подрешетку MeII, очевидно, также перестает участвовать в магнитном взаимодействии, тем самым несколько снижая общую намагниченность сплава.

Однако если рассматривать изменение намагниченности в MnNi_{1-x}Fe_xGe с ростом *x* при одинаковом способе термообработки, то оказывается, что рост содержания железа ведет к росту намагниченности, т.е., заместив при $x \sim 0.20$ некоторое предельное число атомов в подрешетке *Me*II, железо при дальнейшем наращивании его содержания в растворе идет только в позиции *Me*I, замещая марганец.

Единственный состав, для которого наблюдается значительное расхождение температурных кривых намагниченности при различной термообработке образцов, — это состав с содержанием 10 ат.% железа (MnNi_{0.9}Fe_{0.1}Ge). При этом рентгенографический анализ показал, что это однофазный твердый раствор. В результате дополнительного отжига удельная намагниченность образца этого состава существенно снижается (от ~ 56 до ~ 10 emu/g), при этом температура магнитного фазового перехода T_C растет от 218 K в закаленном образце.

Данные мессбауэровских измерений помогают уточнить картину распределения атомов металлов по подрешеткам. При T = 290 К твердые растворы магнитных свойств не имеют, их спектры представляют собой квадрупольно расщепленные линии. Каждый мессбауэровский спектр (рис. 2) описывается двумя подспектрами в виде квадрупольных дублетов, каждый дублет соответствует атомам железа в одной из двух возможных кристаллографических позиций: MeI или MeII. По соотношению интегральных интенсивностей соответствующих подспектров, т.е. по относительному вкладу площадей подспектров в общий спектр (параметры C₁ и C_2 в табл. 2, 3), можно примерно оценить соотношение количества атомов железа в двух металлических подрешетках. Видно (рис. 2, снизу вверх), что с ростом х происходит рост относительного содержания атомов железа в одной из подрешеток.

Если считать картину распределения атомов, полученную выше на основании данных магнитных измерений, верной, то первый подспектр с растущим вкладом в общую площадь спектра соответствует атомам железа в подрешетке MeI (2*a*). В этом подспектре величины изомерных сдвигов IS меньше (~ 0.20 mm/s). Второй подспектр со снижающимся (с ростом *x*) вкладом в общую площадь спектра и большими величинами IS соответствует атомам железа в позициях 2d (MeII). Рост содержания железа в сплаве $MnNi_{1-x}Fe_x$ Ge приводит к росту содержания железа в подрешетке 2a (октаэдрических позициях), причем для отожженных образцов этот рост значительный: от 0.582(2a)/0.418(2d) для состава с x = 0.10 до 0.767/0.233 для состава с x = 0.25.

Таким образом, совокупность полученных магнитометрических и мессбауэровских данных свидетельствует о том, что в MnNi_{1-x}Fe_xGe при содержании железа x = 0.10-0.15 атомы железа статистически распределены по обеим структурным подрешеткам *MeI* и *MeII*. С ростом содержания железа x > 0.15 в подрешетке

$M({ m Mn_I}),\mu_{ m B}$	$M({\rm Fe_I}), \mu_{\rm B}$	$H_{\rm hfl},{ m T}$	$M({ m Mn_{II}}),\mu_{ m B}$	$M({\rm Fe_{II}}), \mu_{\rm B}$	$H_{\rm hfII}, {\rm T}$	$M_{\rm f.u.}, \mu_{\rm B}$	$E_{\rm tot}$, Ry/f.u.		
Гексагональная структура типа Ni ₂ In, $a = 4.0956$ Å, $c = 5.355$ Å									
LDA-приближение, немагнитное состояние									
_					_	_ _	-9468.06075 -9468.06159		
		GGA-при	ближение, не	магнитное с	остояние	2			
_	_ _	— —	_	_ _	_ _	_ _	-9482.84201 -9482.84255		
	LE	А-прибл	ижение, ферр	омагнитное	состоян	ие			
2.71 2.71	2.26 2.27	$-14.4 \\ -14.5$	0.91 0.26	1.19 1.0	$-15.5 \\ -15.8$	2.78 2.83	-9468.08958 -9468.09353		
	GC	ЗА-прибл	ижение, ферр	оомагнитное	состоян	ие			
2.98 3.0	2.44 2.47	$-17.1 \\ -17.2$	1.58 1.15	1.42 1.33	$-17.0 \\ -17.6$	3.12 3.14	-9482.87981 -9482.88268		
Орторомбическая структура типа TiNiSi, $a = 6.01$, $b = 3.744$ Å, $x(Mn) = 0.031$, $z(Mn) = 0.185$, $x(Ni) = 0.147$, $z(Ni) = 0.557$, $x(Ge) = 0.758$, $z(Ge) = 0.623$									
	LE	А-прибл	ижение, ферр	омагнитное	состоян	ие			
2.84 2.84	2.24 2.25	$-13.5 \\ -14.1$	2.22 2.21	1.75 1.73	$-20.5 \\ -21.7$	3.10 3.10	$-9468.19401 \\ -9468.19938$		
	GC	ЪА-прибл	ижение, ферр	оомагнитное	состоян	ие			
2.97 2.97	2.33 2.33	$-14.7 \\ -15.1$	2.37 2.36	1.82 1.81	-22.9 -23.8	3.18 3.17	-9482.98647 -9482.99038		
Гексагональная структура типа Ni ₂ In, $a=4.067$ Å, $c=5.327$ Å									
	Ι	.DA-при	ближение, не	магнитное со	остояние	•			
_	_	_ _	_	-	_ _	_ _	-9418.5017 -9418.5032		
GGA-приближение, немагнитное состояние									
_	_	_ _	_	-	_ _	_ _	-9433.2354 -9433.2368		
LDA-приближение, ферромагнитное состояние									
2.59 2.61	2.18 2.20	14.5 14.6	1.25 0.74	1.25 1.03	14.4 15.2	2.81 2.84	-9418.52806 -9418.5336		
GGA-приближение, ферромагнитное состояние									
2.83 2.87	2.36 2.39	17.2 17.3	1.63 0.58	1.43 1.2	16.0 17.1	3.1 3.11	-9433.27012 -9433.2759		
	М(Мп ₁), µ _В ональная стр – – – 2.71 2.71 2.98 3.0 юмбическая с п) = 0.185, х 2.84 2.84 2.97 2.97 2.97 сональная стр – – – – – – – – – – 2.59 2.61 2.83 2.87	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$M(Mn_1), \mu_B$ $M(Fe_1), \mu_B$ H_{hfl}, T ОНАЛБНАЯ СТРУКТУРА ТИПА Ni2In, A ——	$M(Mn_I), \mu_B$ $M(Fe_I), \mu_B$ H_{hfI}, T $M(Mn_{II}), \mu_B$ ональная структура типа Ni2In, $a = 4.0956$ Å, LDA-приближение, нес – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 2.71 2.26 –14.4 0.91 2.71 2.26 –14.1 1.58 3.0 2.47 –17.2 1.15 оомбическая структура типа TiNiSi, a = 6.01, t <	$M(Mn_1), \mu_B$ $M(Fe_1), \mu_B$ H_{hfl}, T $M(Mn_{II}), \mu_B$ $M(Fe_{II}), \mu_B$ ональная структура типа Ni ₂ In, $a = 4.0956$ Å, $c = 5.355$ Å LDA-приближение, немагнитное со $ -$	$M(Mn_I), \mu_B$ $M(Fe_I), \mu_B$ H_{hfI}, T $M(Mn_I), \mu_B$ $M(Fe_I), \mu_B$ H_{hfII}, T ональная структура типа Ni ₂ In, $a = 4.0956$ Å, $c = 5.355$ Å LDA-приближение, немагнитное состояние - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>$M(Mn_1), \mu_B$ $M(Fe_1), \mu_B$ H_{hfl}, T $M(Mn_1), \mu_B$ $M(Fe_1), \mu_B$ H_{hfl}, T M_{fu}, μ_B ональная структура типа Ni2In, $a = 4.0956$ Å, $c = 5.355$ Å LDA-приближение, немагнитное состояние - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<></td>	$M(Mn_1), \mu_B$ $M(Fe_1), \mu_B$ H_{hfl}, T $M(Mn_1), \mu_B$ $M(Fe_1), \mu_B$ H_{hfl}, T M_{fu}, μ_B ональная структура типа Ni2In, $a = 4.0956$ Å, $c = 5.355$ Å LDA-приближение, немагнитное состояние - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<>		

Таблица 4. Сверхтонкие магнитные поля *H*_{hf}, рассчитанные полнорелятивистским методом Корринги-Кона-Ростокера

*Me*II содержание железа остается практически постоянным, а железо сверх этой концентрации замещает только марганец в позициях *Me*I.

Мессбауэровские спектры твердых растворов при температуре жидкого азота (табл. 3, рис. 3) представляют собой магнитно расщепленные линии, что соответствует магнитному состоянию растворов. Спектры обрабатывались в модели двух секстетов с близкими величинами сверхтонких магнитных полей, в спектре каждого состава поля различаются не более чем на 0.5 Т. При этом исходили из предположения, что атомы железа, находящиеся в двух различных структурных неэквивалентных позициях орторомбической структуры, которой характеризуется $MnNi_{1-x}Fe_xGe$ при T = 77 K, дают соответствующие подспектры общего спектра. Ширина линий в секстетах превышает естественную ширину, что можно объяснить неидеальностью кристаллической структуры образца. В результате градиент электрического поля ориентирован относительно направления намагниченности не единственным образом, что и ведет к уширению линии в секстетах [12]. Различия в термообработке образца одного состава слабо влияют на величины сверхтонких полей на ядрах Fe (показано на примере образца состава MnNi_{0.75}Fe_{0.25}Ge, табл. 3).

Экспериментальные данные, указывающие на близость сверхтонких полей на ядрах железа в различных кристаллографических позициях, не согласуются с результатами расчетов, проведенных в настоящей работе (табл. 4). Сверхтонкие поля H_{hf} рассчитывались полнорелятивистским методом Корринги–Кона– Ростокера [13] в приближении локальной плотности (LDA/VWN) [14] и в обобщенном градиентном приближении (GGA/PBE) [15] для обменно-корреляционной энергии. Для кристаллического потенциала использовалось приближение атомной сферы.

На примере образца состава MnNi_{0.85}Fe_{0.15}Ge при комнатной температуре, т.е. в немагнитной гексагональной фазе, был проведен расчет разности энергий $\Delta E_{\rm NM,hex}$ различных вариантов замещения атомами железа атомов марганца либо никеля. Согласно результатам расчетов, железо практически равновероятно распределено по позициям Ni и Mn (табл. 4).

$$\begin{split} \Delta E_{\rm NM,hex} &= E[({\rm Mn}_{0.99}{\rm Fe}_{0.01})_{2a}({\rm Ni}_{0.85}{\rm Fe}_{0.14}{\rm Mn}_{0.01})_{2c}{\rm Ge}] \\ &- E[({\rm Mn}_{0.86}{\rm Fe}_{0.14})_{2a}({\rm Ni}_{0.85}{\rm Fe}_{0.01}{\rm Mn}_{0.14})_{2c}{\rm Ge}] \\ &= -132\,{\rm K/f.u.} \end{split}$$

Расчет разности энергий подтверждается экспериментальными данными. Отношение площадей двух пиков в составе мессбауэровского спектра образца MnNi_{0.85}Fe_{0.15}Ge составляет $C_2/C_1 = 0.521/0.479$ = 1.09. Это неравновесное распределение, поэтому при отжиге образца происходит перераспределение атомов железа по кристаллоструктурным позициям. В отожженном образце соотношение площадей пиков становится равным $C_2/C_1 = 0.397/0.603 = 0.66$ (табл. 2).

Разность энергий между этими конфигурациями атомов в гексагональном ферромагнитном состоянии возрастает по абсолютной величине до $\Delta E_{\rm FM,hex} = -623$ K/f.u., а в орторомбической фазе — до $\Delta E_{\rm FM,orth} = -846$ K/f.u. Поэтому закалка может заморозить "неравновесное" распределение атомов железа Fe по подрешеткам Ni и Mn, а также заморозить часть "неравновесности" в орторомбической фазе. Сравнение рассчитанных сверхтонких магнитных полей (табл. 4) с экспериментальными значениями (12.7 и 12.3 T), (табл. 3) показывает, что наилучшее согласие с экспериментальными данными наблюдается, когда атомы железа находятся в подрешетке Mn в орторомбической ферромагнитной фазе. В этом случае $H_{\rm hf,2a}^{\rm VWN} = 13.5$ T и $H_{\rm hf,2c}^{\rm VWN} = 20.5$ T.

4. Заключение

Все изученные сплавы MnNi_{1-x}Fe_xGe ($0.10 \le x \le 0.25$) при T = 290 К являются однофазными твердыми растворами с гексагональной структурой типа Ni₂In. В области от 70 К до температур магнитного фазового перехода T_C (незначительно ниже комнатной) изученные твердые растворы представляют собой ферромагнетики. Магнитные характеристики закаленных и отожженных MnNi_{1-x}Fe_xGe при $0.10 \le x \le 0.25$ от характера термообработки практически не зависят.

В твердых растворах $MnNi_{1-x}Fe_xGe$ при $x \sim 0.10-0.15$ железо статистически распределяется по двум типам структурно неэквивалентных позиций: MeI и MeII. При наращивании содержания x > 0.15 железо замещает марганец в позициях MeI. Никель в позициях MeII железом не замещается.

Список литературы

- [1] E.H. Brück, O. Tegusi, F.R. De Boer. Material for magnetic refrigeration preparation and application. US Patent 7069729 B2 (2004).
- [2] E. Liu, W. Wang, L. Feng, W. Zhu, G. Li, J. Chen, H. Zhang, G. Wu, C. Jiang, H. Xu, F. de Boer. Nature Commun. 3, 873 (2012).
- [3] L. Chen, F.X. Hu, J. Wang, L.F. Bao, J.R. Sun, B.G. Shen, J.H. Yin, L.Q. Pan. Appl. Phys. Lett. **101**, 012 401 (2012).
- [3] S.C. Ma, H.C. Xuan, C.L. Zhang, L.Y. Wang, Q.Q. Cao, D.H. Wang, Y.W. Du. Appl. Phys. Lett. 97, 052 506 (2010).
- [5] V.I. Mitsiuk, T.M. Tkachenka, M. Budzyński, Z. Surowiec, V.I. Valkov. Nukleonika 58, 169 701 (2013).
- [6] A. Szytula, A.T. Pędziwiatr, Z. Tomkowicz, W. Bazela. J. Magn. Magn. Mater. 25, 176 (1981).
- [7] M.R.L.N. Murthy, M.G. Natera, R.J. Begum, N.S. Satya Murthy. Proc. Nucl. Phys. Solid State Phys. Symp. Bombay (1972). P. 513.
- [8] C.L. Zhang, D.H. Wang, J. Chen, T.Z. Wang, G.X. Xie, C. Zhu. Chin. Phys. B 20, 097 501 (2011).
- [9] C.L. Zhang, D.H. Wang, Q.Q. Cao, S. Ma, H. Xuan, Y. Du. J. Phys. D 43, 205 003 (2010).
- [10] A.D. Bruce, R.A. Cowley. Structural phase transitions. Taylor and Francis, London (1981). 326 p.
- [11] J. Łażewski, P. Piekarz, K. Parlinski. Phys. Rev. B 83, 054 108 (2011).
- [12] G.K. Wertheim, V. Jaccarino, J.H. Wernick. Phys. Rev. 135, A151 (1964).
- [13] H. Ebert. Munich SPRKKR package v.6.3; http://olymp.cup.uni-muenchen.de/
- [14] S.H. Vosko, L. Wilk, M. Nusair. Can. J. Phys. 58, 1200 (1980).
- [15] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).