07

Влияние эффекта Штарка на увеличение мощности в двухсекционных лазерах с квантовыми ямами в режиме модуляции добротности

© М.С. Буяло^{1,3}, И.М. Гаджиев^{1,3}, А.А. Усикова¹, Ю.М. Задиранов¹, Н.Д. Ильинская¹, А.Е. Губенко², А.Ю. Егоров^{1,3,4}, Е.Л. Портной¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

 ² Innolume GmbH, 11 Konrad-Adenauer-Allee, Dortmund, 44263, Germany
³ Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Россия
⁴ ООО "Коннектор Оптикс", 194292 Санкт-Петербург, Россия E-mail: mikhail.buyalo@gmail.com

Поступило в Редакцию 14 мая 2015 г.

Исследованы двухсекционные лазерные диоды с активной областью, содержащей три квантовые ямы, излучающие импульсы света в режимах пассивной модуляции добротности (ПМД). Показано, что смещение края поглощения вследствие эффекта Штарка приводит к коротковолновому сдвигу линии лазерной генерации и к двукратному увеличению мощности импульсов в режиме ПМД.

В настоящее время наблюдается значительный интерес к малогабаритным полупроводниковым источникам пикосекундных оптических импульсов. Помимо приложений, связанных с использованием таких источников для лазерных радаров, спектроскопии и изучением биологических процессов [1,2], генераторы коротких и мощных импульсов имеют потенциал для задач пикосекундной акустики [3]. Самой простой и хорошо разработанной конструкцией для излучения пикосекундных импульсов является двухсекционная конструкция лазера, с электрически изолированными секциями усилителя и насыщающегося поглотителя (НП) [4]. Необходимый уровень поглощения в секции поглотителя при этом достигается за счет эффекта Штарка. Такая конструкция лазера

30

позволяет осуществлять генерацию импульсов света либо в режиме пассивной синхронизации мод (ПСМ), либо пассивной модуляции добротности (ПМД), при этом возможна реализация обоих режимов на одном образце [5,6]. Несмотря на существенное количество работ, опубликованных по упомянутым режимам в двухсекционных лазерах на квантовых ямах (КЯ), вопрос о влиянии спектральных свойств поглотителя на режимы ПСМ и ПМД остается актуальным. Так, нами было показано, что из-за экситонного характера края зоны поглощения и эффекта сужения зон необходимо прикладывать значительное обратное смещение к НП для реализации режима ПСМ [7]. Были предложены способы уменьшения величины обратного смещения для достижения режима ПСМ: так, в лазерах с двумя асимметричными связанными КЯ возникающая туннельная связь между электронными уровнями КЯ ведет к дополнительной области существования ПСМ при малых обратных смещениях [8], однако эффект туннельной связи не оказывает влияния на режим ПМД [6].

Известно, что увеличить импульсную мощность в режиме ПМД можно за счет увеличения числа накопленных неравновесных носителей. Достичь этого можно при увеличении поглощения на длине волны генерации. Одним из путей увеличения потерь является штарковский сдвиг края поглощения в длинноволновую область спектра. В настоящей работе проводилось исследование режима ПМД двухсекционных лазеров с тремя глубокими КЯ и его связи со спектральными свойствами поглотителя.

Лазерная структура была изготовлена методом молекулярнопучковой эпитаксии на подложках GaAs. Активная область состояла из трех InGaAs квантовых ям толщиной 8 nm, разделенных барьером толщиной 18 nm, что исключает эффекты туннельного связывания между электронными уровнями ям. Квантовые ямы расположены в Al_{0.25}GaAs волноводе толщиной 628 nm, ограниченным Al_{0.25}GaAs эмиттерными слоями. Структура была изготовлена для лазерной генерации в спектральной области $1.06 \,\mu$ m. Методами стандартной фотолитографии были изготовлены полосковые лазеры с шириной полоска $5 \,\mu$ m, что обуславливало генерацию на основной пространственной моде. Исследование поглощения структуры проводилось на двухсекционных образцах с секциями одинаковой длины, с зеркалами, полученными при сколе лазеров. Динамические режимы излучения лазеров были реализованы на двухсекционных образцах длиной 0.6 mm, длина секции

Рис. 1. Осциллограммы излучения лазера с тремя квантовыми ямами при токе накачки 47 mA и обратных смещениях: *1* — 5.5 V, *2* — 6.9 V. Масштаб по оси напряжения одинаков для обеих линий.

поглотителя 10% длины резонатора лазера, на одно из зеркал которых было нанесено 90% отражающее покрытие, а второе получено методом скола. Секции были изолированы электрическим разрывом в контакте, сопротивление между секциями составляло более $10 \text{ k}\Omega$, лазеры монтировались на медный теплоотвод.

Измерения проводились при комнатной температуре. Лазеры исследовались при импульсном токе накачки длительностью 160 ns и различных обратных смещениях V_{rev} на секции НП. При малых V_{rev} лазер работал в непрерывном режиме. При обратных смещениях от 4 до 6 V наблюдается режим модуляции добротности с частотой следования импульсов порядка 2–3 GHz. При $V_{rev} = 5.5$ V длительность импульсов Δt составляет около 70 ps (рис. 1, кривая 1). С увеличением V_{rev} в

этом диапазоне частота уменьшается, при этом длительность импульсов практически не изменяется, мощность в импульсе составляет 70 mW. Увеличение тока накачки приводит последовательно к росту частоты следования импульсов, а затем к переключению лазера в режим непрерывной генерации.

Увеличение V_{rev} более 6 V приводит к скачкообразному уменьшению длительности импульсов до значений порядка 35 ps (рис. 1, кривая 2), что соответствует трем обходам резонатора. Частота следования импульсов также уменьшается. Мощность в импульсе при $V_{rev} = 6.9$ V достигает 150 mW, что более чем в два раза больше, чем при том же токе накачки и обратном смещении 5.5 V. Одновременно с этим наблюдался коротковолновый сдвиг линии лазерной генерации.

В полупроводниковых лазерах на КЯ увеличение обратного смещения на секции поглотителя приводит к длинноволновому сдвигу линии лазерной генерации вследствие увеличения поглощения за счет эффекта Штарка [7]. В тоже время в исследуемых в настоящей работе лазерах с тремя КЯ резкое изменение картины ПМД лазера при одном и том же токе накачки сопровождается сдвигом длины волны генерации в коротковолновую область на 15 nm и уширением спектра, измеренного по уровню 0.1 излучения, $\Delta\lambda$ с 1.7 nm до 5.4 nm (рис. 2, линии 3 и 4).

Для объяснения этого эффекта было измерено поглощение для ТЕ поляризации методом интегрально-абсорбционной спектроскопии [7], длина каждой секции составляла $250\,\mu$ m. Сопоставление спектров генерации (рис. 2, линии 3 и 4) со спектрами поглощения (рис. 2, линии 1 и 2), измеренными при близких значениях обратного смещения, показывает, что при V_{rev} менее 6 V линия генерации располагается на краю зоны поглощения. При этом в диапазоне обратных смещений от 0 до 6 V линия генерации сдвигается в длинноволновую область по мере увеличения обратного смещения. При превышении V_{rev} 6 V линия генерации скачком смещается в коротковолновую область и находится в спектральной области вблизи пика спектра поглощения, измеренного при том же обратном смещении. Сдвиг в коротковолновую область сопровождается увеличением поглощения на длине волны лазерной генерации с 35 до 190 cm⁻¹, что приводит к росту просветляемых потерь и увеличению мощности.

Дальнейшее уменьшение длительности импульса и увеличение его мощности было достигнуто с использованием схемы накачки с дополнительной модуляцией усиливающей секции электрическими импульсами

Рис. 2. Спектры поглощения и генерации лазера с тремя квантовыми ямами. Линии I и 2 — спектры поглощения при обратном смещении 5 и 7V на секции поглотителя соответственно, линии 3 и 4 — спектры генерации при токе накачки $I_f = 47$ mA и обратных смещениях 5.5 и 6.9 V на поглощающей секции соответственно.

длительностью 1 пs и величиной 15 V в тракте с волновым сопротивлением 50 Ω . Таким образом, лазер работал в гибридном режиме ПМД и модуляции усиления (МУ) в лазере с НП [9], при этом длительность импульсов света, измеренная с помощью фотоприемника и осциллографа, составляет 24 ps при $V_{rev} = 6.2$ V (рис. 3, *a*). Поскольку полоса фотоприемника ограничена 25 GHz, то длительность импульса лазера дополнительно была измерена с помощью автокорреляционной функции второго порядка (АКФ) (рис. 3, *b*). Ширина на полувысоте АКФ составляет 25 ps, что при гауссовой форме импульса дает значение длительность импульса 17 ps и соответственно при энергии импульса 22 pJ — мощность импульса в 1.3 W. Стоит отметить, что как, и в режиме ПМД, длительность импульсов резко уменьшается при

Рис. 3. Излучение лазера при импульсной накачке и обратном смещении 6.2 V. *a* — осциллограмма, *b* — АКФ.

 $V_{rev} > 6$ V. Увеличение импульсной мощности может быть объяснено тем, что по сравнению с "чистым" режимом ПМД в гибридном режиме ПМД и МУ происходит трехкратное увеличение ширины спектра $\Delta \lambda$.

Увеличение обратного смещения на секции поглотителя приводит к сдвигу в длинноволновую область спектра поглощения за счет квантоворазмерного эффекта Штарка. В силу того что эффект Штарка

квадратичен по приложенному полю, при малых обратных смещениях этот сдвиг незначителен, однако при обратных смещениях более 5 V скорость движения пика превышает 3 meV/V. При этом во всем приложенном диапазоне обратных смещений сохраняется резкий край поглощения, с крутизной роста поглощения 23.7 и 20.5 cm⁻¹/meV для обратных смещений 0 и 7 V соответственно. Таким образом, на длине волны генерации поглощение увеличивается с 35 до 190 cm⁻¹, что вместе с быстрым восстановлением НП приводит к увеличению мощности в импульсе и уменьшению Δt .

В заключение хотелось бы отметить, что было проведено исследование режима пассивной модуляции добротности в двухсекционных лазерах, содержащих в активной области три квантовые ямы. Показано, что за счет штрарковского сдвига пика поглощение на длине волны лазерной генерации увеличивается более чем в пять раз, что приводит к двукратному увеличению мощности в импульсе режима ПМД при том же токе накачки. При гибридном режиме модуляции добротности и модуляции усиления мощность в импульсе увеличивается на порядок.

Работа выполнена при финансовой поддержке гранта РФФИ 14-29-08266 офи_м, Федеральной целевой программы "Исследования а разработки по приоритетным направлениям развития научно-технического комплекса России на 2014–2020 годы", шифр 2015-14-579-0014; соглашение № 14.579.21.0096, уникальный идентификатор RFMEF 157915X0096, а также КНВШ СПб.

Список литературы

- [1] Holton M.D. et al. // Opt. Express. 2009. V. 17. P. 5205-5216.
- [2] Maksimov E. G. et al. // Photosynth. Res. 2015 (in print).
- [3] Czerniuk T. et al. // Nature Communications. 2014. 5: 4038.
- [4] Avrutin E.A. et al. // IEE Proceedings-J. Optoelectronics. 2000. V. 147. P. 251–278.
- [5] Буяло М.С. и др. // Письма в ЖТФ. 2013. Т. 39. В. 3. С. 41-48.
- [6] Буяло М.С. и др. // Письма в ЖТФ. 2012. Т. 38. В. 7. С. 31-39.
- [7] Гаджиев И.М. и др. // Письма в ЖТФ. 2010. Т. 36. В. 22. С. 29-36.
- [8] Buyalo M.S. et al. // Electron. Lett. 2012. V. 48. I. 14. P. 870–872.
- [9] Lanz B. et al. // Opt. Express. 2013. V. 21. I. 24. P. 29780-29791.