07,14

Энергетика механического разрушения срединных радикалов

© Н.Г. Квачадзе, Э.Е. Томашевский, В.В. Жиженков

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: nina.kvachadze@mail.ioffe.ru

(Поступила в Редакцию 29 апреля 2015 г.)

Проведены расчеты растяжения до разрыва модельного фрагмента срединного радикала в жесткой полимерной матрице. Оценены силовые и энергетические характеристики разрушения радикалов и образования двойных связей. Определены значения энергии диссоциации и прочности C_β-C_γ-связей для транс- и гош-конформеров радикалов. Установлено, что вероятность разрушения β-связей существенно зависит от конформационного строения макрорадикалов.

1. Введение

В кинетике механического разрушения полимеров особая роль принадлежит срединным макрорадикалам. Макрорадикалы срединного типа являются одним из основных продуктов низкотемпературного радиолиза полимеров. В радикалах сохраняется целостность углеродного остова. Однако наличие свободного валентного электрона приводит к ускоренному разрушению соседних связей С-С из-за инициализации реакции образования двойных связей. С увеличением дозы облучения и концентрации радикалов прочность полимеров уменьшается. Закономерности снижения прочности облученных при низкой температуре волокон из полиэтилена, полипропилена и поликапроамида изучены в работах [1–3].

При разрыве срединного радикала возникает группа с двойной связью и образуется концевой радикал. Это удалось зарегистрировать методом ЭПР [4,5] в процессе дробления предварительно облученных образцов полиэтилена. Образцы, содержавшие достаточно большие концентрации срединных радикалов, измельчались в инертной среде при температуре жидкого азота.

Кинетика распада срединных радикалов при умеренных температурах анализировалась с позиций квантовой химии [6]. Аналитический расчет предела прочности β-связи в радикале полиэтилена выполнен в работе [7]. Конформационные особенности строения радикала не рассматривались.

Для детального анализа энергетики разрушения срединных макрорадикалов необходимо привлечение неэмпирических методов расчета, основанных на теории функционала электронной плотности. В настоящей работе проведены модельные расчеты растяжения до разрыва срединного радикала методом функционала плотности (DFT) в приближении UB3LYP с расширенным набором базисных функций 6-311G(d, p), включающим d-орбитали для атомов углерода и p-орбитали для атомов водорода [8,9], с использованием программы GAMESS [10]. В качестве упрощенной модели макрорадикала был выбран радикал

$$CH_3-C_{\alpha}H-C_{\beta}H_2-C_{\gamma}H_2-C_{\delta}H_3.$$

Конформационное состояние радикала задавалось вращением группы CH₃CH— вокруг связи $C_{\alpha}-C_{\beta}$. Значения конформационного угла φ были выбраны равными 0, 45 и 90°. Рассчитывались геометрические параметры (длины связей, валентные углы) и полная потенциальная энергия в свободном и деформированном состояниях.

На рис. 1 приведена схема растяжения фрагмента. Деформирование осуществлялось либо растяжением связи $C_{\beta}-C_{\gamma}$ вдоль r_{β} , либо растяжением фрагмента $C_{\alpha}-C_{\beta}-C_{\gamma}$ вдоль *L*. Конформация радикала при этом сохранялась неизменной.

2. Результаты расчетов

2.1. Геометрия радикала. В табл. 1 приведены результаты расчетов основных геометрических параметров фрагмента радикала $-\dot{C}_{\alpha}H_{\alpha}-C_{\beta}H_{\beta1}H_{\beta2} C_{\gamma}H_{\gamma1}H_{\gamma2}-$ для транс- ($\phi = 0^{\circ}$) и гош- ($\phi = 45$ и 90°) конформаций. В транс-конформации 2*p*-орбиталь неспаренного электрона расположена под прямым углом к плоскости атомов $C_{\alpha}C_{\beta}C_{\gamma}$, в гош-конформере при $\phi = 90^{\circ}$ она лежит в плоскости $C_{\alpha}C_{\beta}C_{\gamma}$. От углового положения 2*p*-орбитали зависит ее перекрывание с орбиталями соседних связей $C_{\alpha}-C_{\beta}$ и $C_{\beta}-C_{\gamma}$.

Рис. 1. Схематическое изображение деформирования фрагмента радикала.

$\angle arphi,~^\circ$	r_{α} , Å	$r_{\beta}, \mathrm{\AA}$	$r(C_{\alpha}-H_{\alpha}), A$	$r(C_{\beta}-H_{\beta 1}), A$	$r(C_{\beta}-H_{\beta 2}), A$	$\angle C_{\alpha}C_{\beta}C_{\gamma}, \circ$	$\angle H_{\beta}C_{\beta}H_{\beta}, \ ^{\circ}$
0	1.490	1.532	1.083	1.102	1.102	113.9	104.2
45	1.491	1.540	1.082	1.103	1.095	113.6	105.5
90	1.491	1.549	1.083	1.096	1.096	113.4	106.7

Таблица 1. Геометрические параметры радикала в разных конформациях

Примечание. Длины связей С $_{\alpha}$ -С $_{\beta}$ и С $_{\beta}$ -С $_{\gamma}$ обозначены r_{α} и r_{β} соответственно (см. рис. 1).

Результаты расчетов показывают, что неспаренный электрон в срединном радикале, находящемся в свободном ненагруженном состоянии, оказывает ослабляющее воздействие на соседние связи $C_{\beta}-H_{\beta}$ и $C_{\beta}-C_{\gamma}$. Длина этих связей увеличивается, что предполагает смещение части электронной плотности валентных электронов к неспаренному электрону. Конформационное изменение длины β -связей в радикалах невелико и достигает примерно 1%. Так, для радикалов в различных конформациях $r_{\beta} = 1.532 - 1.549$ Å, $r(C_{\beta}-H_{\beta}) = 1.095 - 1.103$ Å.

2.2. Деформации и разрушение радикалов. 2.2.1. Растяжение связи $C_{\beta}-C_{\gamma}$. Деформацию связи r_{β} задавали увеличением расстояния между атомами С_в и С_v. Результаты расчетов показали, что селективное растяжение единичной связи приводит к изменению ряда геометрических параметров радикалов. В табл. 2 представлены данные, полученные для радикала в гош-конформации с углом $\phi = 90^{\circ}$. Растяжение связи С_β-С_γ сопровождается заметным уменьшением длины связей $C_{\alpha}-C_{\beta}$, $C_{\gamma}-C_{\delta}$, $C_{\beta}-H_{\beta}$ и $C_{\gamma}-H_{\gamma}$, а также увеличением валентных углов $\angle H_{\beta}C_{\beta}H_{\beta}$ и $\angle H_{\gamma}C_{\gamma}H_{\gamma}$ и двугранных углов $\angle C_{\alpha}C_{\beta}H_{\beta}H_{\beta}$ и $\angle C_{\delta}C_{\gamma}H_{\gamma}H_{\gamma}$, характеризующих изменение пирамидальности строения радикалов. Совокупность полученных данных показывает, что по мере растяжения связи С_р-С_у происходит постепенное изменение гибридизации орбиталей (от $sp^3 \kappa sp^2$) атомов С_в и С_у и образование негибридных компонент малой интенсивности $2p(C_{\beta})$ и $2p(C_{\gamma})$. Взаимодействие неспаренного электрона срединного радикала $2p(C_{\alpha})$ с орбиталью $2p(C_{\beta})$ атома C_{β} приводит к сжатию связи $C_{\alpha}-C_{\beta}$.

Разрыв связи $C_{\beta}-C_{\gamma}$ завершается образованием свободного концевого радикала $\dot{C}_{\gamma}H_2-C_{\delta}H_3$ и группы с двойной связью $CH_3-C_{\alpha}H = C_{\beta}H_2$. В радикале с конформационным углом $\varphi = 90^{\circ}$ процесс образования двойной связи облегчается, поскольку компоненты $2p(C_{\alpha})$ и $2p(C_{\beta})$ одинаково ориентированы относительно друг друга. В радикалах гош-конформации с конформационным углом $\varphi = 45^{\circ}$ и транс-конформации с конформационным углом $\varphi = 45^{\circ}$ и транс-конформации с $\varphi = 0^{\circ}$ угловое расположение орбиталей $2p(C_{\alpha})$ и $2p(C_{\beta})$ оказывается различным. Образование двойной связи в этих радикалах достигается за счет вращения группы $C_{\beta}H_{\beta 1}H_{\beta 2}$ вокруг связи $C_{\alpha}-C_{\beta}$ на угол φ ($\varphi = 45^{\circ}$ или 90°), обеспечивающий полное перекрывание орбиталей $2p(C_{\alpha})$ и $2p(C_{\beta})$.

В результате расчетов были получены диаграммы нагружения радикалов при растяжении связи C_β-C_γ.

На рис. 2 показаны кривые изменения упругой энергии радикалов $W_r(\Delta r_\beta/r_{\beta 0})$ (рис. 2, *a*) и относительного изменения длины $C_\alpha - C_\beta$ (рис. 2, *b*) в процессе деформации связи $C_\beta - C_\gamma$ для радикалов разной конформации. На рис. 3 приведена зависимость растягивающей силы $F_r(\Delta r_\beta)$ от деформации связи $C_\beta - C_\gamma$. Из полученных данных следует, что энергетические и силовые характеристики деформирования и разрушения зависят от конформационного строения радикалов. С увеличением конформационного угла уменьшаются предел прочности $F_r(\text{max})$, энергия разрушения $W_r(\text{max})$, а также модуль упругости. На образование двойной связи при разрыве радикала требуется энергия величиной 28–30 kcal/mol. Разрушение радикалов происходит, когда энергия деформации $W_r(\Delta r)$ становится равной или превосходит эту

Рис. 2. Зависимость упругой энергии (*a*) и относительной деформации связи r_a (*b*) от относительного изменения длины связи $C_\beta - C_\gamma$ для радикалов разной конформации, $\varphi = 0$ (*1*), 45 (*2*), 90° (*3*).

Парамотр	$\Delta r_{\beta}/r_{\beta 0}, \%$									
Параметр	0	10	20	30	40	50	60	70		
r_{α} , Å	1.492	1.478	1.458	1.429	1.392	1.358	1.343	1.336		
$r(C_{\gamma}-C_{\delta}), \text{ Å}$	1.531	1.524	1.516	1.509	1.503	1.497	1.493	1.490		
$r(C_{\beta}-H_{\beta}), r(C_{\gamma}-H_{\gamma}), Å$	1.096	1.093	1.091	1.088	1.085	1.083	1.083	1.083		
$\angle C_{\alpha}C_{\beta}C_{\gamma}, \circ$	114	113	112	111	110	110	111	112		
$\angle H_{\beta}C_{\beta}H_{\beta}, \angle H_{\gamma}C_{\gamma}H_{\gamma}, ^{\circ}$	106	108	110	112	114	115	116	117		
$\angle C_{\alpha}C_{\beta}H_{\beta}H_{\beta}, \circ$	119	124	129	137	148	160	168	173		
$\angle C_{\delta}C_{\gamma}H_{\gamma}H_{\gamma}, \circ$	119	123	128	132	138	146	153	160		

Таблица 2. Геометрические параметры деформируемого радикала в конформации $\phi = 90^\circ$

величину. Разрушение радикалов сопровождается релаксацией или сбросом избыточной энергии при больших деформациях. Результаты оценок энергии разрушения $W_r(\max)$ и предела прочности $F_r(\max)$ радикалов приведены ниже:

для транс-конформера ($\phi = 0^\circ$)

$$W_r(\max) = 80 \text{ kcal/mol}, \quad F_r(\max) = 0.60 \text{ mdyn},$$

для гош-конформера ($\phi = 45^{\circ}$)

 $W_r(\max) = 40 \text{ kcal/mol}, \quad F_r(\max) = 0.52 \text{ mdyn},$

для гош-конформера ($\phi = 90^\circ$)

 $W_r(\max) = 30 \text{ kcal/mol}, \quad F_r(\max) = 0.44 \text{ mdyn}.$

Как следует из полученных данных, наибольшие различия наблюдаются в энергиях разрушения радикалов. Отметим, что энергия диссоциации связи C-C в молекуле C_5H_{12} с образованием двух концевых радикалов должна

Рис. 3. Зависимость растягивающей силы от деформации связи $C_{\beta}-C_{\gamma}$ для радикалов различной конформации. $\varphi = 0$ (1), 45 (2), 90° (3).

быть больше, чем в транс-радикале. Согласно оценкам в рамках расчетной программы, энергия диссоциации молекулы составляет 100–110 kcal/mol.

2.2.2. Растяжение связи $C_{\alpha}-C_{\beta}$. Увеличение расстояния между атомами C_{α} и C_{β} при нагружении радикала уменьшает перекрывание 2*p*-орбитали неспаренного электрона с 2*p*-компонентой орбитали атома C_{β} , что препятствует образованию двойной связи. Об ослаблении влияния неспаренного электрона можно судить по изменению изотропного сверхтонкого вза-имодействия (СТВ) с β -протонами и ядрами ${}^{13}C_{\gamma}$ в конформации плоского транс-зигзага [11]. Нами были рассчитаны константы СТВ и их изменение для радикала C_5H_{11} в гош-конформации с углом $\varphi = 90^{\circ}$. Деформация задавалась увеличением длины связи r_{α} при фиксированных значениях других геометрических параметров.

В результате расчетов получены следующие соотношения, характеризующие зависимость констант СТВ a_{γ}^{C} и $a_{\beta 1,2}^{H}$ от относительной деформации связи r_{α} :

$$\begin{split} a_{\gamma}^{\rm C}(\Delta r/r_0) &= a_{\gamma}^{\rm C}(0)(1-3.5\Delta r/r_0), \\ a_{\beta}^{\rm H}(\Delta r/r_0) &= a_{\beta}^{\rm H}(0)(1-4.0\Delta r/r_0), \end{split}$$

где $a_{\gamma}^{\rm C}(0) = 25 \,\mathrm{G}, \, a_{\beta}^{\rm H}(0) = 11 \,\mathrm{G}.$

Значения констант $a_{\gamma}^{\rm C}$ и $a_{\beta}^{\rm H}$, формирование которых обусловлено механизмом сверхсопряжения, существенно уменьшаются при растяжении связи r_{α} . При относительной деформации $\Delta r/r_0 = 10\%$ эти константы уменьшаются в 1.7–2 раза. В той же мере ограничивается возможность образования двойной связи в деформированном радикале гош-конформации.

2.2.3. Растяжение фрагмента $C_{\alpha}C_{\beta}C_{\gamma}$. Напряженное состояние фрагмента $C_{\alpha}C_{\beta}C_{\gamma}$ задавалось увеличением расстояния между атомами C_{α} и C_{γ} . После каждого шага деформации производилась оптимизация геометрии радикала при условии сохранения мультиплетности (M = 2). Были рассчитаны деформации связей $C_{\alpha}-C_{\beta}$, $C_{\beta}-C_{\gamma}$ и валентного угла $\angle C_{\alpha}C_{\beta}C_{\gamma}$, оценена энергия деформации W_L и величина упругой силы F_L . Результаты расчетов для гош-конформера ($\varphi = 90^{\circ}$) представлены на рис. 4.

Рис. 4. Изменения длин связей (a) и энергии (b) радикала в гош-конформации при увеличении расстояния между атомами $C_{\alpha}-C_{\gamma}$.

Особенностью разрушения фрагмента является смена знака деформации связи $C_{\alpha}-C_{\beta}$. На начальном участке растяжения происходит постепенное нарастание деформации связей $C_{\alpha}-C_{\beta}$ и $C_{\beta}-C_{\gamma}$ Когда усилие на связи r_{α} достигает предела ее прочности, рост деформации связи r_{α} прекращается. При дальнейшем растяжении радикала действующая сила F_L на связи r_{β} и соответственно на связи r_{α} уменьшается. В результате уменьшается деформация связи r_{α} , что снимает ограничения, препятствующие образованию двойной связи.

Результаты расчетов деформаций связей r_{α} и r_{β} для радикала в гош-конформации ($\varphi = 90^{\circ}$) показаны на рис. 4, *а*. Изменение характера деформации связей наблюдается при растяжении фрагмента $\Delta L/L_0$ до 25–30%. На стадии сокращения связи r_{α} ее деформация падает до нуля, затем связь r_{α} сжимается с образованием двойной связи. Существенным обстоятельством является деформационное увеличение угла $\angle C_{\alpha}C_{\beta}C_{\gamma}$ от 114 до 130–140°, что ослабляет взаимодействие образующегося концевого радикала с π -компонентой двойной связи. Разрыв связи r_{β} сопровождается поворо-

том группы $C_{\alpha}C_{\beta}$ относительно линии *L* и увеличением расстояния между атомами C_{β} и C_{γ} .

На рис. 4, *b* приведена зависимость энергии W_L от деформации фрагмента $\Delta L/L_0$. Максимальное значение $W_L(\max)$ к моменту разрушения радикала в конформации $\varphi = 90^\circ$ составило 37 kcal/mol. При разрыве радикала и образовании группы с двойной связью произошел сброс части энергии до уровня в 25–30 kcal/mol.

Расчетное значение предела прочности фрагмента $C_{\alpha}C_{\beta}C_{\gamma}$ составило $F_L(\max) = 0.50 - 0.52 \text{ mdyn}$. Таким образом, для разрушения фрагмента срединного радикала потребовались более высокое напряжение и дополнительные затраты энергии, чем для разрыва единичной связи в свободном состоянии радикала.

Расчеты деформации и разрушения для фрагмента радикала $C_{\alpha}C_{\beta}C_{\gamma}$ в конформации транс-зигзага ($\varphi = 180^{\circ}$) дали качественно такие же результаты как для характера деформации связей r_{α} и r_{β} , так и для энергетики разрушения. В этом случае максимальное значение энергии деформации составило $W_L(\max) = 90$ kcal/mol, предел прочности $F_L(\max) = 0.68$ mdyn.

3. Заключение

Проведенные квантово-химические расчеты для модельных радикалов позволяют сделать вывод о существенном влиянии конформации срединных макрорадикалов на энергетику процесса β -разрыва. Из полученных результатов следует, что для разрыва срединного радикала в транс-конформации необходима бо́льшая энергия, чем для такого же радикала в гош-конформации. Эти результаты дают возможность провести анализ данных о разрушении срединных радикалов при механической деструкции облученных полимеров разного химического строения, включающих в себя набор конформеров.

Список литературы

- [1] Э.Е. Томашевский, Н.Г. Квачадзе. ФТТ 47, 899 (2005).
- [2] Б.Б. Нарзуллаев, Э.Е. Томашевский. Высокомолекуляр. соединения Б 23, 784 (1981).
- [3] Б.Б. Нарзуллаев. Влияние ослабления связей в макрорадикалах на прочность полимеров. Автореф. канд. дис. ФТИ им. А.Ф. Иоффе АН СССР, Л. (1983). 17 с.
- [4] В.А. Радциг. Хим. физика 23, 70 (2004).
- [5] В.А. Радциг. Структура и реакционная способность дефектов в механически активированных твердых телах. Автореф. докт. дис. ИХФ АН СССР, М. (1985). 46 с.
- [6] Б.Э. Крисюк. Высокомолекуляр. соединения А 44, 1805 (2002).
- [7] А.И. Губанов. ФТТ **23**, 3684 (1981).
- [8] A.D. Becke. J. Chem. Phys. 98, 5648 (1993).
- [9] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 785 (1988).
- [10] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S.Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comput. Chem. 14, 1347 (1993).
- [11] Н.Г. Квачадзе, Э.Е. Томашевский. ФТТ 49, 2169 (2007).