⁰⁴ Электрический спектр CoCr₂S_{3.5}Se_{0.5}

© Э.А. Эйвазов, В.И. Гусейнов, С.Ш. Курбанов, Н.Н. Нифтиев, И.М. Алимарданова

Азербайджанский государственный педагогический университет, Баку, Азербайджан E-mail: namiq7@bk.ru

(Поступила в Редакцию 14 мая 2015 г.)

Показано, что в температурной области 140–300 К в интервале частот 0.065–6 Hz диэлектрические проницаемости ε' и ε'' CoCr₂S_{3.5}Se_{0.5} с увеличением температуры растут по закону $\varepsilon_i = a_1^i + a_2^j \exp(-\Delta x_i/kT)$. С увеличением частоты наблюдается убывание диэлектрической проницаемости. Анализ показывает, что основным механизмом поляризации является ориентационная поляризация.

В настоящей работе приводятся экспериментальные результаты исследования электрического спектра ферримагнитного поликристаллического материала СоСr₂S_{3.5}Se_{0.5} в интервале температур 140-300 К и частот 0.065-6 Hz. Режим синтеза и результаты исследования электропроводности CoCr₂S_{3.5}Se_{0.5} ранее были описаны нами в [1]. Исследования были проведены резонансным методом [2]. Выявлено, что в исследованной частотной области с увеличением частоты действительная ε' и мнимая ε'' части проницаемости уменьшаются, при этом при сравнительно низких частотах ($\omega \le 1.5 \text{ MHz}$) темп убывания $d\varepsilon_i/d\omega$ значительно больше, чем при высоких частотах. Температурные зависимости ε' и ε'' идентичны. Характерным является то, что до определенной температуры є' и є'' остаются практически постоянными, а при дальнейшем увеличении температуры обе проницаемости резко растут. С увеличением частоты температура, соответствующая резкому росту ε' , смещается в сторону высоких температур. Характер температурной и частотной зависимостей ε' и ε'' свидетельствует о релаксационной природе диэлектрических потерь в CoCr₂S_{3.5}Se_{0.5}.

Анализ полученных данных показывает, что экспериментальные кривые $\varepsilon'_{\omega} = f(T)$ и $\varepsilon''_{\omega} = f(T)$ могут быть описаны следующими выражениями:

$$\varepsilon'_{\omega}(T) = a'_1 + a'_2 \exp\left(-\frac{\Delta E'}{kT}\right),\tag{1}$$

$$\varepsilon_{\omega}^{\prime\prime}(T) = a_1^{\prime\prime} + a_2^{\prime\prime} \exp\left(-\frac{\Delta E^{\prime\prime}}{kT}\right), \qquad (2)$$

где a'_1 и a''_2 — постоянные значения ε' и ε'' вплоть до T'_H и T''_H соответственно.

В (1) и (2) $\Delta E'$ и $\Delta E''$ — энергетические характеристики поляризации в постоянном и переменном электрических полях, так как по физическому смыслу ε' — обычная электрическая проницаемость, а ε'' диэлектрическая проницаемость, связанная с диэлектрической потерей ($\varepsilon'' \sim \operatorname{tg} \delta$).

Согласно (1) и (2), экспериментальные данные по ε' и ε'' в координатах $\ln(\varepsilon'_{\omega} - a'_1) = f\left(\frac{1}{T}\right)$ и $\ln(\varepsilon''_{\omega} - a''_1) = f\left(\frac{1}{T}\right)$ должны ложиться на прямые, тангенсы угла которых

будут характеризовать $\Delta E'$ и $\Delta E''$ соответственно. Предэкспоненциальные коэффициенты в (1) и (2) были определены как отрезки, отсекаемые от оси ординат $\ln(\varepsilon_{\omega}^{i} - a_{1}^{i})$ при $\frac{1}{T} \rightarrow 0$. Найденные описанным методом величины приведены в таблице.

Как следует из таблицы, энергетические характеристики $\Delta E'$ и $\Delta E''$ по порядку величины равны и практически не зависят от частоты. Коэффициенты a_1^i и a_2^i (i = ' и "), входящие в (1) и (2), с увеличением частоты уменьшаются. С учетом отмеченного выражения (1) и (2) могут быть записаны в общем виде следующим образом:

$$\varepsilon^{i}(\omega_{i}T) = a_{1}^{i}(\omega) + a_{2}^{i}(\omega) \exp\left(-\frac{\Delta E^{i}}{kT}\right).$$
(3)

Можно показать, что ε' и ε'' в общем случае определяются следующими выражениями (3)

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_c - \varepsilon_{\infty}}{1 + (\omega \tau)^2},$$
 (4)

$$\varepsilon'' = \frac{\sigma}{\varepsilon_0 \omega} + \frac{(\varepsilon_c - \varepsilon_\infty)\omega\tau}{1 + (\omega\tau^2)}.$$
 (5)

Согласно (4) и (5), температурные зависимости диэлектрических проницаемостей ε' и ε'' будут определяться соответствующими зависимостями времени релаксации τ и электропроводностью σ материала. Их частотная зависимость при прочих одинаковых условиях будет зависеть и от механизма проводимости, так как в случае зонного механизма $\sigma \neq \sigma(\omega)$, а при перескоковом механизме проводимости $\sigma = \sigma(\omega)$.

Величины, характеризующие температурные зависимости мнимой и действительной частей диэлектрической проницаемости

<i>f</i> ,	ε'				$arepsilon^{\prime\prime}$			
MHz	a'_1	$a_2' \cdot 10^{-6}$	tgδ	$\Delta E', eV$	a_1''	$a_2^{\prime\prime} \cdot 10^{-7}$	tgδ	$\Delta E'', eV$
0.065	30	46.77	2.79	0.240	22	11	3.2	0.276
0.20	24	12.70	2.83	0.244	12	5.6	2.89	0.249
0.50	20	9.24	2.89	0.249	6	1	2.78	0.239
1.00	12	8.23	3.01	0.254	3	0	2.81	0.242

После простых преобразований исходя из (4) и (5) можно установить следующую связь между ε' и ε'' :

$$\varepsilon' = \varepsilon'_{\infty} + \frac{1}{\tau} \frac{\varepsilon''}{\omega}.$$
 (6)

В координатах $\varepsilon' = f\left(\frac{\varepsilon''}{\omega}\right)$ в случае пригодности (6) имеем прямую, тангенс угла наклона которой равен $\frac{1}{\tau}$, отсекающую от оси ординат отрезок, равный ε_{∞} . Такая прямолинейная зависимость имеет место, и оказалось, что $\varepsilon_{\infty} = 20.4$, а $\tau \approx 15 \cdot 10^{-10}$ s. Как видно, в нашем случае время релаксации по порядку величины соответствует ориентационной поляризации.

Таким образом, наши данные позволяют заключить, что доминирующей в поляризации $CoCr_2S_{3.5}Se_{0.5}$ является ориентационная поляризация и действительные и мнимые диэлектрические проницаемости с увеличением температуры, а также с убыванием частоты увеличиваются.

Список литературы

- Э.А. Эйвазов, В.И. Гусейнов, Я.Н. Шафиров, А.Ф. Сафаров, С.Ш. Курбанов. ФТТ 37, 7, 2210 (1995).
- [2] Г.А. Воробьев, Н.П. Похолков, Н.Д. Королев, В.И. Меркулов. Физика диэлектриков. Изд-во ТПУ, Томск (2003). 328 с.
- [3] Ю.М. Поплавко, Л.П. Переверзева, И.П. Раевский. Физика активных диэлектриков. Изд-во ЮФУ, Ростов н/Д (2009). 298 с.