03,08

Температурные свойства внутрицентровой люминесценции ионов Mn²⁺ в разбавленных магнитных полупроводниках и гетероструктурах на их основе

© В.Ф. Агекян¹, А.Ю. Серов¹, Н.Г. Философов¹, G. Karczewski²

¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ² Institute of Physics, Polish Academy of Science, Warsaw, Poland E-mail: vfag@rambler.ru

(Поступила в Редакцию 20 мая 2015 г.)

Интенсивность внутрицентровой люминесценции ионов марганца (ВЛ Mn^{2+}) в разбавленных магнитных полупроводниках группы II–VI слабо изменяется в интервале температур 5–60 К, однако дальнейший рост температуры приводит к быстрому тушению люминесценции. Существует мнение, что резкое изменение температурной зависимости ВЛ Mn^{2+} около 60 К связано с дисторсией анионного тетраэдра, в центре которого находится ион марганца. В настоящей работе исследованы температурные и кинетические свойства ВЛ Mn^{2+} при различных уровнях оптического возбуждения в объемных кристаллах РМП и структурах с квантовыми ямами на их основе. Установлено, что тушение ВЛ Mn^{2+} определяется кооперативным процессом (up-conversion), эффективность которого возрастает при усилении миграции и увеличении концентрации ионов Mn^{2+} , находящихся в возбужденном состоянии.

Работа выполнена при поддержке гранта СПбГУ № 11.37.646.2013.

1. Введение

Разбавленные магнитные полупроводники (РМП) на основе кристаллов II-VI с частичным замещением катионов атомами марганца обладают сильными магнитными свойствами и специфическим излучательным механизмом, связанным с оптическими переходами в 3d-оболочке двухвалентного иона марганца. Внутрицентровая люминесценция ионов Mn²⁺ (ВЛ Mn²⁺) в объемных РМП и наногетероструктурах на их основе исследовалась в многочисленных работах, где анализировался ее спектр, кинетические и температурные свойства, а также их зависимость от концентрации марганца и уровня оптического возбуждения [например, [1-6]]. Интерес к ВЛ Mn²⁺ продиктован тем, что она позволяет изучать миграцию внутрицентрового возбуждения в кристаллах, измерять температурную зависимость постоянной решетки и величины кристаллического поля [5,6], исследовать перенос энергии между зонными электронными состояниями и 3*d*-оболочкой ионов переходной группы, а также влияние на перенос внешних полей [7-9]. Возбуждение иона Mn^{2+} (переход ${}^{6}A_{1} - {}^{4}T_{1}$) уменьшает его магнитный момент с 5/2 д 3/2, при этом изменяются обменные взаимодействия и внутреннее поле парамагнетика. Таким образом, имеет место фотоиндуцированное изменение магнитных и магнитооптических свойств РМП.

Одной из отличительных особенностей ВЛ Mn^{2+} в наиболее изученном РМП $Cd_{1-x}Mn_x$ Те является ее быстрое ослабление при температурах выше 60 К. Существует мнение, что в области 60 К происходит дисторсия

тетраэдра, образованного ионами Te²⁻, в центре которого находится ион Mn²⁺. Результатом дисторсии является такое изменение конфигурационных координат, которое делает возможным переход иона Mn²⁺ из возбужденного состояния ⁴*T*₁ в основное состояние ⁶*A*₁ безызлучательным способом. Этот механизм впервые был предложен в работе [10]. Другой причиной температурного тушения ВЛ Mn²⁺ может быть усиление миграции внутрицентрового возбуждения, которая повышает вероятность его безызлучательной диссипации. Целью настоящей работы является исследование этого вопроса на основе измерения температурных и кинетических характеристик ВЛ Mn²⁺ в объемных кристаллах РМП и гетероструктурах с квантовыми ямами (КЯ) на их основе.

2. Экспериментальные детали

Объектами исследования являются гетероструктуры $Cd_{0.6}Mn_{0.4}Te/$ $Zn_{1-x}Mn_xTe/Zn_{0.65}Mg_{0.35}Te$, КЯ с Cd_{0.5}Mg_{0.5}Te и объемные кристаллы Cd_{0.2}Mn_{0.8}Te, $Zn_{0.93}Mn_{0.07}Se$. Гетероструктуры $Zn_{1-x}Mn_xTe/$ Zn_{0.65}Mg_{0.35}Te (образцы № 1-4) имеют следующее строение: на подложке GaAs (100) сформирован буферный слой, на котором выращены методом молекулярно-пучковой эпитаксии (МПЭ) 40 периодов КЯ Zn_{1-x}Mn_xTe/барьерный слой Zn_{0.65}Mg_{0.35}Te. Эти образцы различаются толщиной L_z КЯ Zn_{1-x}Mn_xTe и концентрацией марганца: № 1: $L_z = 26$ монослоев (ml), x = 0.03; No 2: $L_z = 7 \text{ ml}$, x = 0.03; No 3: $L_z = 26 \text{ ml}$, x = 0.20; № 4: $L_z = 7$ ml, x = 0.20. Экситонные спектры образцов № 1-4 исследованы в работе [11]. Гетерострук-

Рис. 1. Спектры люминесценции (*I*) и спектры возбуждения внутрицентровой люминесценции Mn^{2+} (*2*) в структурах с КЯ $Zn_{1-x}MnTe_x/Zn_{0.65}Mg_{0.35}Te$ (образцы № 1 и 4). Mn^{2+} — внутрицентровая люминесценция иона Mn^{2+} , ${}^{1}T_4$ и ${}^{2}T_4$ — переходы в возбужденные состояния иона Mn^{2+} , QWx и Вх — люминесценция экситонов КЯ и барьерного слоя, $e_1hh_1 e_2hh_2$ — переходы между уровнями размерного квантования в КЯ образца № 1. T = 5 К.

тура Cd_{0.6}Mn_{0.4}Te/Cd_{0.5}Mg_{0.5}Te (образец № 5) выращена методом МПЭ на буферном слое, сформированном на подложке GaAs $\langle 100 \rangle$, она содержит 100 периодов, толщина КЯ Cd_{0.6}Mn_{0.4}Te составляет 7 ml. Толщина барьерных слоев в образцах № 1–5 равна 46 ml.

Слой $Cd_{0.2}Mn_{0.8}$ Те (образец № 6) толщиной 1 μ т выращен методом МПЭ, объемный кристалл $Zn_{0.93}Mn_{0.07}$ Se (образец № 7) выращен методом Бриджмена.

Интегральная интенсивность полосы ВЛ Mn^{2+} измерялась в температурном интервале 5–160 K, возбуждение производилось лазером с энергией фотонов 2.33 eV, плотность мощности возбуждения W_0 составляла 0.2 W/cm² (слабое возбуждение) и 1.0 W/cm² (сильное возбуждение).

3. Результаты и их обсуждение

Спектры люминесценции и спектры возбуждения люминесценции образцов № 1 и 4 приведены на рис. 1. Исследование температурного поведения полосы ВЛ Mn^{2+} сильно зависит от уровня оптического возбуждения (рис. 2 и 3). При $W_0 = 0.2$ W/cm² интенсивность ВЛ Mn^{2+} слабо зависит от температуры вплоть 60 K, но при увеличении W_0 до 1.0 W/cm² интенсивность ВЛ Mn^{2+} заметно уменьшается, начиная уже с T = 5 K. Это можно объяснить значительным неоднородным уширением первого возбужденного состояния иона марганца ${}^{1}T_{4}$ в твердых растворах $II_{1-x}Mn_{x}VI$. В случае слабой оптической накачки внутрицентровое возбуждение переносится на ионы с относительно низким по энергии положением уровня ${}^{1}T_{4}$, где оно при низких температурах локализуется. Усиление накачки приводит к насыщению таких состояний, миграция внутрицентрового возбуждения становится значительной даже при низких температурах, и это приводит к тушению ВЛ Mn^{2+} . Отметим, что этот экспериментальный результат не укладывается в интерпретацию температурного тушения как следствия дисторсии анионных тетраэдров.

Тушение ВЛ Mn^{2+} при температурном усилении миграции внутрицентрового возбуждения может быть следствием переноса возбуждения на центры безызлучательной рекомбинации. Другой причиной является перенос возбуждения на другой, уже возбужденный ион марганца, после чего энергия 3d-оболочки двукратно возбужденного иона с большой вероятностью передается зонным состояниям. Даже в том случае, если возбуждение останется в 3d-оболочке марганца, вместо двух фотонов излучится один. Такого типа кооперативный процесс (up-conversion) впервые был предложен в работе [12]. Наши измерения показывают, что температурные зависимости интенсивности ВЛ Mn^{2+} и времени ее затухания в высококачественных планарных системах,

Рис. 2. Температурные зависимости интегральной интенсивности полосы внутрицентровой люминесценции Mn^{2+} в структурах с КЯ $Zn_{1-x}MnTe_x/Zn_{0.65}Mg_{0.35}Te$ (образцы N_{2} 1–4) при плотностях мощности возбуждения 0.2 (1) и 1.0 (2) W/cm². Энергия фотонов источника возбуждения равна 2.33 eV.

выращенных по методу МПЭ, и в объемных кристаллах, выращенных по методу Бриджмена, мало отличаются друг от друга. Более того, усиление возбуждения должно способствовать насыщению центров безызлучательной

Рис. 3. Температурные зависимости интегральной интенсивности полосы внутрицентровой люминесценции Mn^{2+} в эпитаксиальном слое $Cd_{0.2}Mn_{0.8}$ Те, выращенном методом МПЭ, при плотностях мощности возбуждения 0.2 (1) и 1.0 (2) W/cm².

рекомбинации и тем самым ослаблять температурное тушение ВЛ Mn^{2+} . Экспериментальные зависимости, приведенные на рис. 2 и 3, дают противоположный результат. Все это свидетельствует в пользу собственного механизма тушения, каким является кооперативный процесс.

Сравнение свойств ВЛ Mn^{2+} в образцах № 1–6 и в $Zn_{0.93}Mn_{0.07}Se$ (образец № 7) показывает, что ее температурная зависимость мало изменяется при замене атомов теллура атомами селена (рис. 2–4). Это еще один аргумент в пользу того, что быстрая деградация ВЛ Mn^{2+} при достижении определенной температуры не связана с дисторсией анионных тетраэдров. Наиболее сильно интенсивность ВЛ Mn^{2+} зависит от уровня возбуждения в слое $Cd_{0.2}Mn_{0.8}$ Te (образец № 6), поскольку эффективность кооперативного процесса растет с увеличеним концентрации марганца.

Если тушение связано с дисторсией анионных тетраэдров, кинетика ВЛ Mn^{2+} не должна существенно зависеть от температуры — в этом случае при температурах выше 60 К должно происходить лишь быстрое уменьшение числа излучающих центров. Однако данные для гетероструктуры $Cd_{0.6}Mn_{0.4}$ Te/Cd_{0.5}Mg_{0.5}Te (образец № 5), приведенные на рис. 5, свидетельствуют о резком уменьшении времени затухания ВЛ Mn^{2+} при

Рис. 4. Температурные зависимости интегральной интенсивности полосы внутрицентровой люминесценции Mn^{2+} в кристалле $Zn_{0.93}Mn_{0.07}$ Se, выращенном методом Бриджмена, при плотностях мощности возбуждения 0.2 (1) и 1.0 (2) W/cm².

Рис. 5. Кинетические кривые затухания внутрицентровой люминесценции Mn^{2+} в КЯ $Cd_{0.6}Mn_{0.4}$ Те/ $Cd_{0.5}Mg_{0.5}$ Те толщиной 26 ml при температурах 5 (1) и 80 K (2).

повышении температуры, что прямо указывает на связь тушения ВЛ ${\rm Mn}^{2+}$ с усилением миграции возбуждения.

Обращает на себя внимание значительное различие температурной зависимости интенсивностей ВЛ Mn^{2+} в образце № 2 и в образцах № 3 и 4 (рис. 2). Это различие определяется слабой миграцией внутрицентрового возбуждения в тонких КЯ со сравнительно низкой концентрацией марганца. ВЛ Mn^{2+} в образцах № 3 и 4 имеет различную чувствительность к изменению уровня оптической накачки. Возможно, это связано с более быстрым возрастанием доли возбужденных ионов Mn^{2+} в тонкой КЯ при увеличении W_0 , что способствует развитию кооперативного процесса.

Из рис. 1 следует, что интенсивность ВЛ Mn²⁺ в образце № 1 ослабляется, начиная с низких температур, и это ослабление практически не зависит от уровня

возбуждения. Дело в том, что в отличие от образцов № 2–4 энергия фотонов лазера, который использовался в экспериментах, соответствует энергии экситонного уровня образца № 11 (рис. 1). Коэффициент поглощения в экситонной области на порядки больше, чем в области внутрицентрового поглощения 3*d*-оболочки иона Mn²⁺. Учитывая высокую эффективность переноса энергии от зонных состояний в 3*d*-оболочку, можно считать, что для образца № 1 значение $W_0 = 0.2 \text{ W/cm}^2$ уже является высоким, так что дальнейшее увеличение W_0 мало влияет на температурную зависимость ВЛ Mn²⁺.

В работе [13] показано, что повышение уровня возбуждения ослабляет термическое тушение экситонной люминесценции структур с КЯ CdTe/ZnTe в области низких температур. Причиной этого является насыщение центров безызлучательной рекомбинации фотовозбужденными носителями. Сравнение этого результата с нашим исследованием подчеркивает специфику внутрицентрового возбуждения, для которого существует собственный механизм безызлучательной релаксации.

Таким образом, можно сделать вывод, что зависимость свойств люминесценции 3d-оболочки ионов переходной группы в РМП от температуры и уровня оптической накачки при условии миграции внутрицентрового возбуждения определяется кооперативным процессом (up-conversion).

Список литературы

- S. Biernacki, M. Kutrowski, G. Karczewski, T. Wojtowicz, J. Kossut. Semicond. Sci. Technol. 11, 48 (1996).
- [2] H. Shenk, M. Wolf, G. Mackh, U. Zehnder, W. Ossau, A. Waag, G. Landwehr, A. Shenk. J. Appl. Phys. 79, 8704 (1996).
- [3] J. Gregus, J. Watanabe, J. Nakahara J. Phys. Soc. Jpn 66, 1810 (1997).
- [4] L.D. Park, J. Watanabe, J. Nakahara J. Phys. Soc. Jpn 66, 3289 (1997).
- [5] В.Ф. Агекян, Н.Н. Васильев, А.Ю. Серов. ФТТ 41, 49 (1999).
- [6] В.Ф. Агекян, Н.Н. Васильев, А.Ю. Серов, Н.Г. Философов, G. Karczewski. ФТТ 46, 1719 (2004).
- [7] H. Falk, W. Heimbrodt, P.J. Klar, J. Hubner, M. Oestreich, W.W. Ruhle. Phys. Status Solidi B 229, 781 (2002).
- [8] K. Shibata, E. Nakayama, I. Souma, A. Murayama, Y. Oka. Phys. Status Solidi B 229, 473 (2002).
- [9] S. Lee, M. Dobrovolska, J.K. Furdyna. Phys. Rev. B 72, 075 320 (2005).
- [10] J. Watanabe, H. Arai, T. Nouchi, J. Nakahara. J. Phys. Soc. Jpn 61, 2227 (1992).
- [11] V.F. Agekyan, I. Akai, N.G. Filosofov, T. Karasawa, G. Karzcewski, A.Yu Serov, N.N. Vasil'ev. Phys. Status Solidi 244, 3265 (2007).
- [12] В.В. Овсянкин, П.П. Феофилов. Опт. и спектр. 37, 262 (1973).
- [13] А.Н. Резницкий, А.А. Клочихин, С.А. Пермогоров. ФТТ 54, 115 (2012).