от О локализации позитронов в вакансиях металла

© А.В. Бабич, В.В. Погосов, В.И. Рева

Запорожский национальный технический университет, Запорожье, Украина E-mail: vpogosov@zntu.edu.ua

(Поступила в Редакцию 23 апреля 2015 г. В окончательной редакции 18 мая 2015 г.)

Выполнен расчет вероятности локализации позитронов в моновакансиях Al, Cu и Zn как функции температуры. Вакансия моделировалась полостью с радиусом ячейки Вигнера—Зейтца в стабильном желе. С помощью "золотого" правила переходов в предположении, что энергия позитрона тратится на возбуждение электронно-дырочных пар, получена формула скорости захвата вакансией позитрона как функции его энергии. Для термализованных позитронов вычислена температурная зависимость скорости локализации. Вблизи тройной точки ее значение оказалось по порядку величины близким к скорости аннигиляции. На основе результатов наших предыдущих публикаций по оценке влияния вакансий на работу выхода свободных позитронов выдвинуто предположение о наличии вблизи поверхности металла заряженных позитронами вакансий. В приближении 2D-сверхрешетки проведены оценки величины приповерхностного вакансионного барьера. Сделано предположение, что причиной сдвига энергетического распределения при обратной эмиссии позитронов, обнаруженного в экспериментах, является отражение низкоэнергетических позитронов вакансионным барьером обратно в объем, где они и аннигилируют.

1. Введение

Электрон-позитронная аннигиляция дает уникальную информацию об объемной [1,2], поверхностной [3] электронной структуре, точечных дефектах чистых материалов и их окислов [4,5], а также керамик [6] и наноструктур [7]. Большой интерес проявляется к вопросам локализации позитронов на точечных дефектах, кластерах дефектов и электромагнитных ловушках [1,8].

Позитроны инжектируются в образец и, рассеиваясь на фононах, быстро термализуются. Измеряемыми характеристиками являются время жизни и угловое распределение фотонов аннигиляции. Для некоторых металлов с отрицательной работой выхода позитрона (Al, Cu, Fe, Mo, Ni, Pt, Ti, Cr, V) наблюдается интенсивная обратная эмиссия не успевших аннигилировать позитронов, а дополнительной измеряемой характеристикой является минимальная кинетическая энергия позитронов обратной эмиссии. Хвост высокоэнергетического распределения формирует всего несколько процентов позитронов обратной эмиссии. Перечисленные характеристики являются источником информации, в частности, о дефектном состоянии образца.

В позитронной дефектоскопии анализируется временное распределение аннигиляционных фотонов N(t). Спектр состоит из набора компонент с соответствующими интенсивностями I_n и характерными временами τ_n (n = 1, 2, 3, ... — число каналов аннигиляции). Анализрегистрации фотонов основан на уравнении

$$\frac{\dot{N}(t)}{N_0} = -\sum_n \frac{I_n}{\tau_n} e^{-t/\tau_n}.$$
(1)

При n = 2 подразумевается, что одна часть позитронов аннигилирует в объеме образца вне вакансий, а другая локализуется в вакансиях, а затем аннигилирует в них. Такому двухкомпонентному приближению соответствуют следующие управляющие уравнения:

Ň

$$\dot{N}_b = (-\lambda_b - \upsilon_v c_v)N_b + \upsilon^i,$$
 (2)

$$\dot{N}_v = -\lambda_v N_v + v_v c_v N_b, \tag{3}$$

где N_b и N_v — число свободных позитронов в объеме Ω металла и число позитронов, локализованных в вакансиях в момент времени t соответственно; v^i — количество инжектируемых в металл позитронов в единицу времени; $c_v = n_v/n_a$ — отношение концентрации вакансий к атомной концентрации; λ_b и λ_v — скорости аннигиляции ($\lambda_{b,v} = 1/\tau_{b,v}$, τ — время жизни); v_v — скорость локализации на единичную концентрацию вакансий.

В результате решения системы уравнений (2) и (3) данному приближению в выражении (1) соответствуют соотношения

$$N_0 = N_b(t=0), \quad \frac{1}{\tau_1} = \frac{1}{\tau_b} + \upsilon_v c_v, \quad \tau_2 = \tau_v, \quad (4)$$

$$I_2 = 1 - I_1 = \frac{\upsilon_v c_v}{\upsilon_v c_v + \lambda_b - \lambda_v}.$$
 (5)

Экспериментальные значения I_2 , I_1 , τ_b , τ_v — определяются исходя из зависимости (1), а затем с помощью выражений (4) и (5) находится произведение $v_v c_v$. Одну из величин (v_v или c_v) приходится рассчитывать теоретически. Принято считать, что в эксперименте можно фиксировать величины c_v в диапазоне значений $10^{-7}-10^{-4}$.

Еще в работе [9] было замечено, что на гранях Al(111), (100) и Cu(100) кристаллов начиная с комнатных температур и выше пик энергетического распределения позитронов обратной эмиссии сдвинут вверх по шкале энергии относительно основного состояния в металле на величину $\Delta U \approx 1 \, \mathrm{eV}$ (аналогичная ситуация с характерными значениями ΔU для разных металлов наблюдалась в работе [10]). Похожий результат имел место после обработки ионами аргона поверхности (что напрямую указывает на роль дефектов), а также после окисления поверхности Al. Однако, несмотря на, казалось бы, очевидную роль вакансий, величина их равновесной концентрации оказалась недостаточной для объяснения сдвига распределения позитронов по энергии при обратной эмиссии [11].

В первоначальных попытках объяснения явления этот сдвиг распределения по энергиям связывался с быстрым захватом нетермализованных позитронов виртуальными резонансами, которые реализуются позитрон-вакансионным потенциалом (см., например, работы [12,13] и ссылки в них). В последующих работах эта версия была подвергнута критическому анализу и отмечен незначительный вклад такого механизма в кинетику позитронов [14]. До сих пор экспериментально наблюдаемый сдвиг в распределении позитронов обратной эмиссии так и не получил адекватной интерпретации, что делает неоднозначными измеряемые значения работы выхода позитрона.

Современные пакеты программ для *ab initio* вычислений (см., например, [5,15]) позволяют рассчитывать лишь энергии локализованных позитронов, но не энергообмен высокоэнергетических позитронов с неоднородным электронным газом металла, поэтому рассмотрение данной проблемы в рамках модели желе представляется актуальным.

В наших предыдущих работах [16–18] в результате самосогласованных вычислений в модели стабильного желе впервые найден сдвиг энергии основного состояния электронов и позитронов в металлах в зависимости от концентраций вакансий. Распределение вакансий моделировалось однородной 3D-сверхрешеткой. Этот подход может быть использован для интерпретации экспериментальных особенностей энергетического распределения позитронов при их обратной эмиссии.

Целью настоящей работы является учет влияния особенностей рассеяния позитронов в области вакансии на вероятность последующей локализации позитрона. Эта задача решена с использованием рассчитанных ранее волновых функций и самосогласованных профилей вакансионных потенциалов для электронов и позитронов в моновакансиях Al, Cu и Zn в зависимости от температуры. Полагая распределение вакансий неоднородным, т.е. имеющим повышенную концентрацию вблизи поверхности металла, мы моделируем его 2D-сверхрешеткой. Эта решетка заряженных локализованными позитронами вакансий создает "барьер", который отражает низкоэнергетические свободные позитроны обратно в объем, где они и аннигилируют. По известному из экспериментов значению ΔU можно, решая обратную задачу, оценить приповерхностную неравновесную концентрацию ловушек.

Рис. 1. Схема рассеяния электрона. $\theta = \hat{\mathbf{k}}\hat{\mathbf{k}}_z, \varphi' = \hat{\mathbf{q}}\hat{\mathbf{k}}_x, \varphi$ — угол между проекцией вектора **k** на плоскость $(k_x k_y)$ и осью k_x .

2. Модель локализации

2.1. Основные соотношения. В соответствии с "золотым" правилом Ферми–Дирака полную вероятность перехода позитрона в локализованное состояние в единицу времени определяют в виде [13]

$$\upsilon = \frac{2\pi}{\hbar} \sum_{i,f} P_i P_f |M_{i,f}|^2 \delta(E_i - E_f), \tag{6}$$

где P_i и P_f — вероятности начального и конечного состояния системы, $M_{i,f}$ — матричный элемент перехода, E_i и E_f — полные энергии системы. Условие сохранения энергии фиксируется дельта-функцией;

$$E_i - E_f = \frac{\hbar^2 g^2}{2m_p} + E^b + \frac{\hbar^2}{2m_e} \left(k^2 - k'^2\right),\tag{7}$$

где **g** — волновой вектор позитрона до возбуждения, **k** и **k**' — волновой вектор электрона до и после возбуждения, m_p и m_e — массы позитрона и электрона, E^b — энергия связи позитрона в вакансии.

Далее используем закон сохранения энергии в виде

$$k'^2 - k^2 = \frac{2m_e}{\hbar^2} \Delta \varepsilon_p, \quad \Delta \varepsilon_p \equiv \frac{\hbar^2 g^2}{2m_p} + E^b,$$
 (8)

а также обозначение

И

$$\mathbf{k} + \mathbf{q} = \mathbf{k}'. \tag{9}$$

Выберем систему координат (рис. 1) таким образом, чтобы вектор **q** лежал в горизонтальной плоскости $(k_x k_y)$. Тогда

$$q_{z} = 0, \quad k'_{z} = -k_{z},$$

$$k'_{x} = k_{x} + q_{x}, \quad k'_{y} = k_{y} + q_{y}$$

$$k'^{2} - k^{2} = 2(q_{x}k_{x} + q_{y}k_{y}) + q^{2}.$$
(10)

Сравнивая (8) и (10), получим уравнение связи

$$2kq\sin\theta\cos(\varphi-\varphi')+q^2=\frac{2m_e}{\hbar^2}\Delta\varepsilon_p.$$
 (11)

В дальнейшем выражение (11) подставляется в (7).

Теперь энергетическая зависимость вероятности захвата позитрона имеет вид

$$\upsilon(\mathbf{g}) = \frac{2\pi}{\hbar} \sum_{\mathbf{k}} \sum_{\mathbf{q}} 2P_{\mathbf{k}} P_{\mathbf{k}+\mathbf{q}} |M_{\mathbf{g},\mathbf{q}}|^2 \delta(E_i - E_f), \quad (12)$$

где множитель 2 отражает заселенность состояния k. Матричный элемент записывается как

$$M_{\mathbf{g},\mathbf{q}} = \int d\mathbf{r} \int d\mathbf{r}' \Psi_i^*(\mathbf{r},\mathbf{r}') V(\mathbf{r}-\mathbf{r}') \Psi_f(\mathbf{r},\mathbf{r}'), \quad (13)$$

где $\Psi_i(\mathbf{r}, \mathbf{r}') = \psi_i^p(\mathbf{r})\psi_i^e(\mathbf{r}'), \Psi_f(\mathbf{r}, \mathbf{r}') = \psi_f^p(\mathbf{r})\psi_f^e(\mathbf{r}'); \psi_i^p, \psi_f^p$ и ψ_i^e, ψ_f^e — волновые функции до и после возбуждения позитрона (в точке \mathbf{r}) и электрона (в точке \mathbf{r}') соответственно; $V(\mathbf{r} - \mathbf{r}')$ — электрон-позитронный кулоновский потенциал. Использование первого порядка теории возмущений в формулах (6)–(13) обязывает проводить вычисления для невозмущенной позитроном вакансии.

В задаче со сферической симметрией волновые функции позитрона имеют вид

$$\psi_i^p(\mathbf{r}) = \frac{4\pi}{\sqrt{\Omega_{WS}}}$$

$$\times \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \mathbf{i}^l \exp[\mathbf{i}\delta_l^p(g)] [Y_l^m(\hat{\mathbf{g}})]^* Y_l^m(\hat{\mathbf{r}}) u_{g,l}^p(r), \quad (14)$$

$$\psi_{f}^{p}(\mathbf{r}) = \sum_{l',m'} Y_{l'}^{m'}(\hat{\mathbf{r}}) R_{l'}^{p}(r), \qquad (15)$$

где Ω_{WS} — объем ячейки Вигнера-Зейтца, $i = \sqrt{-1}$, Y_l^m — сферические гармоники; фазы $\delta_l^p(g)$, радиальные функции рассеянного $u_{q,l}^p$ и локализованного $R_{l'}^p$ позитрона рассчитываются для самосогласованного профиля вакансии.

На рис. 2 приведены энергетические диаграммы электронов и позитрона в окрестности единичной вакансии Al, построенные по результатам самосогласованных вычислений работ [16,17] в модели стабильного желе металла. Вакансия для электронов представляет собой потенциальный бугор, а для позитрона — яму, в которой реализуется только одно связанное *s*-состояние. В соответствии с условием применимости выражения (6) для наших вычислений следует использовать энергетический спектр недеформированной локализацией потенциальной ямы. Как следует из рис. 2, форма ямы для позитронов и бугра для электронов далека от прямоугольной, а верхушка бугра лежит выше фермиевского уровня электронов почти на 1 eV.

Рис. 2. Объединенная энергетическая диаграмма для свободных позитронов и электронов вблизи вакансии Al. Показаны профили потенциальных энергий $v_{\text{eff}}^{e,p}(r)$ электронов и позитронов для невозмущенных (сплошные) и возмущенных (штриховые линии) вакансий. ε_{F} — энергия Ферми, отсчитываемая от дна зоны проводимости электронов, $W_{\infty}^{e,p}$ — работы выхода электронов и позитронов из металла в пренебрежении наличием вакансий. Указан отсчет основного (l' = 0) и первого виртуального (l' = 1) уровней энергий позитрона в невозмущенной вакансии. Справа условно показано расположение пика энергетического распределения позитронов обратной эмиссии.

При последовательном описании волновые функции электрона в соответствии с энергетической диаграммой для электронов на рис. 2 также должны записываться в виде, аналогичном (14). Вследствие этого необходимо выполнение 14-кратного численного интегрирования и суммирования в (12).

В качестве вынужденного упрощения, как и в работах [12,13], будем пренебрегать рассеянием электронов на вакансии, т.е. наличием потенциального бугра для электронов на рис. 2. Это упрощение снижает точность модели, во-первых, в наиболее интересном диапазоне энергий, а во-вторых, вблизи вакансии, где одновременно должны находиться позитрон и электрон, обмениваясь энергией.

В соответствии с этим допущением волновые функции имеют вид плоских волн

$$\psi_i^e(\mathbf{r}') = \frac{1}{\sqrt{\Omega_{\rm WS}}} e^{i\mathbf{k}\cdot\mathbf{r}'},\tag{16}$$

$$\psi_f^e(\mathbf{r}') = \frac{1}{\sqrt{\Omega_{\rm WS}}} e^{\mathbf{i}(\mathbf{k}+\mathbf{q})\cdot\mathbf{r}'}.$$
 (17)

Подставляя выражения (14)-(17) в (13), интегрируя по **r**' и используя разложение

$$e^{\mathbf{iq}\cdot\mathbf{r}} = 4\pi \sum_{l'',m''} \mathbf{i}^{l''} [Y_{l''}^{m''}(\hat{\mathbf{q}})]^* Y_{l''}^{m''}(\hat{\mathbf{r}}) j_{l''}(qr), \qquad (18)$$

получим

$$M_{\mathbf{g},\mathbf{q}} = \frac{(4\pi)^2}{\Omega_{\rm WS}^{3/2}} \sum_{l,m} i^l e^{i\delta_l^p} [Y_l^m(\hat{\mathbf{g}})]^* \sum_{l'',m''} i^{l''} e^{i\delta_{l''}^e} [Y_{l''}^{m''}(\hat{\mathbf{g}})]^* \\ \times \int d\sigma_{\mathbf{r}} Y_l^m(\hat{\mathbf{r}}) \sum_{m'} Y_{l'}^{m'}(\hat{\mathbf{r}}) Y_{l''}^{m''}(\hat{\mathbf{r}}) I_{l,l',l''}, \qquad (19)$$

$$I_{l,l',l''}(q) = \int_{0}^{\infty} dr r^2 V_q u_{g,l}^p(r) \mathcal{R}_{l'}^p(r) j_{l''}(qr), \qquad (20)$$

где V_q — Фурье-образ кулоновского потенциала (получен как результат выбора упрощенных функций (16) и (17)), $j_{l''}$ — сферическая функция Бесселя. Из структуры подынтегрального выражения (20) видно, что использование реалистических волновых функций электронов (а не плоских электронных волн), приведет к меньшему значению $I_{l,l',l''}(q)$.

В дальнейшем в формуле (20) мы уточняем V_q, учитывая экранировку, в виде

$$V_q = -\frac{4\pi e^2}{q^2} \frac{1}{\epsilon(q,r)},\tag{21}$$

где $\epsilon(q, r)$ — диэлектрическая функция взаимодействующего неоднородного электронного газа (см. Приложение).

В формуле (19) достаточно использовать значение l' = 0 (в вакансии реализуется только одно связанное состояние). Тогда $Y_{l'}^{m'}(\hat{\mathbf{r}}) = 1/(2\sqrt{\pi})$. С учетом условия ортонормировки сферических гармоник $\int d\sigma_{\hat{\mathbf{r}}}Y_{l''}^{m}(\hat{\mathbf{r}})Y_{l''}^{m''}(\hat{\mathbf{r}}) = \delta_{l,l''}\delta_{m,m''}$ получим

$$|M_{\mathbf{g},\mathbf{q}}|^{2} = \frac{(4\pi)^{3}}{\Omega_{\rm WS}^{3}} \sum_{l,m} [Y_{l}^{m}(\hat{\mathbf{g}})]^{*} Y_{l}^{m}(\hat{\mathbf{g}}) [Y_{l}^{m}(\hat{\mathbf{q}})]^{*} Y_{l}^{m}(\hat{\mathbf{q}}) I_{l,l',l''}^{2}(q).$$

Далее проинтегрируем $|M_{\mathbf{g},\mathbf{q}}|^2$ по $d\sigma_{\mathbf{q}}$

$$\int d\sigma_{\mathbf{q}} |M_{\mathbf{g},\mathbf{q}}|^2 = \frac{(4\pi)^2}{\Omega_{\mathrm{WS}}^3} \sum_{l} (2l+1) I_{l,0,l}^2(q).$$
(22)

Перейдем в (12) от суммирования к интегрированию по k и q:

$$\upsilon_{l'=0}(\mathbf{g}) = \frac{1}{\pi^3 \hbar \Omega_{\text{WS}}} \int dq q^2 \sum_l (2l+1) I_{l,0,l}^2(q)$$
$$\times \int d^3 k P_{\mathbf{k}} P_{\mathbf{k}+\mathbf{q}} \delta\left(\frac{\hbar^2 k q}{m_e} \sin\theta \cos(\varphi - \varphi') + \frac{\hbar^2 q^2}{2m_e} - \Delta \varepsilon_p\right). \tag{23}$$

Рассмотрим в (23) интеграл по d^3k . Используя свойство дельта-функции

$$\delta(F(\xi)) = \sum_{n} \frac{\delta(\xi - \xi_n)}{|dF/d\xi|_{\xi_n}}, \quad F(\xi_n) = 0,$$

находим производную $(-\hbar^2 kq/m_e)\sin\theta\sin(\varphi-\varphi')$ и корни аргумента δ -функции относительно φ

$$\varphi_{1,2} = \varphi' \pm \arccos \frac{2m_e \Delta \varepsilon_p / \hbar^2 - q^2}{2kq \sin \theta}.$$
 (24)

Введем обозначения $x = q/k_{\rm F}$, $y = m_e \Delta \varepsilon_p / (\hbar^2 k_{\rm F}^2)$, $k_{\rm F} = (3\pi \overline{n}_e)^{1/3}$, \overline{n}_e — концентрация однородного электронного газа в объеме металла. Тогда интегрирование δ -функции по φ дает

$$\frac{2m_e}{\hbar^2 k_{\rm F} x k \sqrt{\sin^2 \theta - [(y/x - x/2)k_{\rm F}/k]^2}}.$$
 (25)

Из (24) и условия

$$1 \ge \sin \theta \ge |y/x - x/2|k_{\rm F}/k$$

находим область определения угла θ в интервале $[0,\pi]$ и переменной k

$$\theta_1 = \arcsin[(y/x - x/2)k_F/k], \quad \theta_2 = \pi - \theta_1, \qquad (26)$$

$$k \ge k_{\rm F} |y/x - x/2|.$$
 (27)

Интегрирование выражения (25) по углу θ с учетом (26) дает $2\pi m_e/(\hbar^2 kq)$, что позволяет перейти к окончательному интегрированию (23) по k.

При нулевой температуре (T = 0)

$$P_k = \Theta(k_{\rm F} - k), \quad k \le k_{\rm F}, \tag{28}$$

$$P_{k'} = \Theta(|\mathbf{k}'| - k_{\rm F}), \quad k \ge k_{\rm F}\sqrt{1 - 2y}, \tag{29}$$

где Θ — единичная ступенчатая функция. Пределы интегрирования по k выбираются из условий (27)-(29). Если $0 < y < x - x^2/2$, то

$$\int_{k_{\rm F}\sqrt{1-2y}}^{k_{\rm F}} dk \, k = k_{\rm F}^2 y.$$
(30)

Если $|x - x^2/2| \le y \le x + x^2/2$, то

$$\int_{k_{\rm F}|y/x-x/2|}^{k_{\rm F}} dk \, k = \frac{k_{\rm F}^2}{2} \left[1 - (y/x - x/2)^2\right].$$
(31)

Для *T* > 0

$$P_k = \frac{1}{\exp[\alpha(k^2 - k_{\rm F}^2)] + 1},\tag{32}$$

$$P_{k'} = 1 - \frac{1}{\exp[\Delta \varepsilon_p + \alpha (k^2 - k_F^2)] + 1},$$
 (33)

где $\alpha = \hbar^2 / (2m_e k_B T)$. Нижний предел интегрирования по *k* определяется условием (27).

Окончательно

$$\upsilon_{0}(g) = \frac{2m_{e}^{2}}{\pi^{2}\hbar^{5}\Omega_{\rm WS}} \int_{0}^{\infty} dq \, q \sum_{0}^{\infty} (2l+1)I_{l,0,l}^{2}(q) \\
\times \begin{cases} \frac{\hbar^{2}k_{\rm F}^{2}}{2m_{e}} \begin{cases} 2y, & 0 \le y \le (x-x^{2}/2), \\ [1-(y/x-x/2)^{2}], & |x-x^{2}/2| \le y \le (x+x^{2}/2), \\ 0, & y \text{ otherwise}, \end{cases} \\
k_{\rm B}T[1+(A-1)^{-1}]\ln|1+(1-A^{-1})/(B+A^{-1})|, & T > 0, \end{cases}$$
(34)

где $A = \exp[\Delta \varepsilon_p / (k_B T)]$, $B = \exp[\alpha (k_0^2 - k_F^2)]$, $k_0 = k_F |y/x - x/2|$. В конкретных вычислениях мы ограничились значением l = 10 в выражении (34).

Если перед захватом вакансиями позитроны термализованы, то для интерпретации экспериментальных данных необходимо оперировать усредненной величиной $(\varepsilon_p = \hbar^2 g^2/2m_p)$

$$\upsilon_0(T) = \frac{2}{\pi^{1/2} (k_{\rm B}T)^{3/2}} \int_0^\infty d\varepsilon_p \sqrt{\varepsilon_p} \upsilon_0(\varepsilon_p) e^{-\varepsilon_p/k_{\rm B}T}.$$
 (35)

Уже для комнатных температур время термализации составляет всего несколько пикосекунд [14].

Формула скорости захвата позитрона (34) получена для процессов, в которых энергия позитрона теряется на возбуждение электрон-дырочных пар. Энергообмен может проходить также и по каналу возбуждения акустических фононов в том случае, если энергия и импульс передачи меньше дебаевских. Для Al энергия связи E^b позитрона в вакансии больше, чем температура Дебая $T_{\rm D} = 394 \, {\rm K} \approx 30 \, {\rm meV}.$

2.2. Результаты вычислений. Эффективный потенциал для позитрона $v_{\text{eff}}^{p}(r)$ состоит из компонент, одна из которых (E_0) описывает неэлектростатическое позитрон-ионное взаимодействие в каждой из ячеек Вигнера–Зейтца радиуса R_{WS} ($R_{\text{WS}} = (2.66, 2.99, 3.33)a_0$ для Cu, Al, Zn соответственно). Энергетическая диаграмма для позитронов на рис. 2 построена со значением $E_0 = 4.77 \text{ eV}$, которое использовалось нами ранее [17]. Величина энергии связи позитрона в вакансии $E^b = -\varepsilon_0$ в данном приближении определяется положением энергии основного состояния $\varepsilon_0 < 0$ позитрона в невозмущенной вакансии, ее значение приведено в таблице.

Из методических соображений при расчете скорости захвата позитрона в Al вычисления проведены также и со значением $E_0 = 10 \text{ eV}$. При таком большом значении E_0 яма вполне может быть заменена прямоугольной, что соответствует модели работы [12]. Несмотря на то что такое увеличение E_0 приведет к "катастрофическому" расхождению с экспериментальным значением работы выхода квазисвободных позитронов W_{∞}^p , представляется полезным сравнение с самосогласованными результатами работы [13], в которой авторы использовали значение $E_0 = 7.2 \text{ eV}$.

На рис. 3, а и в приведены рассчитанные по формуле (34) скорости захвата вакансией Аl свободного позитрона в зависимости от его энергии при трех значениях температуры и двух значениях Е₀. Тепловое расширение металла нами не учитывалось (среднее расстояние между атомами А1 при изменении температуры от 300 К до температуры плавления Т_т меняется примерно на 1%). Кривым на рис. 3, а соответствуют значения $\varepsilon_0 = -4.16 \,\mathrm{eV}$ и $\varepsilon_1 = +3.97 \,\mathrm{eV}$, а рис. 3, *b* — значения из таблицы. Как следует из рисунков, основной вклад вносит *p*-компонента (l = 1 в формуле (34)), которая формирует первый максимум зависимости $v_0(\varepsilon_p)$ вблизи резонансной энергии. С уменьшением Е₀ этот максимум сдвигается в область больших энергий и расплывается. На рис. 3, a и b для T = 800 К приведены вклады s-, p-, d-, f-компонент. Компоненты и их сумма на рис. 3, a и *b* даже при T = 0 содержат флуктуации. Происхождение флуктуации связано со сложной зависимостью от энергии подынтегрального выражения в (20). В целом по форме кривые на рис. 3, а согласуются с аналогичными кривыми из работы [13] при T = 0, но наблюдаются различия в числовых значениях $\upsilon_0(\varepsilon_p)$, обусловленные различиями моделей.

На рис. 3, с приведена радиальная *p*-компонента волновой функции для различных энергий рассеянного позитрона. С приближением к резонансу волновая функция все более локализуется в окрестности вакансии.

На рис. 4 представлены рассчитанные по (35) температурные зависимости скорости захвата $v_0(T)$ термализованных позитронов вакансиями Al, Cu и Zn. Из них

Самосогласованные значения энергий $\varepsilon_{l'}$ основного (l' = 0) и первого виртуального (l' = 1) состояний позитрона в невозмущенной вакансии некоторых металлов (значения приведены в соответствии с отсчетом энергии на рис. 2)

Параметр	Al	Cu	Zn
E_0, eV ε_0, eV ε_1, eV	$4.77 \\ -0.74 \\ 1.86$	$4.90 \\ -0.30 \\ 1.22$	4.63 -0.56 1.71

самая сильная зависимость наблюдается для Cu (величина v_0 на порядок превышает значения для Al). Для сравнения приведен также расчет для $E_0 = 10 \text{ eV}$ (Al). На примере Al видно, что, несмотря на значительные

Рис. 3. Скорость захвата вакансией Al свободного позитрона в зависимости от его энергии при трех значениях температуры металла. Для T = 800 К приведены вклады *s*-, *p*-, *d*-, *f*-компонент (*a*, *b*). *с* — координатная зависимость радиальной волновой функции *p*-волны $u_{g,1}^p(r)$ для различных энергий ε_p рассеянного позитрона.

Рис. 4. Температурная зависимость скорости локализации термализованных позитронов, рассчитанная на основе значений E_0 из таблицы. $T_m = 933$, 1358, 693 К для Al, Cu, Zn соответственно. Штриховая линия — расчет для Al ($E_0 = 10 \text{ eV}$).

различия для кривых на рис. 3, a и b, при усреднении они фактически стираются (рис. 4). Основной вклад по-прежнему вносит p-компонента.

С помощью рассчитанных величин $v_0(T)$ можно оценить температурную зависимость интенсивности I_2 в (5). Для этого используем термодинамическое определение относительной равновесной концентрации вакансий в виде

$$c_v(T) = 10^{-2} e^{S_v/k_{\rm B}} e^{-\varepsilon_v/k_{\rm B}T},$$
 (36)

где $S_v = 7k_B$ — величина энтропии, $\varepsilon_v = 0.66 \text{ eV}$ — энтальпия (или энергия) образования вакансии в Al [11], $c_v(T_m) \approx 3 \cdot 10^{-3}$. Формула (36) и значения параметров дают примерно в 7 раз бо́льшие величины концентрации, чем те, которые использовались нами в [18]. Для Al $I_2(T) = 9 \cdot 10^{-5}$ и 0.11 при $T = 0.6T_m$ и T_m соответственно.

Наличие "пустых" вакансий приводит к сдвигу дна зоны проводимости свободных позитронов [17]. Возникает вопрос: при каких условиях заряженные позитронами вакансии могут повлиять на энергию основного состояния свободных позитронов?

Оценка роли вакансий в энергетике позитрона

При инжекции в образец позитронов с энергией ~ 0.5 KeV ими "заметается" объем $\Omega \sim r_0^2 d_p$, где $r_0 \sim 1 \text{ mm}$ — радиус пучка, $d_p \sim 5 \text{ nm}$ — глубина проникновения позитронов. Таким образом, Ω и является тем эффективным объемом, в котором разыгрывается сценарий аннигиляции.

Источник дает $N_i = 10^8$ позитронов в импульсе длительностью $\Delta t_i = 300$ ns. Тогда число позитронов, "готовых" к аннигиляции, оценивается как $N_p = N_i / (\Delta t_i / \tau_b) \approx 10^5$ (для Al $\tau_b = 163$ ps). Подставляя значения, убеждаемся в примерном равенстве числа равновесных вакансий и позитронов при температуре плавления T_m , поэтому

$$c_v(T)n_a\Omega \le N_p. \tag{37}$$

Таким образом, можно предположить, что при любых температурах происходит насыщение вакансий позитронами и оставшиеся свободные позитроны при обратной эмиссии будут рассеиваться на заряженных вакансиях.

Термодинамика не дает указаний на механизм образования вакансий. Одним из источников вакансий принято считать свободную поверхность. Если представить 3D-образец в виде шара радиуса R, то мощность источника объемных вакансий будет определяться, с одной стороны, отношением поверхности к объему и будет стремиться к нулю (как $R \to \infty$), а с другой бесконечным временем установления равновесия. Образец в результате изготовления всегда имеет неравновесную (повышенную) концентрацию дефектов. В результате релаксации эта концентрация стремится к своему теоретическому пределу (36) в течение бесконечного промежутка времени.

Рассмотрим механизм образования вакансии как результат сублимации атомов кристалла в вакуум (рис. 5). Скорость сублимации атомов с единицы поверхности может быть вычислена как [19]

$$\upsilon_s(T) = \omega_a n_s \upsilon_s \exp[1 - (\overline{h} + k_{\rm B} T_m)/k_{\rm B} T], \qquad (38)$$

где ω_a — статистический вес частиц пара ($\omega_a = 3$), n_s — поверхностная концентрация атомов ($n_s = n_a^{2/3}$), v_s — колебательная частота атомов (рекомендуется в [19] как соответствующая димеру; $v_s = 8.58 \cdot 10^{12} \, \mathrm{s}^{-1}$ для Al₂ [20]), \overline{h} — энергия сублимации (табличная величина для Al $\overline{h} = 3.32 \, \mathrm{eV}$).По аналогии с работой [21], в которой использован удачный геометрический прием, устанавливающий простую связь между удельными поверхности σ_0 и гофрированной поверхности с определенной кристаллографической упаковкой σ_{face} , проведем модернизацию формулы (38).

При удалении (испарении) атома из объема необходимо создать новую поверхность площадью $A_0 = 4\pi R_{\rm WS}^2$, а при испарении с поверхности — площадь, меньшую на величину площади A_s шарового сегмента высотой $R_{\rm WS} - d/2$, d — расстояние между кристаллографическими плоскостями. Введем коэффициент $\beta_{\rm face} = 1 - A_s/A_0$. Подставляя числовые значения, получим $\beta_{\rm face} = 0.756$ и 0.672 для ГЦК-плоскостей (111) и (100) соответственно. Теперь в формуле (38) сделаем замену $\overline{h} \rightarrow h_{\rm face} = \beta_{\rm face} \overline{h}$. Процесс возгонки атомов в вакуум с площади поверхности, равной площади пучка позитронов r_0^2 , за время $\tau_v = 248$ рѕ генерирует вблизи тройной точки $r_0^2 \tau_v \upsilon_s (T_m) \approx 3 \cdot 10^3$ и $9 \cdot 10^4$ неравновесных поверхностных вакансий для ГЦК-плоскостей (111) и (100) соответственно. Эти значения близки к числу

вакансии. Вертикальная штриховая линия — положение границы металл-вакуум в модели желе, *d* — расстояние вдоль оси *z* между кристаллографическими плоскостями, параллельными поверхности (*xy*). Обозначенный штриховой линией круг—лунка (вакансия), образовавшаяся после испарения атома.

равновесных вакансий и позитронов N_p в объеме Ω . Углы, ребра террас на поверхности будут источником повышенной возгонки, а следовательно, и источником неравновесных поверхностных вакансий [22]. Приведенные рассуждения указывают на канал повышения концентрации вакансий вблизи поверхности с ростом температуры.

Как следует из эксперимента [9], сдвиг распределения позитронов при обратной эмиссии $\Delta U \approx 1 \text{ eV}$ для Al (рис. 2) и не зависит от температуры. С другой стороны, равновесная концентрация вакансий зависит экспоненциально от температуры, и поэтому использование выражения (36) в качестве рабочего не представляется возможным.

Предположим, что в образце имеется неравновесное распределение вакансий с ростом их концентрации на поверхности. Для оценки представим этот профиль в виде ступеньки

$$n_{v}(z) = \begin{cases} n_{v}^{\text{3D}}, & z \leq -L, \\ n_{v}^{\text{2D}}/L, & -L \leq z \leq 0 \end{cases}$$
(39)

в координатах рис. 5. В области $z \le -L$ вакансии формируют трехмерную, а в области $-L \le z \le 0$ —

Рис. 6. Расчетные зависимости компонент $\langle \delta v_{\text{eff}} \rangle_v^{\text{2D}}$ (1), $\langle e\delta\phi_+\rangle_v^{\rm 2D}$ (2) и их суммы (3) от концентрации поверхностных вакансий Al.

двумерную решетку с радиусами сферической R_v^{3D} и цилиндрической R_v^{2D} ячеек соответственно:

$$rac{4}{3} \pi \left(R_v^{
m 3D}
ight)^3 n_v^{
m 3D} = 1, \quad \pi \left(R_v^{
m 2D}
ight)^2 n_v^{
m 2D} = 1.$$

Тогда распределению (39) соответствует потенциальный профиль для свободных позитронов

$$U(z) = \begin{cases} \langle \delta v_{\text{eff}} \rangle_v^{\text{3D}} + \langle e \delta \phi_+ \rangle_v^{\text{3D}}, & z \leq -L, \\ \langle \delta v_{\text{eff}} \rangle_v^{\text{2D}} + \langle e \delta \phi_+ \rangle_v^{\text{2D}}, & -L \leq z \leq 0, \end{cases}$$
(40)

где $\langle \delta v_{\rm eff} \rangle_v < 0$ — усредненный по объему сверхъячейки вклад от потенциала пустой вакансии; $\langle e \delta \phi_+ \rangle_v > 0$ электростатический вклад взаимодействия локализованного и свободного позитронов.

Случай 3D рассмотрен и оценен нами ранее [17,18], и при $c_v^{\rm 3D} = (R_{\rm WS}/R_v^{\rm 3D})^3 \approx 10^{-3}$ вклад его составляет +8 meV. В случае двумерной решетки

$$\langle \delta v_{\text{eff}} \rangle_{v}^{\text{2D}} = 2\pi \, \frac{n_{v}^{\text{2D}}}{L} \int_{-L/2}^{+L/2} dz \int_{0}^{\rho_{z}} d\rho \rho [v_{\text{eff}}^{p}(r) - \overline{v}_{\text{eff}}^{p}], \quad (41)$$

$$\langle e\delta\phi_+\rangle_v^{2\mathrm{D}} = \frac{n_v^{2\mathrm{D}}}{L} \frac{e^2}{2} \iint d^3r d^3r' \frac{|\psi_f^p(r)|^2}{|\mathbf{r} - \mathbf{r}'|},$$
 (42)

где $\rho_z = \sqrt{(R_v^{2\mathrm{D}})^2 - z^2}$, $r = \sqrt{\rho^2 + z^2}$, $\overline{v}_{\mathrm{eff}}^p$ — значение $v_{\mathrm{eff}}^p(r)$ вдали от вакансии.

Выражения (41) и (42) являются функциями двумерной концентрации вакансий $c_v^{2D} = n_v^{2D}/(Ln_a)$. На рис. 6 приведены зависимости компонент (41), (42) и их суммы от c_v^{2D} при $L = 2R_{\rm WS}$, т. е. $c_v^{2D} = 1.5(R_{\rm WS}/R_v^{2D})^3$. Из рисунка следует, что величина барьера в 1 eV до-

стигается при $c_v^{\rm 2D} \approx 0.2\%$. Длина волны позитрона такой

энергии сравнима с R_v^{2D} . Таким образом, эффект отражения заряженными поверхностными вакансиями низкоэнергетических позитронов может быть причиной сдвига распределения по энергии позитронов при обратной эмиссии из металлов. Вблизи температуры плавления эффективная масса позитрона резко увеличивается [23], что делает решетку заряженных позитронами вакансий более устойчивой к распаду.

Следует отметить, что положение дна зон проводимости электронов и позитронов, а также их работы выхода $W^{e,p}$ зависят от концентрации вакансий n_{u}^{3D} в металле и диэлектрической константы покрытия є:

$$W^{e}(n_{v}^{\mathrm{3D}},\epsilon) = W^{e}_{\infty}(\epsilon) + \delta W^{e}_{v}(n_{v}^{\mathrm{3D}}), \qquad (43)$$

$$W^{p}(n_{v}^{\mathrm{3D}},\epsilon) = W^{p}_{\infty} + \delta W^{p}_{v}(n_{v}^{\mathrm{3D}}) - \Delta D(\epsilon), \qquad (44)$$

$$\delta W_v^{e,p} = -T_0^{e,p} - \langle \delta v_{\text{eff}} \rangle_v^{e,p}, \tag{45}$$

где $T_0^{e,p}$ — энергия основного состояния электрона/позитрона в сверхъячейке Вигнера-Зейтца радиуса R_v^{3D} , $T_0^{e,p} > 0$. В целом, для 3D-сверхрешетки $W_v^{e,p}(n_v^{3D}) < 0.$

Для идеального контакта величина $\Delta D(\epsilon) \leq 0$ в (44) — это изменение поверхностного дипольного барьера вследствие покрытия, $\Delta D(1) = 0$. Для Al/Al₂O₃ $\epsilon = 9$, $\Delta D(9) \approx -2 \,\mathrm{eV}$ [24]. Такое изменение может быть подавлено увеличением концентрации поверхностных одиночных вакансий и их кластеров, а также других дефектов, способствующих локализации позитронов [4,5].

В связи с перечисленными факторами диаграммы на рис. 2 будут "деформироваться" по вертикали в зависимости от концентрации вакансий в металле и постоянной покрытия ϵ .

Отметим также, что наличие вакансий не меняет концентрацию однородного электронного газа в металле, но меняет кинетическую энергию (член T₀^{e, p} в (45)), поэтому дипольный барьер на чистой внешней поверхности, а следовательно, и величины $W^{e,p}_{\infty}$ для 3D-металла зависят от n_v^{3D} . Для небольших величин n_v^{3D} зависимостью $W^{e,p}_{\infty}(n_v)$ мы пренебрегли.

Заключение 4.

Выполнен расчет зависимости вероятности локализации позитронов в вакансиях от энергии свободных позитронов и температуры металла. Эта задача решена с использованием рассчитанных ранее волновых функций и самосогласованных профилей вакансионных потенциалов для электронов и позитронов в Al, Cu и Zn. В широком интервале энергий значения вероятности $\sim 10^{14} \, {
m s}^{-1},$ а в тройной точке после усреднения $\sim 10^{11} \, {
m s}^{-1}$, что по порядку величины совпадает со скоростью аннигиляции.

Проведены оценки соотношения количества позитронов и вакансий. Вполне вероятен режим, когда свободные позитроны будут рассеиваться на вакансиях с уже локализованными позитронами. Такое взаимодействие вносит существенный вклад в энергию основного состояния позитронов (их дно зоны проводимости). В случае повышенной концентрации вакансий вблизи поверхности и их зарядки поле вакансий у поверхности металла может создавать двумерный барьер. Этот барьер отражает низкоэнергетические позитроны обратно в объем, где они и аннигилируют. Такое качественное объяснение можно предложить при трактовке особенностей в энергетическом распределении позитронов обратной эмиссии, наблюдаемых в экспериментах.

Приложение. Диэлектрическая функция

Диэлектрическая функция неоднородного взаимодействующего электронного газа может быть записана в виде [25]

$$\epsilon(q,r)=1-rac{4\pi e^2}{q^2}\Pi_{ee}(q,r).$$

Если через

$$\Pi_0(q) = -\frac{m_e k_{\rm F}}{\pi^2 \hbar^2} \left(\frac{1}{2} + \frac{1-\xi^2}{4\xi} \ln \left| \frac{1+\xi}{1-\xi} \right| \right)$$

где $\xi = \frac{2q}{k_{\rm F}}$, обозначить поляризационную функцию в приближении хаотических фаз, то

$$\Pi_{ee}(q,r) = \frac{\Pi_0(q)}{1 + \frac{4\pi e^2}{q^2} G_c(q,r) \Pi_0(q)}$$

где

$$G_c(q, r) = -\frac{q^2}{4\pi e^2} \left(2 \frac{d\varepsilon_{\rm xc}}{dn_e} + n_e \frac{d\varepsilon_{\rm xc}^2}{dn_e^2} + g(n_e)q^2 \right)$$

описывает влияние электрон-электронных корреляций. В атомных единицах Хартри функция $g(n_e)$ имеет вид

$$g(n_e) \approx r_s^4 \left(0.0216 + \frac{0.01302}{r_s} + \frac{0.0349}{r_s^2} \right)$$

 $\frac{4}{3} \pi r_s^3(r) n_e(r) = 1,$

где $\varepsilon_{\rm xc}$ — обменно-корреляционная энергия на один электрон газа концентрации $n_e(r)$.

Список литературы

- [1] M.J. Puska, R.M. Nieminen. Rev. Mod. Phys. 66, 841 (1994).
- [2] F. Tuomisto, I. Makkonen. Rev. Mod. Phys. 85, 1583 (2013).
- [3] S. Mukherjee, M.P. Nadesalingam, P. Guagliardo, A.D. Sergeant, B. Barbiellini, J.F. Williams, N.G. Fazleev, A.H. Weiss. Phys. Rev. Lett. **104**, 247 403 (2010).
- [4] Z. Wang, S. Su, F.C.-C. Ling, W. Anwand, A. Wagner. J. Appl. Phys. 116, 033 508 (2014).
- [5] S. Hagiwara, C. Hu, K. Watanabe. Phys. Rev. B 91, 115409 (2015).
- [6] F.A. Selim, D. Solodovnikov, V.Y. Weber, K.G. Lynn. Appl. Phys. Lett. 91, 104 105 (2007).

- [7] S.W.H. Eijt, A. van Veen, H. Schut, P.E. Mijnarends, A.B. Denison, B. Barbiellini, A. Bansil. Nature Mater. 5, 23 (2006).
- [8] J.R. Danielson, D.H.E. Dubin, R.G. Greaves, C.M. Surko. Rev. Mod. Phys. 87, 247 (2015).
- [9] B. Nielsen, K.G. Lynn, Y.-C. Chen. Phys. Rev. Lett. 57, 1789 (1986).
- [10] M. Jibaly, A. Weiss, A.R. Koymen, D. Mehl, L. Stiborek, C. Lei. Phys. Rev. B 44, 12166 (1991).
- [11] K.G. Lynn, T. McKay, B. Nielsen. Phys. Rev. B, 36, 7107 (1987).
- [12] T. Mc Mullen, M.J. Stott. Phys. Rev. B 34, 8985 (1986).
- [13] M.J. Puska, M.P. Manninen. J. Phys. F 17, 2235 (1987).
- [14] K.O. Jensen, A.B. Walker. J. Phys.: Condens. Matter 2, 9757 (1990).
- [15] I. Makkonen, M.J. Puska. Phys. Rev. B 76, 054119 (2007).
- [16] А.В. Бабич, П.В. Вакула, В.В. Погосов. ФТТ 56, 841 (2014).
- [17] А.В. Бабич, П.В. Вакула, В.В. Погосов. ФТТ 56, 1671 (2014).
- [18] А.В. Бабич, В.В. Погосов, В.И. Рева. Письма в ЖТФ, в печати.
- [19] J.D. Levine, E.P. Gyftopoulos. Surf. Sci. 1, 225 (1964).
- [20] Z. Fu, GW. Lemire, G.A.Bishea, M.D. Morse. J. Chem. Phys. 93, 8420 (1990).
- [21] J.P. Perdew, Y. Wang, E. Engel. Phys. Rev. Lett. 66, 508 (1991).
- [22] A. Pimpinelli, J. Villain. Physica A 204, 521 (1994).
- [23] E. Gramsch, K.G. Lynn, J. Throwe, I. Kanazawa. Phys. Rev. B 59, 14 282 (1999).
- [24] В.В. Погосов, А.В. Бабич, П.В. Вакула, А.Г. Кравцова. ЖТФ 81, 11, 150 (2011).
- [25] I.T. Iakubov, A.G. Khrapak, V.V. Pogosov, S.A. Trigger. Phys. Status Solidi B 145, 455 (1988).