15

Влияние температуры термостабилизации на изменение текстуры полиакрилонитрильного волокна

© А.Г. Фазлитдинова, В.А. Тюменцев

Челябинский государственный университет, 454001 Челябинск, Россия e-mail: fazlitdinovaag@mail.ru

(Поступило в Редакцию 13 января 2015 г.)

Методом рентгеноструктурного анализа рассмотрено влияние температуры изотермической обработки на изменение размеров областей когерентного рассеяния L_{010} и текстуры материала полиакрилонитрильной нити в процессе перехода в структуру термостабилизированного волокна. Повышение температуры термостабилизации при постоянной вытягивающей нагрузке стимулирует на начальной стадии одновременно более активный рост размеров L_{010} и текстурирование полиакрилонитрильных нитей. Активное развитие фазового превращения при температурах $275-290^{\circ}$ С в процессе дальнейшей термостабилизации сопровождается существенным уменьшением текстуры полимера, не испытавшего к этому моменту времени фазового перехода.

Введение

Структура углеродного волокна, полученная из полиакрилонитрильного (ПАН) полимера $[-CH_2CH(CN)-]_n$, определяет его физико-механические свойства и существенно зависит от состава, структуры и условий окислительной термостабилизации полиакрилонитрильных нитей [1-4]. При температуре 200-300°С развивается изменение химического состава, циклизация и окисление полимера, формируется новая наноструктура термостабилизированного волокна. На этот процесс существенное влияние оказывает ориентация цепей лестничного полимера относительно оси нити. Так, в [5] отмечается, что уже при термостабилизации в изометрических условиях нанотекстура ПАН полимера выше по сравнению с таковой, формируемой в условиях свободной усадки. Текстурирование материала на стадии термостабилизации обусловливает повышение анизотропии (нанотекстуры) конечного углеродного волокна, которая влияет на модуль Юнга и его электро- и теплопроводность.

В [6,7] рассмотрено влияние вытягивающей нагрузки на жгут при термостабилизации. Показано, что увеличение нагрузки стимулирует удлинение жгута на начальной стадии термостабилизации и обусловливает формирование существенно более текстурированного ПАН полимера. Температурные режимы изотермической термостабилизации также влияют на удлинение жгута на начальном этапе термостабилизации и должны оказывать влияние на текстуру материала. Однако этот вопрос остается недостаточно изученным.

В настоящей работе методом рентгеноструктурного анализа рассмотрены особенности изменения фазового состава, средних размеров областей когерентного рассеяния (ОКР) и текстуры полиакрилонитрильной нити в процессе изотермической термомеханической обработки при температурах в интервале 245–290°С.

Объекты и методы исследования

Исследования выполнены на ПАН нитях (содержание метилакрилата 5 wt.%), изготовленных с применением диметилсульфоксида, пикнометрическая плотность и степень кристалличности волокна равны 1.175 g/cm³ и 75% соответственно. Термостабилизацию жгутика, состоящего из 500 нитей диаметром ~ 12 μ m, проводили в изотермических условиях при температурах 245, 255, 265, 275, 285 и 290°С (комплексную нить в течение 1–2 s перемещали в предварительно нагретую трубчатую печь) в атмосфере воздуха при постоянной вытягивающей нагрузке 30 g. Точность поддержания температуры 1°С.

Структурные исследования волокон выполнены с помощью рентгеновского дифрактометра D8 ADVANCE (фильтрованное Cu K_{α} -излучение, анализ профиля дифракционного максимума 010 ПАН проводили, используя программу Origin 8). В процессе текстурных исследований материала были записаны профили дифракционного максимума 010 ПАН, формируемого ОКР, ориентированными относительно оси нити под углом φ от 0 до $\pm 5^{\circ}$. Параметр текстуры Z, межплоскостное расстояние и средние размеры ОКР ПАН волокна по заданной программе, определяли аналогично [7] (в угловом интервале $\pm Z$ ориентировано ~ 75% материала ОКР полиакрилонитрила).

Экспериментальные результаты и их обсуждение

На начальном этапе изотермической термостабилизации ПАН нити при температуре 245°С и постоянной вытягивающей нагрузке 30 g наблюдается увеличение ее длины, максимальная вытяжка через 15 min составляет ~ 1.8% (рис. 1). Процесс сопровождается повышением степени кристалличности материала (табл. 1). Протекающая параллельно циклизация полиакрилонитрила

Рис. 1. Изменение линейных размеров комплексной ПАН нити в процессе изотермической обработки при постоянной вытягивающей нагрузке 30 g.

обусловливает замедление вытяжки, а затем сокращение длины волокна. Усадка через 300 min термообработки достигает 14%. Индекс ароматичности, характеризующий степень химических преобразований материала волокна и рассчитанный по данным рентгеноструктурного анализа, равен 53% (табл. 2).

Таблица 1. Изменение степени кристалличности ПАН волокон в процессе термомеханической обработки

Температура,	Степень кристалличности (%) после термообработки в течение:						
<i>ч</i> С	10 min	20 min	30 min	40 min	1 h	2h	4h
245	-	83	-	-	72	53	43
255	84	83	_	80	75	47	—
265	80	81	79	71	62	_	—
275	84	73	66	—	49	_	—
285	75	—	50	—	—	—	—
290	75	—	46	—	—	—	—

Таблица 2. Изменение значения индекса ароматичности (*AI*) ПАН волокна в процессе термомеханической обработки

Температура,	Индекс ароматичности (%) после термообработки в течение:					
¹ C	30 min	40 min	1 h	2 h	4 h	6 h
245	_	_	-		40	53
255	_	_	-	26	48	58
265	_	_	18	46	56	_
275	_	23	31	53	—	—
285	26	_	51	-	—	—
290	37	—	54	—	—	—

Рис. 2. Зависимость средних размеров *L* от угла ориентировки φ ОКР относительно оси нити материала ПАН. Precursor — исходная нить.

<i>T</i> , °C	Продолжительность	L, mn			d, Å		
	термообработки	OKP1	OKP2	ОКР3	OKP1	OKP2	ОКР3
Исходное волокно		13.2	0.9	_	5.289	5.235	_
245	20 min 1 h 2 h 4 h 6 h	17.3 15.4 9.8 9.3 -	1.0 1.8 1.4 1.4 1.2	- 0.9 0.9 0.9	5.309 5.346 5.354 5.369 -	5.179 5.200 5.297 5.405 5.401	 3.505 3.532 3.574
255	10 min 20 min 40 min 1 h 2 h 4 h	18.2 17.4 16.6 14.2 9.2 -	1.0 1.0 1.3 1.8 1.4 1.3	- - 0.9 0.9	5.290 5.295 5.281 5.332 5.357 -	5.478 5.365 5.197 5.234 5.384 5.386	 3.499 3.582
265	10 min 20 min 30 min 40 min 1 h 2 h 4 h	18.0 16.2 15.7 12.5 11.2 –	$ \begin{array}{c} 1.1 \\ 1.1 \\ 1.4 \\ 1.5 \\ 1.8 \\ 1.4 \\ 1.0 \\ \end{array} $	- - 1.2 0.9 0.9	5.302 5.276 5.323 5.322 5.330 - -	5.322 5.406 5.234 5.282 5.292 5.440 5.548	- - 3.518 3.583 3.581
275	10 min 20 min 30 min 40 min 1 h 2 h	18.1 15.7 13.2 11.6 10.1 -	1.0 1.5 1.7 1.7 1.2 1.0	- - 1.3 0.9 1.0	5.269 5.314 5.320 5.344 5.313 -	5.367 5.259 5.282 5.359 5.384 5.470	- - 3.591 3.493 3.555
285	10 min 30 min 1 h	17.3 9.5 -	1.3 1.2 1.0	0.9 0.9	5.278 5.320 -	5.303 5.411 5.561	
290	10 min 30 min 1 h	16.2 10.8 -	1.0 1.3 1.0	0.9 0.9	5.283 5.342 -	5.285 5.402 5.598	 3.529 3.574

Таблица 3. Влияние температуры (T) на изменения размеров ОКР $(L_{\phi=0^{\circ}})$, межплоскостного расстояния $(d_{\phi=0^{\circ}})$ в процессе изотермической обработки ПАН волокна

Повышение температуры изотермической обработки ПАН нити до 255, 265 и 275°С обусловливает вначале процесса вытяжку на ~ 2.5, ~ 3 и ~ 4.5% соответственно. При этом величина усадки после термообработки в течение 6, 4 и 2 h составляет ~ 14, ~ 13 и ~ 11.5%, а значение AI достигает 58, 56 и 53% (табл. 2). Дальнейшее повышение температуры обработки до 285 и 290°С стимулирует увеличение величины вытяжки на начальном этапе обработки до ~ 8.5 и ~ 13%, которая уже не компенсируется последующей усадкой нити, протекающей во время термообработки в течение 1 h. Индекс ароматичности материала таких волокон составляет 51 и 54%.

Рассмотрим структурные изменения ПАН в процессе термостабилизации. Профили характерного для кристаллической структуры полиакрилонитрила дифракционного максимума 010 несколько асимметричны и уширены в основании, что, как показано в [4], обусловлено наложением максимумов ОКР, отличающихся размерами и межслоевым расстоянием. Результаты разложения таких профилей на минимальное число максимумов, описываемых функцией Лоренца, и вычисления параметров структуры ОКР, ориентированных параллельно оси нити ($\varphi = 0^{\circ}$), приведены в табл. З. В исходном ПАН волокне регистрируются ОКР1 и ОКР2, средние размеры которых ~ 13 и ~ 0.9 nm. По мере увеличения угла φ ориентировки ОКР1 относительно оси нити от 0 до 5° размеры $L_{\varphi=0^{\circ}}$ уменьшаются практически линейно до ~ 9.5 nm (рис. 2). Количество вещества, формирующего такие ОКР1 $_{\varphi=5^{\circ}}$, сокращается в ~ 2.3 раза.

На начальной стадии, совпадающей с временны́м интервалом пластического течения полимера, наблюдается существенное увеличение средних размеров ОКР1. Так, в процессе термообработки ПАН волокна в течение 20 min при 245°С средние размеры ОКР1 $L_{\varphi=0^{\circ}}$ возрастают на ~ 31% (степень кристалличности увеличивается на ~ 11%). Повышение температуры изотермической обработки ПАН нити до 255, 265 и 275°С обусловливает ускорение структурных изменений. Средние размеры ОКР1, ориентированных вдоль оси волокна, увеличиваются после термостабилизации в течение 10 min одинаково на \sim 38%. Однако рост средних размеров L_{φ}

зации на изменение параметра текстуры Z ПАН волокна.

материала ПАН волокна зависит от угла ориентировки и при $\varphi = 5^{\circ}$ составляет всего ~ 33, 28 и 16% при температуре 255, 265 и 275°С соответственно (рис. 2). Дальнейшее продолжение термостабилизации обусловливает постепенное диспергирование ОКР1. Этот процесс развивается более активно при $\varphi = 5^{\circ}$ (рис. 2). Временной интервал регистрации ОКР1 в ПАН волокне при 275°С сокращается в ~ 4 раза по сравнению с таковым при 245°С.

Повышение температуры обработки ПАН нити до 285 и 290°С существенно активирует структурные преобразования материала. В этом случае, по-видимому, наибольших размеров ОКР1 достигают при максимальной вытяжке (через 5–6 min). После термостабилизации при таких температурах в течение 10 и 30 min значения $L_{\varphi=0^\circ}$ составляют ~ 17 и ~ 10 nm соответственно (рис. 2).

Таким образом, увеличение средних размеров $L_{\varphi=0^{\circ}}$ на начальном этапе изотермической обработки, соответствующем пластическому течению полимера, слабо зависит от температуры термостабилизации. Активность последующего диспергирования OKP1 зависит от температуры обработки и угла ориентировки относительно оси волокна.

Параметр Z, характеризующий текстуру материала исходной ПАН нити, равен 5° (рис. 3). При температуре 255°С максимальная текстура материала ПАН достигается после термостабилизации в течение $\sim 10 \text{ min}$ (значение Z уменьшается до 3.8°). При более высоких температурах обработки 265 и 275°С наименьшее значение Z, равное 3.65 и 3.7° соответственно, достигается через $\sim 5 \text{ min}$. В состоянии максимальной текстуры материала интенсивность дифракционного максимума 010 ПАН, обусловленного дифракцией на OKP1, увеличилась приблизительно на 60, 52 и 34% (температуры 255, 265 и 275°С соответственно).

Продолжение термообработки сопровождается фазовым переходом структуры ПАН в структуру термостабилизированного волокна (на рентгенограмме начинает отчетливо регистрироваться дифракционный максимум при $2\theta \sim 26^{\circ}$). Средние размеры ОКРЗ новой фазы ~ 0.9 nm (табл. 3). Значение угла Z, характеризующее текстуру ОКР1 полиакрилонитрила, не испытавшего к этому моменту времени фазового перехода, начинает увеличиваться (рис. 3). К моменту времени разрушения ~ 80% ОКР1 (через 60 и 40 min, температуры 265 и 275°C) значение Z оказалось равными 5°, а средние размеры ОКР1 ПАН составляют 11.2 и 11.6 nm соответственно.

Таким образом, увеличение температуры обработки активирует процесс упорядочения молекулярной структуры, сопровождающийся ростом размеров OKP1 и повышением текстуры материала на начальном этапе термостабилизации. Однако более активное развитие фазового превращения в материале ПАН при температурах $275-290^{\circ}$ C в процессе дальнейшей изотермической термостабилизации сопровождается быстрым нарушением текстуры ПАН. При этом материал нити теряет пластичность, усадка жгута сокращается с ~ 14% (245 и 255°C) до ~ 12 и ~ 7% (275 и 290°C).

Выводы

Структура кристаллической составляющей исходной нити представлена двумя видами ОКР полиакрилонитрила, отличающимися на порядок средними размерами.

Повышение температуры на начальной стадии изотермической термостабилизации стимулирует совершенствование структуры ПАН нити — увеличение размеров крупных ОКР1 и повышение текстуры материала. При этом происходит наиболее активный рост размеров областей когерентного рассеяния, ориентированных параллельно оси нити.

Активное развитие фазового превращения в материале ПАН при температурах 275–290°С в процессе дальнейшей термостабилизации сопровождается существенным уменьшением текстуры полимера, не испытавшего к этому моменту времени фазового перехода.

Список литературы

- [1] Dalton S., Heatley F., Budd P. // Polymer. 1999. Vol. 40. P. 5531–5543.
- [2] Fitzer E., Mullier D.J. // Carbon. 1975. Vol. 13. P. 63-69.
- Mathur R.B., Bahl O.P., Mittal J., Nagpal K.C. // Carbon. 1990.
 Vol. 29. P. 1059–1061.
- [4] Fazlitdinova A.G., Tyumentsev V.A., Podkopayev S.A., Shveikin G.P. // J. Mater. Sci. 2010. Vol. 45. P. 3998–4005.
- [5] Laffont L., Monthioux M., Serin V., Mathur R.B., Guimon C., Guimon M.F. // Carbon. 2004. V. 42. P. 2485–2494.
- [6] Фазлитдинова А.Г., Тюменцев В.А., Маянов Е.П., Подкопаев С.А. // ЖПХ. 2011. № 4. С. 666-672.
- [7] Фазлитдинова А.Г., Тюменцев В.А. // ЖТФ. 2011. Т. 81. Вып. 12. С. 70-76.

