07;06;12

Влияние облучения ионами H⁺ и Ne⁺ на резистивное переключение в мемристивных структурах "металл—диэлектрик—металл" на основе SiO_x

 © А.И. Белов¹, А.Н. Михайлов¹, Д.С. Королев¹, В.А. Сергеев¹, Е.В. Окулич¹, И.Н. Антонов¹, А.П. Касаткин¹, Е.Г. Грязнов^{1,2}, А.П. Ятманов², О.Н. Горшков¹, Д.И. Тетельбаум¹

¹ Нижегородский государственный университет им. Н.И. Лобачевского ² Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова, Нижний Новгород E-mail: tetelbaum@phys.unn.ru

Поступило в Редакцию 5 мая 2015 г.

Для мемристивных структур Au/SiO_x/TiN/Ti, полученных методом магнетронного распыления и проявляющих воспроизводимый эффект резистивного переключения, изучено воздействие облучения ионами H⁺ и Ne⁺ с энергией 150 keV. Показано, что при облучении H⁺ состояния с низким и высоким сопротивлением не меняются до дозы $1 \cdot 10^{16}$ cm⁻², а в случае облучения ионами Ne⁺ — до дозы $\sim 3 \cdot 10^{15}$ cm⁻². Полученные результаты демонстрируют высокую стойкость параметров исследуемых мемристивных структур как к ионизирующему, так и к дефектообразующему радиационному воздействию.

В настоящее время актуальной является задача создания нового поколения постоянных запоминающих устройств типа RRAM (Resistive Random Access Memory) на основе так называемых мемристоров [1,2]. Принцип действия RRAM основан на использовании разных устойчивых состояний материала: состояния с высоким сопротивлением (CBC, HRS — high-resistance state) и состояния с низким сопротивлением (CHC, LRS — low-resistance state), многократное переключение между которыми осуществляется путем подачи напряжения определенной полярности. Благодаря быстродействию, возможности длительного хранения информации и масштабируемости, память на основе мемристоров

81

может заменить всю иерархию используемой компьютерной памяти (как оперативной, так и энергонезависимой памяти).

Практически важной задачей является разработка новой электроннокомпонентной базы, в частности запоминающих устройств, для работы в условиях космоса, для атомной энергетики и других отраслей, где требуется высокая стойкость к радиационным и другим экстремальным воздействиям [3]. Испытание электронного устройства на стойкость к облучению в реальных условиях — достаточно сложная и часто недоступная для исследователей операция. Ранее нами было показано, что стойкость микроструктур, располагающихся вблизи поверхности, к облучению быстрыми нейтронами может быть проверена с помощью имитации путем облучения ионами средних энергий [4]. Преимущество такой имитации перед натурными испытаниями связано с доступностью ионных имплантеров и оперативностью процедуры испытания, что особенно важно на этапе исследований и разработок. Активная область мемристора (пленка диэлектрика) в структурах "металл-диэлектрик-металл" (МДМ) обычно располагается на глубинах порядка десятков нанометров. В этих условиях ионы средних энергий могут быть применены для имитации воздействия нейтронов, а также других высокоэнергетических частиц, например космических протонов. В настоящее время отсутствуют работы по влиянию облучения ионами средних энергий на характеристики мемристоров, хотя существуют работы, в которых исследовалось влияние облучения протонами высоких энергий 1-10 MeV и другими высокоэнергетическими ионами на параметры МДМ-структур на основе HfO_2 [5–7], TaO_x и TaO₂ [8].

В данной работе облучение ионами H^+ с энергией 150 keV и дозами в диапазоне $10^{11}-10^{16}$ cm⁻² было использовано для имитации воздействия космических протонов на параметры резистивного переключения в МДМ-структурах на основе оксида кремния, совместимых с кремниевой технологией. Для установления вклада упругих потерь также проводилось облучение более тяжелыми ионами — Ne⁺ (150 keV).

Тонкопленочная мемристивная структура формировалась на промышленной подложке с металлизацией TiN (25 nm)/Ti (25 nm)/SiO₂ (500 nm)/Si. Пленки SiO_x (40 nm) осаждались методом высокочастотного магнетронного распыления кремниевой мишени на установке MagSputt 3G-2 (Torr Int.) в газовой смеси аргон–кислород (содержание $O_2 - 8\%$) при давлении $3.2 \cdot 10^{-3}$ Torr и температуре подложки 200°С.

Верхние электроды Au (40 nm) наносились через маску методом магнетронного распыления на постоянном токе в атмосфере аргона при давлении $5 \cdot 10^{-3}$ Torr и температуре подложки 200°C. Измерение вольт-амперных характеристик (BAX) проводилось на анализаторе полупроводниковых приборов Agilent B1500A. Знак напряжения принимался соответствующим знаку на верхнем электроде (Au) относительно заземленного нижнего электрода (TiN). МДМ-структуры подвергались электроформовке при развертке по напряжению от 0 до -4 V. Предполагается, что формовка приводит к образованию локальных проводящих областей (филаментов) в диэлектрике. Переключение из СНС в СВС связано с разрывом филаментов (образованием диэлектрических прослоек), а обратное переключение — с восстановлением филаментов [9].

В исходном состоянии изучаемые МДМ-структуры имели характеристики, типичные для конденсатора с оксидом кремния в качестве диэлектрика. После электроформовки ток увеличивался на несколько порядков величины, и структуры проявляли резистивное переключение между СНС и СВС с напряжениями переключения 3-4 V [9]. Типичная ВАХ показана на рис. 1. При повторении циклов подачи напряжения (развертки) характеристики воспроизводились не менее 10^4 раз (пример теста на деградацию представлен в [9]).

Для установления относительного вклада потерь энергии на ионизацию и в упругих столкновениях при облучении ионами H⁺ и Ne⁺ (с начальной энергией 150 keV) были выполнены расчеты с помощью программы SRIM [10] (рис. 2). Ионизационные потери являются доминирующими при облучении H⁺. При облучении более тяжелыми ионами Ne⁺ ионизационные потери оказываются выше, чем для H⁺, но основной вклад в дефектообразование обеспечивается упругими смещениями атомов из узлов (упругие потери для ионов Ne⁺ (150 keV) в пленке SiO_x на три порядка величины превышают упругие потери для H⁺ с той же энергией). Расчеты были выполнены также для протонов с энергией 10 MeV (характерная энергия в спектре космических протонов [3]). Ионизационные потери в пленке SiO_x при облучении протонами с энергией 10 MeV оказались в 14 раз ниже, чем при облучении H⁺ с энергией 150 keV.

Дозы ионного облучения были выбраны таким образом, чтобы обеспечить для H^+ и Ne⁺ равенство суммарных ионизационных потерь. В соответствии с результатами расчета использованный интервал доз

Рис. 1. Типичный вид ВАХ структур $Au/SiO_x/TiN$, подвергнутых электроформовке. На вставке приведено схематическое изображение поперечного сечения МДМ-структуры.

ионов H⁺ (150 keV) от 10¹¹ до 10¹⁶ cm⁻² соответствует по ионизационным потерям интервалу от $3.3 \cdot 10^{10}$ до $3.3 \cdot 10^{15}$ cm⁻² для ионов Ne⁺ (150 keV) и может быть сопоставлен с интервалом доз космических протонов (10 MeV) от $1.4 \cdot 10^{12}$ до $1.4 \cdot 10^{17}$ cm⁻². Поскольку радиационная стойкость мемристора может зависеть от состояния, в котором он находится во время облучения [5–7], ионное облучение следует проводить для структур, находящихся перед облучением в каждом из состояний — CHC и CBC.

Эксперименты проводились следующим образом. До облучения структуры подвергались электроформовке и многократному переключению CHC CBC (не менее 5 циклов) с измерением тока при считывающем напряжении +0.5 V, после чего структуры переводились в нужное состояние (CBC или CHC) и затем облучались для набора опре-

Рис. 2. Распределения по глубине исследуемой структуры ионизационных потерь энергии ионов (*a*) и генерируемых в упругих столкновениях вакансий (*b*), рассчитанные с помощью программы SRIM [10].

деленной дозы в выбранном диапазоне. После облучения путем подачи напряжения +0.5 V проводилась проверка, в каком состоянии оказалась структура после облучения. Затем снова проводились переключение

(5 циклов) и перевод в нужное состояние, далее — следующий набор дозы облучения и т.д.

На рис. З приведены значения токов, измеренных в СНС и СВС при напряжении +0.5 V, в зависимости от количества переключений, производимых после каждого последовательного набора дозы облучения ионами H⁺ и Ne⁺ (набранные дозы также указаны на рисунке). Облучение ионами H⁺ структур, находящихся в СВС, в ряде случаев приводит к возрастанию тока до значения, близкого к значениям в СНС. Однако уже первый цикл переключения возвращает значение тока к типичному для СВС значению. Облучение H⁺-структур, находящихся в СНС, не приводит к существенному изменению токов. При облучении Ne⁺-структур, находящихся в СВС, эффект обратимого увеличения тока также наблюдается, но он менее выражен.

Поскольку в исследуемых структурах резистивное переключение сохраняется после облучения ионами H⁺ (150 keV) до дозы $1 \cdot 10^{16}$ cm⁻² (рис. 3), можно прогнозировать сохранение работоспособности и параметров мемристора при облучении космическими протонами по крайней мере до доз порядка 10^{17} cm⁻².

Природа эффекта обратимого повышения тока (уменьшения сопротивления) при ионизирующем воздействии на структуры, находящиеся в СВС, подлежит дальнейшему изучению. Этот эффект может быть обусловлен захватом генерированных ионами дырок на ловушки в оксиде [11], что изменяет проводимость диэлектрика в области разрыва филамента. Ионизация также может приводить к генерации дополнительных дефектов в этих областях [12], что увеличивает их проводимость по ловушечному механизму [13]. Тот факт, что эффект практически не выражен при облучении в СНС, скорее всего, связан с тем, что в этом состоянии сопротивление структуры определяется протеканием тока по филаментам, не имеющим диэлектрических прослоек. Электрические свойства филаментов мало чувствительны к ионизации [5-7]. В отличие от этого, в СВС сопротивление зависит в основном от свойств диэлектрических прослоек в участках разрывов филаментов. При облучении Ne⁺ (при тех же ионизационных потерях) данный эффект выражен слабее, по-видимому, из-за повышенной скорости рекомбинации генерированных носителей вследствие образования радиационных дефектов при упругих потерях, которые в случае Ne⁺ на три порядка выше, чем в случае H⁺. При дозе Ne⁺ 3.3 · 10¹⁵ cm⁻² наблюдается необратимая деградация высокоом-

Рис. 3. Токи в состояниях с низким и высоким сопротивлениями в необлученных (w/o irr.) и облученных ионами H^+ (a) и Ne⁺ (b) структурах в зависимости от количества переключений после каждой набранной дозы облучения. Облучение проводилось для структур, находящихся в состояниях CBC (Irr. in HRS) или CHC (Irr. in LRS). Стрелками показаны возросшие значения тока, зафиксированные после облучения.

ного состояния, независимо от того, в каком состоянии находилась структура до облучения. Вероятно, это обусловлено накоплением радиационных дефектов в объеме оксидного слоя и, соответственно, ростом утечек тока по всей площади структуры. Заметим, что доза Ne⁺, равная $3.3 \cdot 10^{15}$ cm⁻², по дефектообразованию эквивалентна существенно более высокому (на порядки величины) флюенсу быстрых нейтронов [4].

Таким образом, результаты данной работы демонстрируют высокую стойкость мемристоров на основе структур Au/SiO_x/TiN к ионизирующему и дефектообразующему облучению, что важно для проектирования устройств резистивной памяти, работающих в условиях повышенной радиации. Чувствительность характеристик резистивного переключения к радиационному воздействию определяется свойствами оксидного материала, который входит в состав мемристора и определяет его высокоомное состояние.

Разработка конструктивного варианта МДМ-структуры и исследование стойкости к протонному облучению выполнены при поддержке Министерства образования и науки РФ (уникальный идентификатор прикладных научных исследований RFMEFI57514X0029).

Список литературы

- [1] Chua L. // IEEE Trans. Circuit Theory. 1971. V. 18. P 507.
- [2] Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. // Nature. 2008. V. 453.
 P. 80–83.
- [3] Sobolev N.A. // Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics / M. Henini (Ed.). Amsterdam: Elsevier, 2008. P. 392–447.
- [4] Tetelbaum D.I., Guseinov D.V., Vasiliev V.K., Mikhaylov A.N., Belov A.I., Korolev D.S., Obolensky S.V., Kachemtsev A.N. // Nucl. Instr. Meth. Phys. Res. B. 2014. V. 326. P. 41.
- [5] Lee D., Lee J., Jung S., Kim S., Park J., Biju K.P., Choe M., Lee T., Hwang H. // IEEE Trans. Nucl. Sci. 2011. V. 58. P. 3317–3320.
- [6] Butcher B., He X., Huang M., Wang Y., Liu Q., Lv H., Liu M., Wang W. // Nanotechnology. 2010. V. 21. P. 475 206.
- [7] Bi J.S., Han Z.S., Zhang E.X., McCurdy M.W. et al. // IEEE Trans. Nucl. Sci. 2013. V. 60. P. 4540–4546.

- [8] Hughart D.R., Lohn A.J., Mickel et al. // IEEE Trans. Nucl. Sci. 2013. V. 60. P. 4512–4519.
- [9] Mikhaylov A.N., Belov A.I., Guseinov D.V. et al. // Mat. Sci. Eng. B. 2015. V. 194. P. 48.
- [10] Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instr. Meth. Phys. Res. B. 2010.
 V. 268. P. 1818–1823.
- [11] Гуськова О.П., Воротынцев В.М., Фаддеев М.А., Абросимова Н.Д. // Вестник Нижегородского университета. 2013. В. 1. Ч. 1. С. 43–47.
- [12] Витовский Н.А. // Радиационная физика кристаллов и *p*-*n*-переходов / Под ред. Н.Н. Сирота и др. Минск: Наука и техника, 1972. С. 151–157.
- [13] Wang Y., Qian X., Chen K., Fang Z., Li W., Xu J. // Appl. Phys. Lett. 2013.
 V. 102. P. 042 101.