01

Моделирование кинетики разгорания фосфоресценции молекул донора энергии матрично-изолированных донорно-акцепторных пар

© Н.В. Жданова, М.И. Дерябин, А.Б. Тищенко

Северо-Кавказский федеральный университет, 355029 Ставрополь, Россия e-mail: zhdanova_n@rambler.ru

(Поступило в Редакцию 17 марта 2015 г.)

Предложена математическая модель описания кинетики накопления молекул донора в триплетном состоянии для матрично-изолированных донорно-акцепторных пар. С использованием данной модели выполнено компьютерное моделирование кинетики накопления триплетных возбуждений и разгорания фосфоресценции донора. Установлено, что при определенном соотношении констант скоростей переходов донора и акцептора энергии триплетных возбуждений характер кинетики разгорания и квантовый выход фосфоресценции донора зависят от мощности возбуждения.

Введение

В исследованиях фотофизических процессов, происходящих с участием триплетных состояний органических молекул в конденсированных средах, важное место наряду со спектральными занимают кинетические методы, т.е. изучение процессов заселения и распада возбужденных состояний. Информация о распаде триплетных возбуждений заключена в кинетике затухания фосфоресценции, а об их накоплении в кинетике разгорания. Заселение триплетных состояний может происходить как в результате прямого возбуждения молекул, так и посредством передачи им триплетных возбуждений от других молекул — доноров энергии. В теоретических исследованиях и программировании динамики таких процессов важное место занимают их математические модели, позволяющие с помощью компьютерного эксперимента оценить влияние различных факторов на данный процесс. При изучении закономерностей межмолекулярного переноса энергии триплетных возбуждений широко используются твердые растворы органических соединений при низких температурах [1]. В таких системах передача возбуждений может происходить как в молекулярных ансамблях [2], так и в отдельных невзаимодействующих друг с другом донорно-акцепторных парах [3,4]. Кинетика фосфоресценции компонент донорноакцепторной смеси может существенно отличаться для этих двух случаев. Авторами [5] показано, что при моделировании динамики бимолекулярных процессов, происходящих с участием триплетных возбуждений в изолированных парах, необходимо использовать размеченный граф состояний этих пар.

В настоящей работе, используя размеченный граф, составлена математическая модель кинетики накопления донорно-акцепторных пар в различных состояниях, представляющая собой систему кинетических уравнений, которые описывают данный процесс. В эти уравнения в виде коэффициентов входят константы скоростей переходов донорно-акцепторных пар между различными состояниями. С использованием данной модели выполнено компьютерное моделирование кинетики накопления донорно-акцепторных пар в различных состояниях и разгорания фосфоресценции донора, что позволяет установить ряд ее особенностей, не описанных ранее в литературе.

Модель

При составлении математической модели использовалась энергетическая схема (размеченный граф состояний) донорно-акцепторных пар, представленная на рис. 1, которая иллюстрирует процессы их переходов между различными состояниями на стадии возбуждения. Рассматриваются четыре состояния. Первое состояние — обе молекулы находятся в основном синглетном S_0 -состоянии. Второе состояние — молекула донора находится в возбужденном триплетном T^D -состоянии, а

Рис. 1. Схема энергетических состояний (размеченный граф) изолированных донорно-акцепторных пар.

молекула акцептора в основном S_0^A -состоянии. Третье состояние — молекула донора находится в основном S_0^D -состоянии, а молекула акцептора в возбужденном триплетном состоянии T^A . Четвертое состояние — обе молекулы находятся в возбужденном триплетном состоянии. Число пар в первом состоянии N_1 , во втором N_2 , в третьем N_3 , в четвертом N_4 .

Константы скоростей внутримолекулярной дезактивации триплетных возбуждений донора k_T^D и акцептора k_T^A . Константа скорости перехода молекул донора в триплетное состояние через возбужденное синглетное состояние k_0 , которая зависит от мощности возбуждения. Константа скорости передачи триплетных возбуждения k_{ex} . Здесь не учитываются пары, в которых молекулы донора находятся в возбужденном синглетном, а молекулы акцептора в основном состояниях, поскольку их числом можно пренебречь.

Квантовая интенсивность фосфоресценции молекул донора прямо пропорциональна их числу в триплетном состоянии. Поэтому для нее справедливо равенство

$$I(t) = k_r [N_2(t) + N_4(t)] = k_r N_T(t),$$
(1)

где k_r — константа скорости излучательной дезактивации триплетных возбуждений донора; $N_T(t) =$ $= N_2(t) + N_4(t)$. Зависимости $N_2(t)$ и $N_4(t)$ находим из следующей системы уравнений, описывающей модель, представленную на рис. 1:

$$\frac{dN_1}{dt} = -k_0 N_1 + k_T^D N_2 + k_T^A N_3, \tag{2}$$

$$\frac{dN_2}{dt} = -(k_T^D + k_{\rm ex})N_2 + k_0N_1 + k_T^A N_4, \qquad (3)$$

$$\frac{dN_3}{dt} = -(k_T^A + k_0)N_3 + k_{\rm ex}N_2 + k_T^D N_4, \qquad (4)$$

$$\frac{dN_4}{dt} = -(k_T^D + k_T^A)N_4 + k_0N_3,$$
(5)

$$N_1 + N_2 + N_3 + N_4 = N_0. (6)$$

Здесь N_0 — общее число пар, которое не изменяется. В начальный момент времени $(t = 0) N_1 = N_0$.

Константы скоростей дезактивации триплетных возбуждений k_T большинства органических соединений в твердых матрицах при низких температурах известны или легко определяются из кинетики затухания фосфоресценции их однокомпонентных растворов [1]. Подставляя известные значения k_T^D и k_T^A и задавая значения k_0 и $k_{\rm ex}$ получаем решение (2)–(5) для $N_2(t)$ и $N_4(t)$. Зависимость I(t) рассчитываем согласно (1). Варьируя параметрами k_0 и $k_{\rm ex}$, устанавливаем их влияние на распределение молекул в парах N_2 и N_4 и на характер кинетики разгорания фосфоресценции донора.

Рис. 2. Кинетика накопления пар N_2 при различных значениях k_0 , s⁻¹: I = 0.1, 2 = 0.5, 3 = 2.0, 4 = 3.0.

Рис. 3. Кинетика накопления пар N_4 при различных значениях k_0 , s⁻¹: I = 0.1, 2 = 0.5, 3 = 2.0, 4 = 3.0.

Результаты моделирования и их обсуждение

При исследовании зависимости кинетики разгорания и квантового выхода фосфоресценции донора от k_0 использовались следующие константы скоростей: $k_T^D = 1.0 \text{ s}^{-1}$, $k_T^A = 1.0 \text{ s}^{-1}$, $k_{\text{ex}} = 2.0 \text{ s}^{-1}$. Результаты предварительного моделирования показали, что для донорно-акцепторных пар со значениями констант скоростей, близкими к указанным выше, может проявляться зависимость характера разгорания и квантового выхода фосфоресценции от k_0 .

На рис. 2,3 приведены результаты моделирования зависимостей $N_2(t)$ и $N_4(t)$ при четырех значениях k_0 . С увеличением мощности возбуждения (k_0) число пар N_2^{st} и N_4^{st} при достижении стационарного режима $(t \to \infty)$ возрастает. Однако N_4^{st} увеличивается в большее число раз, чем N_2^{st} . При $k_0 = k_{\text{ex}} N_4^{\text{st}}$ становится рав-

Рис. 4. Кинетика накопления пар $(N_2 + N_4)$ при различных значениях k_0 , s⁻¹: I = 0.1, 2 = 0.5, 3 = 2.0, 4 = 3.0.

Рис. 5. Зависимость кинетики разгорания от k_0 , s⁻¹: 1 - 0.1, 2 - 0.5, 3 - 2.0, 4 - 3.0.

ным N_2^{st} . При дальнейшем увеличении $k_0 N_4^{\text{st}}$ превышает N_2^{st} . Особенностью кривой накопления пар $N_2(t)$ (рис. 2) является наличие экстремума (максимума), который обусловлен накоплением пар N_3 и N_4 . Максимум достигается тем раньше, чем больше k_0 . Наличие указанного максимума не влечет за собой существования подобного экстремума на кривой разгорания фосфоресценции донора, поскольку кривая зависимости суммы $N_2(t) + N_4(t)$ является гладкой (рис. 4).

О влиянии k_0 на характер и время разгорания фосфоресценции донора можно судить по зависимости $\ln(1 - I(t)/I^{st})$ от t. Линейная зависимость в этих координатах указывает на экспоненциальный характер кинетики [6]. Тангенс угла наклона к оси ординат равен времени разгорания фосфоресценции. На рис. 5 приведены кривые разгорания фосфоресценции донора в указанных координатах при тех же четырех значениях k_0 , что и на рис. 4. При слабом возбуждении (для данной пары

1*

Журнал технической физики, 2015, том 85, вып. 10

 $k_0 = 0.1 \, \text{s}^{-1}$) характер разгорания близок к экспоненциальному. При возрастании k_0 наблюдается отклонение от экспоненты, которое увеличивается с ростом k_0 (кривые 2–4 на рис. 5). Наряду с этим, сначала разгорание замедляется по мере возрастания k_0 (кривая 2 на рис. 5). Затем скорость разгорания возрастает на начальной стадии и становится больше чем для кривой 1, тогда как на далеких стадиях она становится меньше. Следствием этого является пересечение кривой 3 и кривой 1 на рис. 5. Столь сложный характер кинетики разгорания фосфоресценции донора и ее зависимость от k_0 обусловлены перераспределением молекул донора между парами N_2 , N_3 и N_4 в процессе возбуждения.

Таким образом, зависимость характера разгорания фосфоресценции донора изолированных донорно-акцепторных пар от мощности возбуждения может существенно отличаться от подобной зависимости для однокомпонентного раствора. Разгорание фосфоресценции однокомпонентных твердых растворов органических соединений происходит по экспоненте с характерным временем, которое всегда уменьшается с ростом мощности возбуждения [6].

Используя значения $q = (N_2^{\text{st}} + N_4^{\text{st}})/N_0$ кривых накопления (рис. 4), мы рассчитали изменение квантового выхода фосфоресценции донора при k_{0i} по отношению к его значению при $k_{01} = 0.1 \text{ s}^{-1}$. Расчеты основаны на следующих рассуждениях. Для квантового выхода фосфоресценции донора можно записать

$$\varphi = \frac{k_r N_T^{\rm st}}{k_a (N_0 - N_T^{\rm st})},\tag{7}$$

где k_a — константа скорости перехода молекул донора в возбужденное синглетное состояние, которая равна $k_a = \gamma k_0$, γ — величина постоянная, не зависящая от k_a . С учетом (7) для относительного изменения квантового выхода фосфоресценции донора после несложных преобразований имеем

$$\frac{\varphi_i}{\varphi_1} = \frac{k_{01}q_i(1-q_1)}{k_{0i}q_1(1-q_i)}.$$
(8)

Вычисленные с использованием (8) значения φ_i/φ_1 для различных значений k_0 приведены в таблице.

Как видно из таблицы, с увеличением мощности возбуждения квантовый выход фосфоресценции донора возрастает, чего не может быть для однокомпонентного раствора. Данный рост квантового выхода можно объяснить следующим образом. Триплетные возбуждения молекул донора, находящихся в парах N_2^{st} , испытывают тушение в результате передачи энергии молекулам акцептора.

Относительное изменение квантового выхода фосфоресценции донора при различных значениях k_0

$k_0, { m s}^{-1}$	0.1	0.5	2.0	3.0
$ \varphi_i/\varphi_1 $	1	1.12	1.39	1.43

Триплетные возбуждения молекул донора в парах N_4^{st} такого тушения не испытывают. Поэтому квантовый выход фосфоресценции молекул донора в парах N_4^{st} больше, чем молекул в парах N_2^{st} . С увеличением мощности возбуждения число пар N_4^{st} увеличивается относительно N_2^{st} (рис. 2, 3). В результате квантовый выход общего излучения пар N_2^{st} и N_4^{st} возрастает.

Заключение

Моделирование кинетики накопления триплетных возбуждений и разгорания фосфоресценции молекул донора изолированных донорно-акцепторных пар с использованием размеченного графа их состояний позволило получить новые сведения о влиянии мощности возбуждения на динамику и квантовый выход процесса. Особенностью предложенной кинетической модели является учет вклада в интенсивность фосфоресценции молекул донора излучения пар, в которых обе молекулы находятся в возбужденном триплетном состоянии. Учет вклада этого излучения в общую интенсивность фосфоресценции приводит к аномальной зависимости характера разгорания фосфоресценции донора от мощности возбуждения и зависимости ее квантового выхода от этой величины. Полученные зависимости необходимо учитывать, когда в экспериментальных исследованиях переноса энергии по обменно-резонансному механизму используются кинетические метолы.

Список литературы

- [1] Ермолаев В.Л., Бодунов Е.Н., Свешникова Е.Б. и др. Безызлучательный перенос энергии электронного возбуждения. Л.: Наука, 1977. 311 с.
- [2] Agranovich V.M., Hochstrasser R.M. Spectroscopy and excitation dynamics of condensed molecular system. Amsterdam: North-Holland, 1983. 701 c.
- [3] Куликова О.И., Желудкова Т.В., Солодунов В.В. // Изв. вузов. Физика. 2007. Т. 50. № 12. С. 3–8.
- [4] Осадько И.С., Щукина А.Л. // Изв. РАН. Сер. физ. 2012. Т. 76. № 3. С. 276–279.
- [5] Жданова Н.В., Добровольская И.А., Дерябин М.И. // ЖПС. 2011. Т. 78. № 6. С. 972–976.
- [6] Алфимов М.В., Бубен Н.Я., Приступа А.Н. и др. // Опт. и спектр. 1966. Т. 20. Вып. 3. С. 424–426.