07

Туннельные диоды GaAs:Si/GaAs:Be для многопереходных солнечных элементов, выращиваемые методом молекулярно-пучковой эпитаксии

© Г.В. Климко, Т.А. Комиссарова, С.В. Сорокин, Е.В. Контрош, Н.М. Лебедева, А.А. Усикова, Н.Д. Ильинская, В.С. Калиновский, С.В. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: gklimko@mail.ru

Поступило в Редакцию 27 апреля 2014 г.

Представлены результаты оптимизации конструкции и технологии роста методом молекулярно-пучковой эпитаксии гетероструктур туннельных диодов (ТД) N-AlGaAs:Si/n⁺-GaAs:Si/p⁺-GaAs:Be/P-AlGaAs:Be. Достигнутый уровень пикового тока $J_p = 513$ A/cm² позволяет использовать полученный ТД для соединения каскадов как в структурах многопереходных солнечных элементов, так и в структурах туннельно-связанных лазерных диодов. Наблюдающаяся нелинейность начального хода ВАХ объясняется остаточным потенциальным барьером в изотипном $p^+ - P - p^+$ -гетеропереходе, ограничивающим активную область ТД, вследствие неоптимального легирования твердого раствора $Al_{0.4}Ga_{0.6}As$.

Туннельные диоды (ТД) Лео Эсаки (Leo Esaki) [1] являются неотьемлемой частью ряда полупроводниковых приборов, таких как генераторы сигналов и высокочастотные переключатели. Также они являются основным компонентом электрической схемы структур многопереходных солнечных элементов (СЭ) [2]. Цель данной работы состояла в разработке технологии получения методом молекулярно-пучковой эпитаксии (МПЭ) ТД с высоким уровнем пикового тока (более 30 A/cm²), необходимого для соединения каскадов многопереходных СЭ, использующих концентраторы солнечного излучения. В соответствии с имеющимися литературными данными [3–6], основными факторами, определяющими значение пикового тока (J_p , A/cm²) ТД, которые получены различными методами, являются температура эпитаксиального роста, высокие

82

Параметры тестовых структур туннельных диодов

Образец	T_S , °C	n^+ (GaAs:Si), cm ⁻³	p^+ (GaAs:Be), cm ⁻³	d, nm	J_p , A/cm ²	V_p, V
A (1-638)	430	$7.2\cdot10^{18}$	$2.5\cdot10^{19}$	20	$9\cdot 10^{-4}$	0.09
B (1-752)	400	$1.2\cdot10^{19}$	$5\cdot 10^{19}$	20	3.05	0.42
C (1-755)	400	$> 1.2 \cdot 10^{19}$	$5\cdot 10^{19}$	13	513	1.13

уровни легирования донорной и акцепторной примесями, а также толщина *p*- и *n*-областей. Достижение высоких уровней концентрации носителей ($n > 10^{19} \text{ cm}^{-3}$) при легировании GaAs кремнием при МПЭ является достаточно сложной задачей, в отличие от MOCVD [5], где рост слоев происходит в условиях сильного пресыщения по V группе (V/III \gg 1). В представленной работе продемонстрированы различные технологические подходы, позволяющие увеличить уровни легирования *p*- и *n*-областей ТД *n*-GaAs:Si/p-GaAs:Be при МПЭ, а также приводятся и обсуждаются вольт-амперные характеристики (BAX) гетероструктур выращенных ТД.

Структуры туннельных диодов AlGaAs/GaAs:Si/GaAs:Be были выращены на подложках n^+ -GaAs : Si (001) с использованием двухкамерной установки МПЭ (SemiTEq, Россия). Ростовая камера соединений АЗВ5 оснащена стандартными эффузионными источниками материалов Ga и Al, Si и Be (для n- и p-легирования соответственно), а также клапанным источником мышьяка с высокотемпературным разложителем (Veeco). Температура зоны разложения мышьяка составила 570°С, что соответствует преимущественному потоку четырехатомных молекул As₄. Процесс роста контролировался in situ при помощи метода дифракции быстрых электронов на отражение (ДБЭО). Нагрев подложки осуществлялся радиационным бесконтактным способом. Для сопоставлений показаний термопары с фактической температурой подложки был использован набор реперных точек: $T \sim 510^{\circ}$ C, соответствующая переходу реконструкции поверхности GaAs(001) из (2×4) As в $c(4 \times 4)$ As при известном падающем потоке As (см. статическую фазовую диаграмму GaAs(001) в [7]), и $T \sim 580^{\circ}$, соответствующая слету окисла с поверхности epi-ready подложки GaAs.

Конструкция тестовых структур ТД (рис. 1) была обусловлена задачей объединения нескольких каскадов СЭ. Тестовые структу-

Рис. 1. Дизайн структур А, В и С.

ры ТД (см. таблицу) были выращены на подложках *n*-GaAs(100) $(n = 2 \cdot 10^{18} \text{ cm}^{-3})$ и содержали буферный слой *n*-GaAs:Si с таким же уровнем легирования, нижний широкозонный ограничивающий слой (аналог широкозонного окна в структурах СЭ) *n*-Al_{0.4}Ga_{0.6}As:Si толщиной 50 nm $(n = 2 \cdot 10^{18} \text{ cm})$, активную область ТД *n*⁺-GaAs:Si/*p*⁺-GaAs:Be толщиной d = 10 - 20 nm, верхний слой *p*-Al_{0.4}Ga_{0.6}As: Be $(p = 2 \cdot 10^{18} \text{ cm})$, активную область ТД *n*⁺-GaAs:Si/*p*⁺-GaAs:Be толщиной d = 10 - 20 nm, верхний слой *p*-Al_{0.4}Ga_{0.6}As: Be $(p = 2 \cdot 10^{18} \text{ cm}^3)$, аналог тыльного барьера СЭ, приконтактный 300-nm слой *p*⁺-GaAs:Be $(p = 3 \cdot 10^{19} \text{ cm}^{-3} \text{ для образцов В}$ и C, и $p = 1 \cdot 10^{19} \text{ cm}^{-3}$ для образца A соответственно) и контактный 10-nm слой *p*⁺-GaAs:Be с уровнем легирования $p = 5 \cdot 10^{19} \text{ cm}^{-3}$. Для проверки уровней легирования *p*- и *n*-слоев в структурах ТД были проведены холловские измерения на тестовых слоях (Al)GaAs:Be и (Al)GaAs:Si при 300 K, выращенных при тех же условиях МПЭ и температурах источников легирующей примеси.

Известно, что одним из основных параметров, влияющих на максимально достижимый уровень легирования GaAs при МПЭ, является температура эпитаксиального роста. В структурах тестовых

ТД рост буферного слоя GaAs:Si и первого широкозонного барьера Al_{0.4}Ga_{0.6}As : Si осуществлялся при температуре $T_S = 580^{\circ}$ C, после чего T_S снижалась до уровня 400–430°C с целью увеличения встраивания легирующей примеси Si [8] и предотвращения сегрегации и аномальной диффузии Be [9]. Далее T_S оставалась неизменной до окончания роста структуры. Параметры структур тестовых ТД GaAs:Si/GaAs:Be приведены в таблице. В образце C для увеличения эффективного уровня легирования *n*-типа использовали модулированное δ -легирование кремнием [8,10] посредством формирования четырех δ -слоев Si (с поверхностной плотностью атомов Si 6 · 10¹² cm²) на расстоянии 1.5 nm друг от друга в n^+ -GaAs:Si, при этом температура источника Si (T_{Si}) соответствовала уровню легирования $n \sim 1.2 \cdot 10^{19}$ cm⁻³ в объемном слое n^+ -GaAs:Si при используемых параметрах МПЭ.

Для проведения электрических измерений с помощью фотолитографии и химического травления были изготовлены меза-структуры различного диаметра с омическими контактами AuGe-Ni-Au и AgMn-Ni-Au к *n*- и *p*-GaAs соответственно. Температура вжигания контактов в атмосфере водорода находилась в диапазоне 500–520°С.

В [5] подробно объясняется необходимость сильного легирования как *n*-, так и *p*-области туннельных диодов до уровня $6 \cdot 10^{19} \text{ cm}^{-3}$, однако для объединения каскадов СЭ в единую структуру достаточно обеспечить туннельный ток не менее $J_p \sim 0.1 \text{ A/cm}^2$ без использования концентраторов солнечного излучения и до 20 А/сm² при использовании концентраторов [11]. Тем не менее при максимальном уровне легирования GaAs: Si $n = 7.2 \cdot 10^{18} \text{ cm}^{-3}$, достижимом при использовании высокой $T_S = 580^{\circ}$ С при МПЭ GaAs, значение пикового тока оказывается существенно ниже требуемых значений и не превышает $J_p = 1 \cdot 10^{-3} \text{ A/cm}^2$ (образец A) (рис. 2).

Увеличение уровня легирования кремнием из стандартного эффузионного источника требует снижения T_S до неоптимального для роста значения $T_S = 400^{\circ}$ С. В то же время низкая T_S препятствует взаимной диффузии примесей в сильно легированных слоях n^+ -GaAs:Si и p^+ -GaAs:Be. Снижение температуры эпитаксиального роста до $T_S = 400^{\circ}$ С позволило расширить рабочий диапазон используемых T_{Si} [8] и более чем в 1.5 раза увеличить концентрацию носителей заряда в GaAs:Si (до $n = 1.2 \cdot 10^{19}$ cm⁻³), что, в свою очередь, привело к увеличению уровня пикового тока диода до $J_p = 3.05$ A/cm² (структура В). Для дальнейшего увеличения пикового тока ТД было предложено

Рис. 2. ВАХ туннельного диода А. ВАХ измерена на мезаструктурах с площадью контакта 0.09 cm².

уменьшить толщину *n*- и *p*-слоев ТД до d = 7 nm и использовать модулированное δ -легирование кремнием слоев n^+ -GaAs:Si. В результате пиковое значение тока в образце С составило $J_p = 513$ A/cm² при отношении пик-долина ~ 25 . При этом нужно отметить, что достигнутое в образце В значение пикового тока ТД $J_p = 3.05$ A/cm² (рис. 3, *a*) также превышает уровень, необходимый для использования ТД в структурах многопереходных СЭ при 200-кратном концентрировании солнечного излучения [11].

ВАХ туннельных диодов В и С приведены на рис. 3. Наблюдаемая нелинейность начального хода ВАХ в указанных структурах ТД может быть вызвана недостаточным уровнем легирования барьера *p*-AlGaAs толщиной 50 nm, имитирующим тыльный барьерный слой следующего каскада СЭ, который заключен в гетероструктуре ТД между вырожденными слоями активной области ТД (p^{++} -GaAs) и контактного слоя p^+ -GaAs. Данную нелинейность, по всей вероятности, можно исключить увеличением в несколько раз концентрации Ве акцептора в широкозонном барьерном слое Al_{0.4}Ga_{0.6}As : Ве изотипного гетероперехода p^+-P-p^+ , что не представляет большой трудности.

Рис. 3. ВАХ туннельных диодов В (a) и С (b). ВАХ измерены на мезаструктурах с различными диаметрами контакта d.

Таким образом, методом МПЭ выращены структуры туннельных диодов в системе AlGaAs, демонстрирующие значения пикового тока вплоть до 513 A/cm², что более чем на порядок превышает уровень, необходимый для использования этих ТД в структурах эффективных многопереходных СЭ (Al)GaAs. Продемонстрированы технологические подходы, позволившие повысить максимальный уровень *n*-легирования GaAs: Si с 7 · 10¹⁸ до < $1.2 \cdot 10^{19}$ cm³ и соответственно увеличить более чем на 4 порядка значение пикового тока ТД.

Работа поддержана Министерством образования и науки РФ (проект № 14.604.21.0008 от 17.06.2014 г. с уникальным идентификатором ПНИ RFMEFI60414X0008).

Список литературы

- [1] Esaki L. // Phys. Rev. 1958 V. 109. N 2. P. 603.
- [2] Guter W., Schone J., Philipps S.P., Steiner M., Siefer G., Wekkeli A. et al. // Appl. Phys. Lett. 2009. V. 94 P. 223 504 (1-3).
- [3] Ohno T., Oyama Y. // Sci. Technol. Adv. Mater. 2012 V. 13. P. 013 002.
- [4] Ahmed S., Melloch M.R., Harmon E.S., McInturff D.T., Woodall J.M. // Appl. Phys. Lett. 1997. V. 71. P. 3667.
- [5] Винокуров Д.А., Ладугин М.А., Мармалюк А.А., Падалица А.А., Пихтин Н.А., Симаков В.А., Сухарев А.В., Фетисова Н.В., Шамахов В.В., Тарасов И.С. // ФТП. 2009. Т. 43. В. 9. С. 1253–1256.
- [6] Pan J.L., McManis J.E., Grober L., Woodall J.M. // Sol. Stat. Electron. 2004.
 V. 48. P. 2067–2070.
- [7] Преображенский В.В., Путято М.А., Семягин Б.Р. // ФТП. 2002. Т. 36.
 В. 8. С. 897–901.
- [8] Kohler K., Ganser P., Maier M. // J. Cryst. Growth. 1993. V. 127 P. 720-723.
- [9] Ivanov S.V., Kop'ev P.S., Ledentsov N.N. // J. Crystal Growth. 1991. V. 108. P. 661.
- [10] Копьев П.С., Будза А.А., Иванов С.В., Мельцер Б.Я., Надточий М.Ю., Устинов В.М. // Письма в ЖТФ. 1989. Т. 15. В. 8. С. 68–71.
- [11] Лантратов В.М., Калюжный Н.А., Минтаиров С.А., Тимошина Н.Х., Шварц М.З., Андреев В.М. // ФТП. 2007. Т. 41 В. 6. С. 751–755.