03

# Электронный обмен между примесными центрами олова в халькогенидах свинца

© А.В. Марченко<sup>1</sup>, Д.В. Жилина<sup>2</sup>, К.У. Бобохужаев<sup>3</sup>, А.В. Николаева<sup>1</sup>, Е.И. Теруков<sup>2</sup>, П.П. Серегин<sup>1</sup>

 <sup>1</sup> Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия
 <sup>2</sup>Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 <sup>3</sup> Национальный университет Узбекистана им. М. Улугбека, Ташкент, Узбекистан

E-mail: ppseregin@mail.ru

(Поступила в Редакцию 22 апреля 2015 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе  $^{119mm}$ Sn( $^{119m}$ Sn) исследован процесс электронного обмена между нейтральными и двукратно ионизованными U-минус центрами олова в частично компенсированных твердых растворах Pb<sub>0.96</sub>Sn<sub>0.02</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S, Pb<sub>0.99</sub>Sn<sub>0.005</sub>Na<sub>0.005</sub>S, Pb<sub>0.965</sub>Sn<sub>0.015</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>Se и Pb<sub>0.988</sub>Sn<sub>0.005</sub>Na<sub>0.005</sub>Se. Энергия активации указанного процесса для твердых растворов на основе PbS составляет 0.11(2) eV и сравнима с глубиной залегания энергетических уровней олова в запрещенной зоне PbS, тогда как для твердых растворов на основе PbSe энергия активации указанного процесса сравнима с корреляционной энергией донорных U-минус центров олова в PbSe и составляет 0.05(1) eV. Обмен осуществляется путем переноса одновременно двух электронов с использованием состояний валентной зоны.

### 1. Введение

Впервые Хаббард [1] провел теоретический анализ поведения точечных дефектов, способных при взаимодействии с кристаллической решеткой отдавать (принимать) два электрона. В запрещенной зоне полупроводников в этом случае образуются две полосы локализованных состояний, разделенные на величину внутриатомной энергии (энергия Хаббарда, или корреляционная энергия)  $U = E_2 - E_1$ , где  $E_1$  и  $E_2$  — первая и вторая энергии ионизации центра. Если U < 0, то возникает схема уровней, для обозначения которой принят термин "двухэлектронные центры с отрицательной корреляционной энергией" (*U*-минус центры).

Основные результаты по идентификации U-минус центров в полупроводниках были получены с использованием различных методик ЭПР и фото-ЭПР [1-3]. В частности, именно с помощью указанных методик были идентифицированы U-минус центры, образованные примесными атомами цинка в кремнии [4]. Позднее эти выводы были подтверждены методом эмиссионной мессбауэровской спектроскопии на изотопах <sup>67</sup>Cu(<sup>67</sup>Zn) [5]. Методом эмиссионной мессбауэровской спектроскопии были также идентифицированы донорные U-минус центры олова в халькогенидах свинца [6-8] и определены параметры микроскопической модели *U*-минус центров олова [9–11] (отметим, что впервые Драбкин и Мойжес высказали предположение о возможности существования И-минус центров в халькогенидах свинца и с U-минус центрами отождествляли резонансные состояния примесей индия и таллия в PbS и PbSe [3]).

Однако остается открытым вопрос о возможности существования электронного обмена между нейтральными и ионизованными U-минус центрами в полупроводниках. Впервые попытка наблюдения электронного обмена между нейтральными и ионизованными состояниями *U*-минус центров была сделана в работах [12,13] для случая примесных атомов олова в халькогенидах свинца. Однако использовался абсорбционный вариант мессбауэровской спектроскопии, что ограничило верхнюю границу температурного интервала (~ 300 K) и это не позволило наблюдать процесс быстрого электронного обмена. В [6-8,14,15] для целей идентификации U-минус центров в полупроводниках была предложена эмиссионная мессбауэровская спектроскопия, что позволяет использовать для измерения мессбауэровских спектров резонансный детектор и как результат существенно увеличить верхнюю границу температурного интервала измерения спектров.

Настоящая работа посвящена исследованию процесса электронного обмена между нейтральными и ионизованными донорными U-минус центрами олова в сульфиде и селениде свинца методом эмиссионной мессбауэровской спектроскопии на изотопах <sup>119mm</sup>Sn(<sup>119m</sup>Sn) с использованием резонансного детектора.

## 2. Методика эксперимента

Твердые растворы  $Pb_{0.99}Sn_{0.01}S$ ,  $Pb_{0.97}Sn_{0.01}Na_{0.01}Tl_{0.01}S$ ,  $Pb_{0.96}Sn_{0.02}Na_{0.01}Tl_{0.01}S$ ,  $Pb_{0.99}Sn_{0.005}Na_{0.005}S$ ,  $Pb_{0.99}Sn_{0.01}Se$ ,  $Pb_{0.975}Sn_{0.005}Na_{0.01}Tl_{0.01}Se$ ,  $Pb_{0.965}Sn_{0.015}Na_{0.01}Tl_{0.01}Se$  и  $Pb_{0.988}Sn_{0.005}Na_{0.007}Se$  получались сплавлением ис-

ходных компонентов полупроводниковой чистоты в вакуумированных кварцевых ампулах с последующим отжигом сначала слитков, а затем спрессованных порошков при 650°C в течение 120 h. Все образцы были однофазными и имели структуру типа NaCl. Образцы Pb<sub>0.99</sub>Sn<sub>0.01</sub>S и Pb<sub>0.99</sub>Sn<sub>0.01</sub>Se содержали сверхстехиометрический свинец, были вырожденными  $Pb_{0.97}Sn_{0.01}Na_{0.01}Tl_{0.01}S$ , электронными, образцы Рb<sub>0.975</sub>Sn<sub>0.005</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>Se, Pb<sub>0.965</sub>Sn<sub>0.015</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>Se и Pb0.988Sn0.005Na0.007Se были вырожденными дырочными (при 80 и 295 К концентрация дырок составляла  $\sim 3 \cdot 10^{19}\, cm^{-3}),$  образцы  $Pb_{0.96} Sn_{0.02} Na_{0.01} Tl_{0.01} S$  и  $Pb_{0.99}Sn_{0.005}Na_{0.005}S$  были невырожденными дырочными (концентрация дырок менялась от  $\sim 5\cdot 10^{13}\,cm^{-3}$  при 80 К до  $\sim 10^{17}$  сm<sup>-3</sup> при 295 К). Такое поведение концентрации носителей тока в твердых растворах объясняется тем, что в сульфиде свинца сверхстехиометрический свинец образует мелкие одноэлектронные донорные состояния на фоне зоны проводимости, примесные атомы натрия и таллия образуют мелкие одноэлектронные акцепторные состояния на фоне валентной зоны, тогда как энергетические уровни примесных атомов олова лежат в нижней половине запрещенной зоны PbS и на фоне состояний валентной зоны PbSe [9-11].

Мессбауэровские источники готовили с использованием препарата металлического  $^{118}Sn$ , облученного потоком нейтронов  $\sim 10^{15}\,cm^{-2}\cdot s^{-1}$  в течение шести месяцев.

Мессбауэровские спектры измерялись на спектрометре СМ 4201 TerLab с резонансным сцинтилляционным детектором, позволяющим повысить эффективность регистрации спектров (использовался пластмассовый сцинтиллятор с равномерно распределенными по объему частицами конвертора SnO<sub>2</sub>, приготовленного из обогащенного до 96% изотопа <sup>119</sup>Sn). Сдвиги спектров даны относительно поглотителя SnO<sub>2</sub>. За аппаратурную ширину спектральной линии принималась ширина экспериментального спектра с источником Ca<sup>119mm</sup>SnO<sub>3</sub> (0.80(1) mm/s).

# 3. Экспериментальные результаты и обсуждение

В качестве первого этапа было предпринято исследование температурных зависимостей центрального сдвига мессбауэровских спектров образцов, содержащих либо только нейтральное, либо только ионизованное состояние примесных атомов олова.

Исходя из литературных данных [6–9,11] предполагалось, что олово, являясь изоэлектронной примесью в PbS, образует в нижней половине запрещенной зоны донорные уровни. Очевидно, что только нейтральное состояние центров олова можно реализовать в электронном материале. В качестве такого материала для твердых растворов на основе сульфида свинца был выбран состав Pb<sub>0.99</sub>Sn<sub>0.01</sub>S, содержащий сверхстехиомет-



**Рис. 1.** Эмиссионные мессбауэровские спектры  $^{119mm}$ Sn( $^{119m}$ Sn) твердых растворов Pb<sub>0.99</sub>Sn<sub>0.01</sub>S (*a*, *b*) и Pb<sub>0.97</sub>  $^{119mm}$ Sn<sub>0.01</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S (*c*, *d*) при различных температурах. Показано положение синглетных линий, отвечающих центрам Sn<sub>6</sub><sup>2+</sup> и Sn<sub>6</sub><sup>4+</sup>.

рический свинец. Эмиссионные мессбауэровские спектры  $^{119mm}$ Sn( $^{119m}$ Sn) твердого раствора Pb<sub>0.99</sub>Sn<sub>0.01</sub>S в интервале температур 80–900 К представляли собой одиночные линии (рис. 1), центральный сдвиг которых слабо зависит от температуры и близок к центральному сдвигу мессбауэровского спектра сульфида двухвалентного шестикоординированного олова (3.69(1) mm/s при 80 K). Таким образом, следует заключить, что эмиссионные мессбауэровские спектры твердого раствора Pb<sub>0.99</sub>Sn<sub>0.01</sub>S относятся к центрам двухвалентного шестикоординированного олова Sn<sub>6</sub><sup>2+</sup> в катионной подрешетке

PbS, которые отвечают нейтральному состоянию донорного *U*-минус центра олова.

Только полностью ионизованное состояние центров олова в твердых растворах на основе сульфида свинца следует наблюдать в компенсированном дырочном материале (когда концентрации олова N<sub>Sn</sub> и мелкого акцептора N<sub>A</sub> удовлетворяют соотношению  $N_A \ge 2N_{
m Sn}$ ). В качестве такого материала был выбран состав  $Pb_{0.97}Sn_{0.01}Na_{0.01}Tl_{0.01}S$ . Эмиссионные мессбауэровские спектры  $^{119mm}Sn(^{119m}Sn)$  твердого раствора Pb<sub>0.97</sub>Sn<sub>0.01</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S в интервале температур 80-900 К представляли собой одиночные линии (рис. 1), центральный сдвиг которых слабо зависит от температуры и близок к центральному сдвигу мессбауэровского спектра <sup>119</sup>Sn сульфида четырехвалентного шестикоординированного олова (1.26(1) mm/s при 80 K). Таким образом, следует заключить, что спектры твердого раствора  $Pb_{0.97}Sn_{0.01}Na_{0.01}Tl_{0.01}S$  относятся к центрам четырехвалентного шестикоординированного олова Sn<sub>6</sub><sup>4+</sup> в катионной подрешетке PbS, которые отвечают двукратно ионизованному состоянию донорного U-минус центра олова.

Ширины мессбауэровских спектров центров  $\mathrm{Sn}_6^{2+}$  и  $\mathrm{Sn}_6^{4+}$  в PbS близки к аппаратурной при 80 и 295 К (~ 0.80 mm/s), и увеличиваются с повышением температуры (достигая значения ~ 1.1 mm/s при 900 К), что объясняется диффузионным уширением.

Аналогичные результаты были получены и для эмиссионных мессбауэровских случая спектров  $^{119mm}$ Sn $(^{119m}$ Sn)твердых растворов Pb<sub>0.99</sub>Sn<sub>0.01</sub>Se и  $Pb_{0.975}Sn_{0.005}Na_{0.01}Tl_{0.01}S$  (с учетом того, что энергетические уровни примесных атомов олова лежат на фоне валентной зоны PbSe [10,11], только полностью ионизованное состояние центров олова следует наблюдать в сильно перекомпенсированном дырочном материале, когда  $N_A \gg 2N_{\rm Sn}$ ). Мессбауэровские спектры твердого раствора Pb<sub>0.99</sub>Sn<sub>0.01</sub>Se относятся к центрам  $Sn_6^{2+}$  в катионной подрешетке PbSe (они отвечают нейтральному состоянию донорного U-минус центра олова), а мессбауэровские спектры твердых растворов Pb<sub>0.975</sub>Sn<sub>0.005</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>Se относятся к центрам Sn<sub>6</sub><sup>4+</sup> в катионной подрешетке PbSe (они отвечают двукратно ионизованному состоянию донорного U-минус центра олова). Ширины мессбауэровских спектров центров  ${\rm Sn}_6^{2+}$  и  ${\rm Sn}_6^{4+}$  в PbSe близки к аппаратурной при  $80 \, \text{K} \ (\sim 0.90 \, \text{mm/s})$  и увеличиваются с повышением температуры (достигая значения  $\sim 1 \text{ mm/s}$  при 600 K), что объясняется диффузионным уширением.

В общем случае центральный сдвиг S мессбауэровских спектров определяется изомерным  $\delta$  и квадратичным доплеровским D сдвигами

$$S = \delta + D, \tag{1}$$

причем температурная зависимость центрального сдвига определяется температурной зависимостью *D*, которая в



**Рис. 2.** Теоретическая температурная зависимость доплеровского сдвига мессбауэровского спектра изотопа <sup>119</sup>Sn для дебаевской температуры  $\Theta = 180 \text{ K}$  (показана сплошной линией) и экспериментальные температурные зависимости центральных сдвигов мессбауэровских спектров для центров Sn<sub>6</sub><sup>2+</sup> и Sn<sub>6</sub><sup>4+</sup> в твердых растворах на основе PbS и PbSe.  $I - \text{Sn}_6^{4+}$  в твердых растворах Pb<sub>0.97</sub>Sn<sub>0.01</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S,  $2 - \text{Sn}_6^{2+}$  в твердых растворах Pb<sub>0.99</sub>Sn<sub>0.01</sub>S,  $3 - \text{Sn}_6^{4+}$  в твердых растворах Pb<sub>0.975</sub>Sn<sub>0.005</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>Se,  $4 - \text{Sn}_6^{2+}$  в твердых растворах Pb<sub>0.99</sub>Sn<sub>0.01</sub>Se.

дебаевском приближении имеет вид

$$D = -\frac{3}{2} E_0 \frac{k\Delta T}{Mc^2} f\left(\frac{\Delta T}{\Theta}\right),\tag{2}$$

где  $E_0$  — энергия изомерного перехода для изотопа <sup>119m</sup>Sn, k — постоянная Больцмана, M — масса атомаизлучателя, c — скорость света в вакууме,  $\Theta$  — температура Дебая исследуемого материала,  $f\left(\frac{\Delta T}{\Theta}\right)$  — функция Дебая,  $\Delta T$  — разность температур, при которых измеряются мессбауэровские спектры образца.

На рис. 2 представлены теоретическая температурная зависимость доплеровского сдвига мессбауэровского спектра для изотопа <sup>119</sup>Sn (использована дебаевская температура 180 K) и экспериментальные температурные зависимости центральных сдвигов мессбауэровских спектров для описанных выше центров Sn<sub>6</sub><sup>2+</sup> и Sn<sub>6</sub><sup>4+</sup> в PbS и PbSe. Видно, что имеется удовлетворительное согласие теоретической и экспериментальных температурных зависимостей для мессбауэровских спектров обоих состояний примесных центров олова в сульфиде и селениде свинца.

На втором этапе было предпринято исследование температурных зависимостей центрального сдвига мессбауэровских спектров образца, содержащего одновременно



**Рис. 3.** Эмиссионные мессбауэровские спектры  $^{119mm}$ Sn( $^{119m}$ Sn) твердых растворов Pb<sub>0.96</sub>Sn<sub>0.02</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S при различных температурах. Показано положение линий, отвечающих центрам Sn<sub>6</sub><sup>2+</sup> и Sn<sub>6</sub><sup>4+</sup>.

нейтральное и ионизованное состояния примесных атомов олова. В качестве таких материалов были выбраны составы  $Pb_{0.96}Sn_{0.02}Na_{0.01}Tl_{0.01}S$ ,  $Pb_{0.99}Sn_{0.005}Na_{0.005}S$ ,  $Pb_{0.965}Sn_{0.015}Na_{0.01}Tl_{0.01}Se$  и  $Pb_{0.988}Sn_{0.005}Na_{0.007}Se$ . Эмиссионные мессбауэровские спектры  $^{119m}Sn(^{119m}Sn)$  указанных твердых растворов при 80 К представляют собой суперпозицию двух линий аппаратурной ширины, центральные сдвиги которых отвечают центрам  $Sn_6^{2+}$  и  $Sn_6^{4+}$  (в качестве примера на рис. 3 представляены

спектры твердых растворов Pb<sub>0.96</sub>Sn<sub>0.02</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S). Тот факт, что в спектрах частично компенсированных образцов не наблюдается линия, относящаяся к однократно ионизованному центру Sn<sub>6</sub><sup>3+</sup>, подтверждает вывод, что олово в решетках PbS и PbSe образует двухэлектронные центры с отрицательной корреляционной энергией (поскольку для таких центров состояние Sn<sub>6</sub><sup>3+</sup> является неустойчивым, распадающимся по реакции диспропорционирования  $2Sn_6^{3+} \rightarrow Sn_6^{2+} + Sn_6^{4+}$ ). Наблюдение дополнительных линий в абсорбционных мессбауэровских спектрах примесных атомов <sup>119</sup>Sn в частично компенсированном сульфиде свинца в работах [12,16] связано с формирование в образцах оксихалькогенидов олова при их диспергировании на воздухе в процессе приготовления поглотителей (см., например, [17]).

Как видно из рис. 3, повышение температуры сопровождается уменьшением относительной интенсивности линии  $\mathrm{Sn}_6^{2+}$  в спектре  $\mathrm{Pb}_{0.96}\mathrm{Sn}_{0.02}\mathrm{Na}_{0.01}\mathrm{Tl}_{0.01}\mathrm{S}$ , что объясняется более резкой температурной зависимостью коэффициента Мессбауэра для соединений двухвалентного олова по сравнению с соединениями четырехвалентного олова. С повышением температуры линии  $\mathrm{Sn}_6^{2+}$  и  $\mathrm{Sn}_6^{4+}$  в спектрах твердых растворов  $\mathrm{Pb}_{0.96}\mathrm{Sn}_{0.02}\mathrm{Na}_{0.01}\mathrm{Tl}_{0.01}\mathrm{S}$ ,  $\mathrm{Pb}_{0.995}\mathrm{Sn}_{0.005}\mathrm{Na}_{0.005}\mathrm{S}$ ,  $\mathrm{Pb}_{0.965}\mathrm{Sn}_{0.015}\mathrm{Na}_{0.01}\mathrm{Tl}_{0.01}\mathrm{S}$  и  $\mathrm{Pb}_{0.988}\mathrm{Sn}_{0.005}\mathrm{Na}_{0.007}\mathrm{S}$  уширяются и сближаются.

Спектры на рис. 3 иллюстрируют типичную картину электронного обмена между двумя состояниями  $\mathrm{Sn}_6^{2+}$  и  $\mathrm{Sn}_6^{4+}$ . Отсутствие в спектрах промежуточного зарядового состояния центров олова  $\mathrm{Sn}_6^{3+}$  свидетельствует о том, что обмен осуществляется путем переноса одновременно двух электронов.

Для определения частоты электронного обмена обработка экспериментальных спектров (т. е. зависимости скорости счета детектора N от скорости движения источника V) проводилась методом наименьших квадратов в предположении, что форма спектральной линии определяется соотношением [18]

1

$$\mathbf{V}(V) = -\frac{AC + BD}{C^2 + D^2},\tag{3}$$

где

$$\begin{split} A &= J_{\mathrm{Sn}_{6}^{2+}} \big( G_{\mathrm{Sn}_{6}^{4+}} + \tau_{\mathrm{Sn}_{6}^{4+}}^{-1} + \tau_{\mathrm{Sn}_{6}^{2+}}^{-1} \big), \\ B &= J_{\mathrm{Sn}_{6}^{2+}} \big( \delta_{\mathrm{Sn}_{6}^{4+}} - V \big) + J_{\mathrm{Sn}_{6}^{4+}} \big( \delta_{\mathrm{Sn}_{6}^{2+}} - V \big), \\ C &= \big( G_{\mathrm{Sn}_{6}^{2+}} + \tau_{\mathrm{Sn}_{6}^{2+}}^{-1} \big) \big( G_{\mathrm{Sn}_{6}^{4+}} + \tau_{\mathrm{Sn}_{6}^{4+}}^{-1} \big) \\ &- \big( \delta_{\mathrm{Sn}_{6}^{2+}} - V \big) \big( \delta_{\mathrm{Sn}_{6}^{4+}} - V \big) - \tau_{\mathrm{Sn}_{6}^{2+}}^{-1} \tau_{\mathrm{Sn}_{6}^{4+}}^{-1}, \\ D &= \big( \delta_{\mathrm{Sn}_{6}^{2+}} - V \big) \big( G_{\mathrm{Sn}_{6}^{4+}} + \tau_{\mathrm{Sn}_{6}^{4+}}^{-1} \big) \\ &+ \big( \delta_{\mathrm{Sn}_{6}^{4+}} - V \big) \big( G_{\mathrm{Sn}_{6}^{2+}} + \tau_{\mathrm{Sn}_{6}^{2+}}^{-1} \big), \end{split}$$

 $J_{\mathrm{Sn}_6^{2+}},\,J_{\mathrm{Sn}_6^{4+}}$  — амплитуды линий  $\mathrm{Sn}_6^{2+}$  и  $\mathrm{Sn}_6^{4+}$  соответственно,  $G_{\mathrm{Sn}_6^{2+}},\,G_{\mathrm{Sn}_6^{4+}}$  — ширины линий  $\mathrm{Sn}_6^{2+}$  и  $\mathrm{Sn}_6^{4+}$ 



Рис. 4. Температурные зависимости частоты электронного  ${\rm Sn}_{6}^{4+}$ . обмена между центрами Sn<sub>6</sub><sup>2+</sup> И a лля  $^m$ Sn (1), Pb<sub>0.96</sub>Sn<sub>0.02</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S, содержащего И Pb0.99Sn0.005Na0.005S, содержащего <sup>119mm</sup>Sn (2); b — для <sup>119mm</sup>Sn Pb0.965Sn0.015Na0.01Tl0.01Se, содержащего (1), и Pb<sub>0.988</sub>Sn<sub>0.005</sub>Na<sub>0.007</sub>Se, содержащего <sup>119mm</sup>Sn (2). с — энергетические диаграммы донорных U-минус центров олова в PbS и PbSe при 100 К [11].

соответственно,  $\tau_{\text{Sn}_{6}^{2+}}$ ,  $\tau_{\text{Sn}_{6}^{4+}}$  — времена жизни центров  $\text{Sn}_{6}^{2+}$  и  $\text{Sn}_{6}^{4+}$  соответственно, причем из-за недостатка экспериментальных параметров принималось, что  $G_{\text{Sn}_{6}^{2+}} = G_{\text{Sn}_{6}^{4+}} = G$  и  $\tau_{\text{Sn}_{6}^{2+}} = \tau$ .

Результаты обработки спектров сведены на рис. 4, *a*, *b* в виде температурной зависимости частоты электронного обмена  $v = \tau^{-1}$  между центрами  $\text{Sn}_6^{2+}$  и  $\text{Sn}_6^{4+}$ . Энергия активации обмена для невырожденных твердых растворов  $\text{Pb}_{0.96}\text{Sn}_{0.02}\text{Na}_{0.01}\text{Tl}_{0.01}\text{S}$  и  $\text{Pb}_{0.99}\text{Sn}_{0.005}\text{Na}_{0.005}\text{S}$  составляет 0.11(2) eV, что соответствует расстоянию от уровня Ферми  $\mu$  до вершины валентной зоны в частично компенсированных дырочных твер-

дых растворах  $Pb_{1-x-y}Sn_xNa_yS$  в области низких температур (рис. 4, *c*) [9,11]. Энергия активации обмена для твердых растворов  $Pb_{0.965}Sn_{0.015}Na_{0.01}Tl_{0.01}Se$  и  $Pb_{0.988}Sn_{0.005}Na_{0.007}Se$  составляет 0.05(1) eV, что соответствует корреляционной энергии донорных *U*-минус центров олова в селениде свинца (рис. 4, *c*) [10,11]. Учитывая малую концентрацию примеси олова (когда невозможен процесс непосредственного обмена электронами между центрами олова), можно сделать вывод, что электронный обмен между центрами  $Sn_6^{2+}$  и  $Sn_6^{4+}$  в PbS и PbSe реализуется с использованием состояний валентной зоны. В пользу указанных механизмов электронного обмена свидетельствует и тот факт, что температурная зависимость частоты электронного обмена не зависит от концентрации олова (рис. 4, *a*, *b*).

### 4. Заключение

Методом эмиссионной мессбауэровской спектроскопии на изотопе <sup>119mm</sup>Sn(<sup>119m</sup>Sn) обнаружен процесс двухэлектронного обмена между нейтральными Sn<sub>6</sub><sup>2+</sup> и двукратно ионизованными Sn<sub>6</sub><sup>4+</sup> донорными U-минус центрами олова в частично компенсированных твердых растворах Pb<sub>0.96</sub>Sn<sub>0.02</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S, Pb<sub>0.99</sub>Sn<sub>0.005</sub>Na<sub>0.005</sub>S, Pb<sub>0.965</sub>Sn<sub>0.015</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>Se И Pb<sub>0.988</sub>Sn<sub>0.005</sub>Na<sub>0.007</sub>Se. Энергия активации обмена для твердых растворов Рb<sub>0.96</sub>Sn<sub>0.02</sub>Na<sub>0.01</sub>Tl<sub>0.01</sub>S и Pb<sub>0.99</sub>Sn<sub>0.005</sub>Na<sub>0.005</sub>S составляет 0.11(2) eV (это соответствует расстоянию от уровня Ферми до вершины валентной зоны в частично компенсированных дырочных твердых растворах), тогда как энергия активации обмена для твердых растворов Рb0.965Sn0.015Na0.01Tl0.01Se и Pb0.988Sn0.005Na0.007Se составляет 0.05(1) eV (это соответствует корреляционной энергии донорных U-минус центров олова в селениде свинца), так что в обоих случаях электронный обмен реализуется с использованием состояний валентной зоны.

## Список литературы

- J. Habbard. Proc. Roy. Soc. A 276, 238 (1963); A 277, 237 (1964); A 281, 401 (1964).
- [2] G.D. Watkins. Festkörperprobleme 24, 163 (1984); G.D. Watkins. In: Deep centers in semiconductors / Ed. S.T. Pantelides. Gordon&Breach, N.Y. (1986). Ch. 3.
- [3] И.А. Драбкин, Б.Я. Мойжес. ФТП 15, 625 (1981).
- [4] N.T. Bagraev. Semicond. Sci. Technol. 9, 61 (1994); Solid State Commun. 95, 365 (1995).
- [5] Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин, С.И. Бондаревский. ФТП 34, 275 (2000).
- [6] Ф.С. Насрединов, С.А. Немов, В.Ф. Мастеров, П.П. Серегин. ФТТ **41**, 1897 (1999).
- [7] N.P. Seregin, P.P. Seregin, S.F. Nemov, A.Y. Yanvareva. J. Phys.: Cond. Matter 15, 7591 (2003).
- [8] С.А. Немов, П.П. Серегин, Ю.В. Кожанова, Н.П. Серегин. ФТП 37, 1414 (2003).
- [9] С.А. Немов, Ф.С. Насрединов, П.П. Серегин, Н.П. Серегин, Э.С. Хужакулов. ФТП **39**, 309 (2005).

1933

- [10] С.А. Немов, Ф.С. Насрединов, П.П. Серегин, Н.П. Серегин, Э.С. Хужакулов. ФТП **39**, 669 (2005).
- [11] М.Ю. Кожокарь. Двухэлектронные центры олова с отрицательной корреляционной энергией в кристаллических и стеклообразных халькогенидных полупроводниках. Автореф. канд. дис. РГПУ им. А.И. Герцена, СПб (2013). 17 с.
- [12] Ф.С. Насрединов, Л.В. Прокофьева, А.Н. Курмантаев, П.П. Серегин. ФТТ **26**, 862 (1984).
- [13] Ф.С. Насрединов, Л.В. Прокофьева, П.П. Серегин. ЖЭТФ 87, 951 (1984).
- [14] Г.А. Бордовский, С.А. Немов, А.В. Марченко, П.П. Серегин. ФТП **46**, *3* (2012).
- [15] С.А. Немов, П.П. Серегин, С.М. Иркаев, Н.П. Серегин. ФТП **37**, 279 (2003).
- [16] Р.А. Кастро, С.А. Немов, П.П. Серегин. ФТП **40**, 927 (2006).
- [17] Л.Н. Васильев, К.В. Макеева, Ю.В. Крыльников, Л.Н. Серегина. Изв. АН СССР. Неорган. материалы 13, 1752 (1977).
- [18] Б.Г. Земсков, В.С. Любимов, А.Н. Мартынюк, А.А. Артемова, Ю.В. Пермяков, С.П. Ионов. ФТП 22, 934 (1988).