03,04

Частотная дисперсия диэлектрических коэффициентов и проводимости кристаллов TI₆SI₄

© С.Н. Мустафаева¹, Д.М. Бабанлы², М.М. Асадов², Д.Б. Тагиев²

¹ Институт физики НАН Азербайджана,

Баку, Азербайджан

² Институт катализа и неорганической химии НАН Азербайджана,

Баку, Азербайджан

E-mail: solmust@gmail.com, mirasadov@gmail.com

(Поступила в Редакцию 15 апреля 2015 г.)

Экспериментальные результаты изучения частотных зависимостей диэлектрических характеристик и проводимости полученных кристаллов Tl₆SI₄ позволили установить природу диэлектрических потерь и прыжковый механизм переноса заряда, оценить параметры локализованных состояний в запрещенной зоне, такие как плотность состояний вблизи уровня Ферми и их энергетический разброс, среднее время и длину прыжков, а также концентрацию глубоких ловушек, ответственных за проводимость на переменном токе.

1. Введение

Халькогалогениды р-элементов относятся к перспективным функциональным материалам электронной техники [1-3]. В частности, соединения Tl₆S(Se)I₄ могут быть использованы для детектирования излучения рентгеновского и у-диапазонов [4]. Соединение Tl₆SI₄ обнаружено при исследовании фазовых равновесий в системе TlI-Tl₂S. Tl₆SI₄ кристаллизуется в тетрагональной сингонии типа Tl₆HgBr₄ (пр.гр. P4/mnc): a = 9.176 Å, c = 9.608 Å, Z = 2; оно плавится конгрузнтно при 715 К [5] (согласно [6], при 710 К). В работе [7] исследованы фазовые равновесия в системе T1-T1I-S. Построены ряд политермических сечений, изотермическое сечение при 300 К и проекция поверхности ликвидуса. Показано, что область гомогенности на основе Tl₆SI₄ не превышает 1 mol.%. Из данных измерений ЭДС сплавов системы TI-TII-S были вычислены стандартные энергия Гиббса, энтальпия образования и энтропия образования соединения Tl₆SI₄: $-\Delta G_{298}^0 = 601.7 \pm 2.5$ kJ/mol; $-\Delta H_{298}^0 = 595.1 \pm 4.0$ kJ/mol; $S_{298}^0 = 672 \pm 10$ J/(mol·K). Сведения о синтезе, выращивании монокристаллов и характере диссоциации при плавлении тиогалогенидов таллия состава Tl₆SX₄ (Х — галоген), а также их некоторые физико-химические свойства приведены в работах [8,9].

Целью настоящей работы является изучение диэлектрических свойств полученных нами кристаллов Tl₆SI₄, установление механизма переноса заряда, природы диэлектрических потерь и определение параметров локализованных в запрещенной зоне состояний.

2. Эксперимент

Соединение Tl_6SI_4 синтезировалось сплавлением стехиометрических количеств элементарных компонентов (Tl, S и I) высокой степени чистоты в вакуумированной ($\sim 10^{-2}$ Pa) кварцевой ампуле при 750 K с последующим термическим отжигом при 650 К в течение 100 h. Завершенность синтеза и гомогенность полученного слитка Tl₆SI₄, а также его индивидуальность контролировались методами дифференциального термического и рентгенофазового анализа. Рентгенографическое исследование полученных кристаллов Tl₆SI₄ было проведено на автодифрактометре типа D8-ADVANCE в режиме $0.5 < 2\theta < 80^{\circ}$ (Си K_{α} -излучение, $\lambda = 1.5418$ Å) при 40 kV и 40 mA. Полученные рентгенодифракционные данные обработаны и уточнены по программам EVA и TOPAZ. Угловое разрешение записи составляло 0.1°. Погрешности определения углов отражений не превышали $\Delta \theta = \pm 0.02^{\circ}$. Типичная дифрактограмма порошкового образца Tl₆SI₄ при комнатной температуре приведена на рис. 1.

Установлено, что температура конгруэнтного плавления соединения Tl₆SI₄ составляет 715±3 K, а элементарные параметры кристаллической решетки a=9.182 Å, c=9.606 Å, Z=2, что близко к данным [5].

Рис. 1. Дифрактограмма порошкового образца Tl₆SI₄ при комнатной температуре.

Образцы из отшлифованных кристаллов Tl₆SI₄ для электрических измерений были изготовлены в виде плоских конденсаторов. В качестве обкладок была использована серебряная паста. Толщина образцов из Tl_6SI_4 составляла 0.1 сm, а площадь обкладок — 0.1 сm². Диэлектрические коэффициенты кристаллов Tl₆SI₄ измерены резонансным методом с помощью измерителя добротности ВМ-560 [10,11]. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. В процессе электрических измерений образцы помещались в экранированную камеру. Все диэлектрические измерения проведены при 300 К. Амплитуда приложенного к образцам переменного электрического поля соответствовала омической области вольт-амперной характеристики. Точность определения резонансных значений емкости и добротности ($Q = 1/\lg \delta$) измерительного контура ограничена ошибками, связанными со степенью разрешения отсчетов по приборам. Градуировка конденсатора имела точность ±0.1 рF. Воспроизводимость положения резонанса составляла по емкости ±0.2 pF, а по добротности ±1.0-1.5 деления шкалы. При этом наибольшие отклонения от средних значений составляли 3-4% для ε и 7% для tg δ .

3. Результаты и их обсуждение

На рис. 2 приведены частотные зависимости действительной ε' и мнимой ε'' частей комплексной диэлектрической проницаемости ($\varepsilon = \varepsilon' - i\varepsilon''$) образца Tl₆Sl₄ (кривые *1* и *2* соответственно). Как видно из рис. 2, обе составляющие претерпевают частотную дисперсию, носящую релаксационный характер. По мере увеличения частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Hz значение ε' уменьшалось в 1.5 раза, а значение ε'' — более существенно (в 18 раз). Следует отметить, что при частотах переменного электрического поля $f \ge 10^7$ Hz значения как ε' ,

Рис. 2. Частотная дисперсия действительной $\varepsilon'(1)$ и мнимой $\varepsilon''(2)$ составляющих комплексной диэлектрической проницаемости кристалла Tl₆SI₄.

Рис. 3. Частотная зависимость тангенса угла диэлектрических потерь в Tl_6Sl_4 .

Рис. 4. Частотно-зависимая *ac*-проводимость кристалла Tl_6Sl_4 при T = 300 K.

так и ε'' не изменялись с дальнейшим увеличением частоты.

На рис. З показана экспериментальная частотная зависимость тангенса угла диэлектрических потерь в Tl_6SI_4 . Гиперболический спад tg δ с увеличением частоты свидетельствует о потерях сквозной проводимости в исследованном нами кристалле.

На рис. 4 представлены экспериментальные результаты изучения частотно-зависимой проводимости (*ac*-проводимость) Tl₆SI₄ при 300 К. Как видно из рис. 4, *ac*-проводимость Tl₆SI₄ с ростом частоты увеличивалась от $3 \cdot 10^{-7}$ до $1.2 \cdot 10^{-5} \Omega^{-1} \cdot \text{cm}^{-1}$. Следует отметить, что проводимость исследуемого образца на постоянном токе (*dc*-проводимость) была значительно меньше и составляла $7 \cdot 10^{-9} \Omega^{-1} \cdot \text{cm}^{-1}$ при комнатной температуре. В частотной области $5 \cdot 10^4 - 6 \cdot 10^6$ Hz *ac*-проводимость Tl₆SI₄ изменялась по закону $\sigma_{ac} \sim f^{0.4}$, а в диапазоне $6 \cdot 10^6 - 3.5 \cdot 10^7$ Hz $\sigma_{ac} \sim f^{0.8}$. Полученный нами закон $\sigma_{ac} \sim f^{0.8}$ в указанном интервале частот свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми [12]:

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_{\rm F}^2 a^5 f \left[\ln\left(\frac{\nu_{\rm ph}}{f}\right) \right]^4, \qquad (1)$$

где e — заряд электрона, k — постоянная Больцмана, $N_{\rm F}$ — плотность состояний вблизи уровня Ферми, $a = 1/\alpha$ — радиус локализации, α — постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$, $v_{\rm ph}$ — фононная частота.

Используя формулу (1), по экспериментально найденным значениям $\sigma_{ac}(f)$ мы вычислили плотность состояний на уровне Ферми. Полученное значение N_F для кристалла Tl₆SI₄ составляло $N_F = 2 \cdot 10^{18} \text{ eV}^{-1} \cdot \text{cm}^{-3}$. При вычислениях N_F значение ν_{ph} взято равным 10^{12} Hz, а за радиус локализации взято значение a = 33 Å по аналогии с монокристаллом TlS [13].

По теории прыжковой проводимости на переменном токе средняя длина прыжков *R* определяется по следующей формуле:

$$R = \frac{1}{2\alpha} \ln\left(\frac{\nu_{\rm ph}}{f}\right). \tag{2}$$

Вычисленное по формуле (2) значение R для кристалла Tl₆SI₄ составляло 180 Å. Это значение R более чем в 5 раз превышает среднее расстояние между центрами локализации носителей заряда в кристалле Tl₆SI₄. Значение R позволило по формуле

$$\tau^{-1} = \nu_{\rm ph} \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в Tl_6SI_4 : $\tau = 5 \cdot 10^{-8}$ s.

По формуле [12]

$$\Delta E = 3/2\pi R^3 N_{\rm F} \tag{4}$$

в Tl₆SI₄ оценен энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 41$ meV, а по формуле

$$N_t = N_F \Delta E \tag{5}$$

определена концентрация глубоких ловушек в Tl₆SI₄, ответственных за *ac*-проводимость: $N_t = 8.2 \cdot 10^{16} \text{ cm}^{-3}$.

4. Заключение

В синтезированных кристаллах Tl₆SI₄ изучены частотные зависимости действительной и мнимой составляющих комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь и *ac*-проводимости σ_{ac} в области частот $f = 5 \cdot 10^4 - 3.5 \cdot 10^7$ Hz. Установлено, что в указанном диапазоне частот в Tl₆SI₄

имела место значительная частотная дисперсия диэлектрических коэффициентов и проводимости. В области частот $f = 6 \cdot 10^6 - 3.5 \cdot 10^7$ Hz *ac*-проводимость Tl₆SI₄ подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность $N_{\rm F} = 2 \cdot 10^{18} \, {\rm eV^{-1} \cdot cm^{-3}}$ и энергетический разброс этих состояний $\Delta E = 41 \, {\rm meV}$, а также среднее время и длина прыжков: $\tau = 5 \cdot 10^{-8}$ s и R = 180 Å.

Список литературы

- [1] Е.И. Герзанич, В.М. Фридкин. Сегнетоэлектрики типа $A^{\rm V}B^{\rm VI}C^{\rm VII}.$ Наука, М. (1982). 357 с.
- [2] G.J. Snyder, E.S. Toberer. Nature Mater. 7, 105 (2008).
- [3] G. Landolt, S.V. Eremeev, Yu.M. Koroteev, B. Slomski, S. Muff, T. Neupert, M. Kobayashi, V.N. Strocov, T. Schmitt, Z.S. Aliev, M.B. Babanly, I.R. Amiraslanov, E.V. Chulkov, J. Osterwalder, J.H. Dil. Phys. Rev. Lett. **109**, 116403 (2012).
- [4] S. Johnsen, Z. Liu, J.A. Peters, J.H. Song, S. Nguyen, C.D. Malliakas, H. Jin, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis. J. Am. Chem. Soc. 133, 10 030 (2011).
- [5] R. Blachnic, H.A. Dreisbach. Z. Naturforsch. B. 36, 12, 1500 (1981).
- [6] Е.Ю. Переш, В.Б.Лазарев, О.И. Корничук, В.В. Цигика, О.В. Петрушкова, З.З. Киш, Е.Е. Семрад. Неогран. материалы 29, 3, 406 (1993).
- [7] Д.М. Бабанлы, Г.М. Гусейнов, М.Б. Бабанлы, Ф.М. Садыгов. ЖНХ 57, 97 (2012).
- [8] Е.Ю. Переш, В.Б.Лазарев, В.В. Цигика, О.И. Корничук, Е.А. Янцо. Неорган. материалы 27, 10, 2079 (1991).
- [9] Е.Ю. Переш, В.Б.Лазарев, И.Е. Барчий, В.В. Цигика, М.Ю. Собов. Неорган. материалы **33**, *4*, 428 (1997).
- [10] S.N. Mustafaeva, M.M. Asadov, A.A. Ismailov. Physica B 453, 158 (2014).
- [11] С.Н. Мустафаева, М.М. Асадов, Д.Т. Гусейнов, И. Касымоглу. ФТТ 57, 6, 1083 (2015).
- [12] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1974). 472 с. [N.F. Mott, E.A. Davis. Electronic processes in non-crystalline materials. Clarendon, Oxford (1971).].
- [13] С.Н. Мустафаева, М.М. Асадов, А.А. Исмаилов. ФТТ 50, 11, 1958 (2008).