03

Перенос заряда в резко неоднородном электрическом поле закрученным потоком жидкости с минимальным гидравлическим сопротивлением

© В.С. Нагорный¹, А.А. Смирновский^{1,2}, А.С. Чернышев², Д.Ю. Колодяжный¹

¹ Санкт-Петербургский политехнический университет Петра Великого ² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: smirta@mail.ru

Поступило в Редакцию 14 апреля 2015 г.

Рассматривается схема топливной форсунки с электродной системой типа "игла—плоскость", расположенной таким образом, чтобы минимизировать вносимое ею гидравлическое сопротивление. Рассматриваются процессы переноса заряда в резко неоднородном электрическом поле с целью установить количество выносимого из канала заряда. Для этого с использованием открытого пакета OpenFOAM, доработанного для учета электрогидродинамических эффектов, в осесимметричном приближении в постановке RANS с использованием модели турбулентности $k - \omega$ SST рассчитаны течение закрученного потока и перенос электрического заряда. Рассматривается вопрос влияния степени закрутки потока на процессы переноса заряда. Получено, что количество выносимого из расчетной области заряда составляет порядка 80% от количества инжектируемого заряда, степень закрутки в рассмотренном диапазоне ее значений мало влияет на процесс переноса заряда.

В настоящее время большое внимание уделяется вопросам выбора оптимальных параметров форсунок для распыления топлива применительно к различным приложениям [1]. Для управления параметрами распыления в том числе используются электрические поля [2,3]. При этом наиболее рациональным решением здесь может быть вариант, когда форсунка работает как штатная в случае отсутствия электрического поля, а его включение приводит к улучшению параметров распыления. В этом случае при проектировании подобного рода форсунок необходимо обеспечить требуемый расход топлива при заданном перепаде

94

Рис. 1. Концептуальная схема форсунки с электродной системой: *1* — кольцевой игольчатый электрод, *2*, *3* — изоляторы, *4* — электрод типа "плоскость", *5* — завихритель, *6* — топливный канал.

давления на форсунке, что достигается минимизацией гидравлического сопротивления течения топлива за счет, во-первых, использования закрутки потока (которая, какизвестно [4], уменьшает гидравлические потери), а во-вторых, путем рационального размещения электродной системы, которая предназначена для сообщения электрического заряда потоку топлива.

В настоящей работе предлагается разместить электроды внутри форсунки таким образом (рис. 1), чтобы они являлись частью канала для течения топлива и не вносили дополнительных гидравлических потерь в закрученный поток. Электрод 1 (см. рис. 1) выполнен в виде кольцевой шайбы с малым внутренним радиусом закругления для создания резко неоднородного электрического поля. В дальнейшем будем его называть "игольчатым" электродом. Второй электрод 4выполнен в виде "плоскости с отверстием". Отметим, что в такой электродной системе типа "игла—плоскость с отверстием" при приложении к ним высоковольтного напряжения, как показывают многочисленные исследования [5–7], вблизи игольчатого электрода в диэлектрической жидкости возникает униполярный заряд того же знака, что и потен-

циал игольчатого электрода. В данной статье приводятся результаты численного моделирования турбулентного течения закрученного потока топлива (керосина) на основе осредненных по Рейнольдсу уравнений Навье-Стокса с учетом электрогидродинамических эффектов для определения количества выносимого заряда из форсунки и влияния степени закрутки струи на процесс переноса заряда.

Для учета электрогидродинамического взаимодействия при протекании заряженного потока в электрическом поле используется электростатическое приближение для слабопроводящих сред, к которым относится рассматриваемое топливо [5–7]. Уравнения электрогидродинамики для описания нестационарного турбулентного течения и переноса униполярного заряда в изотермической несжимаемой жидкости могут быть записаны в следующем виде:

$$\nabla \mathbf{V} = \mathbf{0},\tag{1}$$

$$\rho \,\frac{\partial \mathbf{V}}{\partial t} + \rho \nabla(\mathbf{V}\mathbf{V}) = -\nabla p + \nabla[(\mu + \mu_t)\nabla \mathbf{V}] + \rho_e \mathbf{E},\tag{2}$$

$$\frac{\partial \rho_e}{\partial t} + \nabla \left(\rho_e \mathbf{V} + b_i \rho_e \mathbf{E} - \left(D_i + \frac{\mu_t}{\rho \operatorname{Sc}_t} \right) \nabla \rho_e \right) = 0, \quad (3)$$

$$\nabla^2 \varphi = -\frac{\rho_e}{\in \in_0},\tag{4}$$

$$\mathbf{E} = -\nabla \boldsymbol{\varphi}.\tag{5}$$

Здесь V — вектор скорости среды, ρ — массовая плотность среды, p — давление, μ , μ_t — коэффициенты молекулярной и турбулентной вязкости, ρ_e — плотность объемного заряда, **E**, φ — вектор напряженности и потенциал электрического поля, b_i — подвижность ионов в жидкости, D_i — ионный коэффициент диффузии, Sc_t — турбулентное число Шмидта для ионов, ε — диэлектрическая проницаемость, ε_0 — электрическая постоянная. Для определения турбулентного числа Шмидта Sc_t используется аналогия между переносом ионов в жидкости и переносом примеси, для которой типичное значение Sc_t = 0.9.

Для замыкания приведенной выше системы уравнений необходимо сформулировать граничные условия и модель турбулентности. Для гидродинамики используются стандартные условия (на входе задается

входной поток, на выходе — фиксированное давление, на стенках ставится условие прилипания). Для границ области, представляющей собой электроды, задается разность потенциалов. Особое внимание необходимо уделить вопросу появления ионов в потоке жидкости вблизи игольчатого электрода.

В настоящее время теория проводимости диэлектрической жидкости до конца не разработана. В литературе по электрогидродинамике обычно рассматриваются две модели образования ионов в потоке диэлектрической жидкости: инжекционная и объемно-диссоциационная [8,9]. В настоящей работе в качестве первого приближения рассматривается только инжекционная модель, в которой плотность потока ионов у поверхности игольчатого электрода задается феноменологической функцией зависимости инжекции от локальной напряженности поля [8,9]. Поскольку в интересующем диапазоне значений напряженности электрического поля функция практически линейна, она может быть записана следующим образом:

$$j_{inj} = \max(AE - B, 0). \tag{6}$$

Здесь *А* и *В* являются константами, которые берутся из работы [8], где в качестве рабочей диэлектрической жидкости рассматривалось трансформаторное масло.

На противоположном электроде ставится условие нейтрализации всех зарядов, попадающих на электрод. Для определения коэффициента турбулентной вязкости используется модель турбулентности $k - \omega$ SST [10].

Численное моделирование проводилось при помощи открытой вычислительной платформы OpenFOAM версии 2.3. Представляемые ниже результаты получены с помощью модифицированной программы pisoFoam, в которой были добавлены уравнения для электрического поля и переноса заряда (3)-(5). Для аппроксимации конвективных потоков на гранях конечного объема (в качестве которого в большей части расчетной области выступают шестигранники) в уравнении движения используется схема второго порядка SFCD, аналогичная центральноразностной для гладких решений.

Для того чтобы исследовать влияние параметров закрутки потока на процессы переноса заряда, была сформулирована задача о течении

Рис. 2. Геометрия расчетной области и расположение электродов.

топлива в форсунке с учетом электрогидродинамического взаимодействия закрученного заряженного потока в электрическом поле в осесимметричном приближении. Как отмечено ранее, электроды расположены внутри форсунки таким образом, чтобы минимизировать вносимое ими дополнительное гидравлическое сопротивление (рис. 1, 2). В рассматриваемом случае возникает поток униполярных ионов от игольчатого электрода к электроду типа "плоскость с отверстием".

Свойства рабочей жидкости между электродами соответствуют свойствам керосина: плотность $\rho = 780 \text{ kg/m}^3$, динамический коэффициент вязкости $\mu = 1.014 \cdot 10^{-3} \text{ P} \cdot \text{s}$, относительная диэлектрическая проницаемость $\varepsilon = 2.2$. Подвижность ионов в рабочей жидкости бралась равной $b_i = 10^{-8} \text{m}^2/(\text{V} \cdot \text{s})$, ионный коэффициент диффузии $D = 2.5 \cdot 10^{-10} \text{ m}^2/\text{s}$.

Задавались следующие граничные условия. На всех твердых стенках (в том числе и электродах) для скорости потока задавалось условие прилипания. На игольчатом электроде задавались постоянный потенциал электрического поля, равный приложенному к электродам напряжению 15 kV, инжекционный поток ионов в соответствии с выражением (6) со следующими значениями констант: $A = 6.409 \cdot 10^{-10} \text{ C/(V} \cdot \text{m} \cdot \text{s}), B = 3.204 \cdot 10^{-3} \text{ C/(m}^2 \cdot \text{s})$. На противоположном электроде типа "плоскость с отверстием" выбирался нулевой потенциал электрического поля и задавалось условие нейтрализации заряда. На выходе из расчетной области задавалось фиксированное давление.

На входе задавались профили скорости для закрученного потока топлива, полученные из предварительного трехмерного расчета с учетом завихрителя потока

$$V_{\varphi}(R) = V_{\varphi 0} + 5.6 \exp\left(-(R - 2.06 \cdot 10^{-3})^2 / 10^{-7}\right) \text{m/s},\tag{7}$$

$$V_z(R) = 1.8585 \exp\left(-(R - 2.06 \cdot 10^{-3})^2 / 7 \cdot 10^{-8}\right) \,\mathrm{m/s},\tag{8}$$

$$V_R = 0 \,\mathrm{m/s}.$$

Значение постоянной скорости закрутки потока $V_{\varphi 0}$ в формуле (7) варьировалось в диапазоне 1–4 m/s для задания разной степени закрутки потока, которая рассчитывалась по формуле

$$J = V_{\varphi \max}/V_{z \max}$$

и изменялась в диапазоне 3.5-5.2.

Осевая компонента скорости V_z фиксирована и соответствует расходу 40.51/h (1.125 · 10⁻⁵ m³/s). Параметры турбулентности на входе равны следующим величинам: $k_{in} = 0.22 \text{ m}^2/\text{s}$, $\omega_{in} = 20\,000 \text{ s}^{-1}$ (исходя из полученных авторами результатов предварительного трехмерного моделирования).

Использовалась расчетная сетка размером порядка 100 тыс. ячеек (в основном шестигранники). Вблизи стенок и в области между электродами сетка имеет сильное сгущение для детального разрешения структуры течения. Также имеется сильное сгущение сетки вблизи острия игольчатого электрода для получения более точного разрешения электрического поля в этой области. Расчет проводился в нестационарной постановке, поскольку в потоке присутствуют слабые нестационарные колебания.

На рис. 3, *а* представлено распределение объемной плотности заряда в потоке при значении параметра закрутки J = 4.1. За счет сильного турбулентного перемешивания заряд распространяется по всему каналу, достигая выходной границы форсунки. Максимальная концентрация заряда (порядка 0.06 C/m^3) сосредоточена вблизи острия игольчатого электрода и вдоль диэлектрика между электродами.

Для определения количества выносимого из канала и нейтрализуемого на противоположном электроде заряда вводится относительная величина *I*: отношение интеграла по площади от плотности потока

Рис. 3. a — Распределение плотности объемного заряда (в логарифмическом масштабе); b — относительный интегральный поток ионов I, образующихся у острия игольчатого электрода (active electrode), нейтрализуемых на противоположном электроде (opposite electrode) и выходящих с потоком топлива из форсунки (outlet).

заряда к среднему по времени интегралу по площади от плотности потока инжектируемого заряда при J = 4.1

$$I = \frac{\int \mathbf{j} \mathbf{n} dS}{\int \mathbf{j}_{inj} \mathbf{n} dS}$$

Величина осредненной по времени величины $\int \mathbf{j}_{inj} \mathbf{n} dS$ при J = 4.1 составляет $4.186 \cdot 10^{-10}$ C/s. Для примера на рис. 3, *b* представлены за-

Относительный интегральный поток ионов, инжектируемых с электрода I_{ing} и выходящих из форсунки I_{outlet} , при разной степени закрутки потока J

J	I_{inj}	Ioutlet
3.5	0.98	0.87
4.1	1.0	0.82
5.2	1.0	0.81

висимости величины I от времени, рассчитываемые на выходе из канала и электродах для J = 4.1. Отметим, в данном случае количество электрического заряда в потоке на выходе форсунки превышает количество нейтрализуемого заряда на электроде типа "плоскость с отверстием" почти в 4 раза (чуть более 80% заряда выносится из канала), что дает основание рассматривать предложенную электрогидродинамическую систему как достаточно эффективную и обеспечивающую относительно большую долю заряда в потоке топлива на выходе форсунки.

В таблице представлена зависимость осредненной по времени величины I для разных степеней закрутки потока. Анализируя значения I_{outlet} на выходе из форсунки для разных вариантов граничных условий, можно отметить следующее. Изменение граничных условий в указанных пределах не сильно меняет картину течения в целом и процент выносимого заряда в частности, за исключением варианта с J = 3.5, в котором произошло заметное уменьшение количества выносимого с потоком топлива из форсунки заряда.

Таким образом, рассмотрена схема форсунки с электродной системой, расположенной так, чтобы минимизировать вносимое ею гидравлическое сопротивление. Проведен численный расчет нестационарного турбулентного течения в осесимметричном приближении с учетом переноса заряда и электрогидродинамических эффектов. За счет интенсивного турбулентного переноса количество выносимого из форсунки заряда достигает около 80% образуемого у игольчатого электрода заряда. В целом можно говорить об относительно слабом влиянии закрутки потока на процесс переноса заряда в рассмотренном диапазоне значений параметра закрутки, хотя его уменьшение приводит к небольшому увеличению количества выносимого заряда.

Нагорный В.С., Смирновский А.А. и Колодяжный Д.Ю. выражают благодарность Минобрнауки за финансовую поддержку данных прикладных научных исследований (ПНИ). Уникальный идентификатор ПНИ REMEFI57714X0087.

Список литературы

- [1] Сипатов А.М., Карабасов С.А., Гомзиков Л.Ю., Абрамчук Т.В., Семаков Г.Н. // Изв. вузов. Авиационная техника. 2014. № 1. С. 57–62.
- [2] Khoshnevis A., Tsai S.S.H., Esmaeilzadeh E. // Phys. Fluids. 2014. V. 26. P. 012 103.
- [3] Van Poppel B., Desjardins O., Daily J.W. // ILASS-Americas 22nd Annual Conference on Liquid Atomization and Spray Systems. Cincinnati, OH. May 2010.
- [4] Нагорный В.С. Средства автоматики гидро- и пневмосистем.: СПб.; М.; Краснодар: Изд-во ЛАНЬ, 2014. 448 с.
- [5] Стишков Ю.К., Чирков В.А. Формирование электрогидродинамических течений // ЖТФ. 2012. Т. 82. В. 1. С. 3–13.
- [6] Нагорный В.С. // Прикладная механика и техническая физика. 2000. Т. 41. № 2. С. 25–31.
- [7] Нагорный В.С. // Прикладная механика и техническая физика. 2000. Т. 41. № 3. С. 34–42.
- [8] Стишков Ю.К., Чирков В.А. // ЖТФ. 2013. Т. 83. В. 12. С. 119–127.
- [9] Adamiak K. // J. Electrostatics. 2013. V. 71. P. 673-680.
- [10] Menter F.R., Kuntz M., Langtry R. // Turbulence, heat and mass transfer. 2003. V. 4. P. 625–632.