## 06 Легирование кремния эрбием методом имплантации атомов отдачи

© К.В. Феклистов, Д.С. Абрамкин, В.И. Ободников, В.П. Попов

Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск E-mail: kos@isp.nsc.ru

## Поступило в Редакцию 2 марта 2015 г.

С целью достижения сильного приповерхностного легирования кремния эрбием в работе апробирован метод имплантации атомов отдачи. В этом методе через тонкую пленку эрбия на поверхности проводилась имплантация ионами аргона с энергией 250 keV, в результате чего выбитые из пленки атомы отдачи эрбия внедрялись в кремний. Таким способом было проведено внедрение эрбия до концентрации  $5 \cdot 10^{20}$  cm<sup>-3</sup> на глубину чуть более десяти нанометров. Для формирования стабильных и оптически активных комплексов ErO<sub>n</sub> дополнительно было выполнено внедрение атомов отдачи кислорода. В процессе последующей термообработки около половины дозы внедренного эрбия переходит в SiO<sub>2</sub> на поверхности. Основная доля эрбия, оставшаяся в кремнии после термообработок, является оптически неактивной.

Эрбий считается перспективным легирующим элементом для создания интегрированных оптоэлектронных приборов на кремнии. Его оптический переход  $\mathrm{Er}^{+3}$ :  ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$  на длине волны 1.54  $\mu$ m попадает в диапазон наименьших потерь оптоволоконных линий. Несмотря на длительные и общирные исследования, представленные в обзорах [1–3], остается нерешенным ряд задач на этом направлении.

Одной из важнейших является технологическая задача сильного легирования кремния атомами эрбия в оптически активном состоянии. Как известно из литературы, оптически активный комплекс эрбия в кремнии представляет собой одиночный атом эрбия, окруженный 6–8 атомами кислорода:  $\text{ErO}_n$  (n = 6-8) [1,3]. Равновесная растворимость эрбия в кремнии составляет около  $10^{16}$  сm<sup>-3</sup> [4]. Методом ионной имплантации можно внедрить эрбий до более высоких концентрацией. Однако начиная с концентрации эрбия  $1.3 \cdot 10^{18}$  сm<sup>-3</sup> наблюдается линейный рост концентрации преципитатов эрбия в предварительно аморфизованный

52

кремний с последующей его рекристаллизацией [2,6]. Однако при этом происходит сегрегация эрбия в аморфную фазу и его накопление к поверхности в процессе рекристаллизации. Дополнительное внедрение атомов кислорода позволяет улучшить захват эрбия в кремнии в процессе рекристаллизации и способствует формированию оптически активных кластеров  $\text{ErO}_n$ . Рост легированных эрбием пленок методом молекулярно-лучевой эпитаксии так же характеризуется сегрегацией эрбия на поверхности, и аналогично совместное легирование кислородом улучшает захват эрбия в кремнии [7]. Вышеперечисленными методами достигается высокая полная концентрация эрбия в кремнии (>  $10^{20}$  cm<sup>-3</sup>). Тем не менее концентрация оптически активных атомов на порядки ниже. Например, в [2] она оценивается как 3 ·  $10^{17}$  cm<sup>-3</sup>.

С целью создания приповерхностного сильного легирования кремния эрбием на малую глубину в работе апробирован метод имплантации атомов отдачи. Для удержания атомов эрбия в кремнии и увеличения оптической активности внедренных атомов эрбия применена совместная имплантация атомов отдачи эрбия и кислорода.

В методе имплантации атомов отдачи в пластины кремния Чохральского КДБ-10 (удельное сопротивление  $10 \Omega \cdot cm$ ) с ориентацией поверхности (100) через пленку 50 nm напыленного Er были имплантированы ионы Ar<sup>+</sup> с энергией 250 keV с двумя дозами:  $2 \cdot 10^{15}$  и  $1 \cdot 10^{16}$  cm<sup>-2</sup> (рис. 1, *a*). При этом ионы Ar<sup>+</sup> — первичные — передают часть своей энергии атомам эрбия и те — атомы отдачи, проникают в подложку кремния вблизи поверхности. Сами атомы Ar проникают в подложку кремния вблизи поверхности. Сами атомы Ar проникают в атем осаждалась пленка SiO<sub>2</sub> толщиной 50 nm методом РЕСVD. Далее, имплантацией ионов Ar<sup>+</sup> с энергией 250 keV и дозой  $1 \cdot 10^{16}$  cm<sup>-2</sup> через пленку SiO<sub>2</sub> была проведена имплантация атомов отдачи O (рис. 1, *b*). Кроме того, был подготовлен контрольный образец с традиционной имплантацией ионов Er<sup>+</sup> с энергией 250 keV и дозой  $1 \cdot 10^{13}$  cm<sup>-2</sup>. Все образцы отжигались при температуре 950°C в течение 1 h в атмосфере N<sub>2</sub>.

Измерение профилей эрбия проводилось методом масс-спектрометрии вторичных ионов (МСВИ) на установке MIQ-256 (САМЕСА-RIBER). В контрольном образце, имплантированном эрбием, профиль концентрации эрбия нормировался по глубине на средний проецированный пробег имплантации (Rp = 92 nm, SRIM-2008 [8]). Нормировка по абсолютной концентрации выполнялась на дозу имплантации. В образцах с имплантацией атомов отдачи эрбия нормировка профиля по



**Рис. 1.** Иллюстрация метода имплантации атомов отдачи Er (a) и O (b) с помощью имплантации ионов Ar<sup>+</sup> через тонкую пленку осажденного Er и SiO<sub>2</sub> соответственно.

глубине осуществлялась по глубине ямки травления МСВИ. Абсолютная концентрации эрбия рассчитывалась с помощью нормировочного коэффициента, полученного в контрольном образце.

Возбуждение стационарной фотолюминесценции (ФЛ) проводилось GaN лазерным диодом с энергией кванта излучения 3.06 eV и плотностью мощности  $50 \text{ W/cm}^2$ . Измерения проведены при температуре 5 К. Спектр излучения анализировался двойным решеточным монохроматором СДЛ-1 и регистрировался с помощью Ge-детектора, охлаждаемого жидким азотом.

На рис. 2 представлены МСВИ профили эрбия после имплантации и отжига в контрольном образце, имплантированном эрбием (рис. 2, *a*), и в образцах, имплантированных аргоном дозой  $1 \cdot 10^{16}$  (рис. 2, *b*) и  $2 \cdot 10^{15}$  сm<sup>-2</sup> (рис. 2, *c*) с внедренными атомами отдачи эрбия и кислорода. Перед измерениями образцов был снят SiO<sub>2</sub> с поверхности. В контрольном образце профиль эрбия после термообработки не меняется (рис. 2, *a*). Оценка коэффициента диффузии эрбия дает величину менее  $1 \cdot 10^{-15}$  cm<sup>2</sup>/s, что согласуется с литературными данными [1,9].



**Рис. 2.** МСВИ-профили эрбия после имплантации (as impl) и отжига (annealed) в образцах: контрольном с традиционно имплантированным эрбием (*a*) и с внедренными атомами отдачи эрбия и кислорода для двух доз первичной имплантации Ar<sup>+</sup>:  $1 \cdot 10^{16}$  (*b*) и  $2 \cdot 10^{15}$  cm<sup>-2</sup> (*c*). (SRIM Er) и (SRIM O) — расчетные профили имплантации атомов отдачи эрбия и кислорода соответственно.

Экспериментальные профили имплантированных атомов отдачи эрбия (as impl) хорошо совпадают с расчетными (SRIM Er на рис. 2, *b*, *c*), кроме приповерхностной области 10 nm. По-видимому, это связано с тем, что программа SRIM не учитывает реакционную способность

атомов отдачи Er с SiO<sub>2</sub> на поверхности в процессе имплантации атомов отдачи O (рис. 1, b).

После отжига в кремнии остается только около половины от исходной дозы внедренных атомов отдачи эрбия (рис. 2, b, c, см. таблицу), следовательно, остальные уходят в SiO<sub>2</sub> на поверхности. Поскольку применялись аморфизующие дозы имплантации ионов Ar, то в процессе рекристаллизации кремния часть атомов Er сегрегирует к поверхности [2,6] и реагирует с SiO<sub>2</sub>. В силу высокой реакционной способности атомов эрбия с атомами кислорода (энтальпия образования Er<sub>2</sub>O<sub>3</sub> составляет -453.6 kcal/mol [10]) Ег реагирует с SiO<sub>2</sub> с формированием силиката эрбия Er–Si–O [11]. Сегрегация Er в SiO $_2$ особенно заметна на рис. 2, b, где соотношение атомов Er и O (SRIM O) примерно 1:1. Пользоваться расчетным значением (SRIM O) в качестве профиля О уместно начиная с глубины 10 nm, поскольку, как было показано выше на примере профилей эрбия, расчет SRIM не соответствует МСВИ на меньшей глубине. В этом случае атомов кислорода оказывается недостаточно для формирования стабильных кластеров  $\text{ErO}_n$  (n = 6-8). При этом в окисел уходит в 1.5 раза больше атомов Er, чем остается в кремнии (см. таблицу). На рис. 2, с соотношение атомов Er и O (SRIM О) примерно 1:5-1:10, что соответствует формированию стабильных кластеров  $\text{ErO}_n$  (n = 6-8). Поэтому в глубине образца, где выполняется это соотношение, профили Er после имплантации и отжига совпадают, т.е. сегрегация эрбия отсутствует (рис. 2, с). В кремнии при этом остается в 1.5 раза больше атомов Er, чем уходит в окисел (см. таблицу). Сегрегацию эрбия в окисел на поверхности подтверждает и тот факт, что в контрольном образце диффузия эрбия не наблюдалась. Таким образом, захват и удержание атомов эрбия в решетке кремния с помощью атомов кислорода оказались не выполненными непосредственно у поверхности из-за недостаточной концентрации кислорода для формирования стабильных кластеров  $ErO_n$  (n = 6-8), сегрегации эрбия к поверхности при рекристаллизации аморфизованного кремния и дальнейшего взаимодействия с SiO<sub>2</sub>.

В контрольном образце, имплантированном кремнием, а также в образцах, имплантированных атомами отдачи Ег и О, были измерены спектры стационарной фотолюминесценции. Чтобы отделить вклад ФЛ эрбия, сегрегированного в SiO<sub>2</sub>, от эрбия, оставшегося в кремнии, были измерены образцы после отжига с оставленным на поверхности SiO<sub>2</sub> и без него. Полученные спектры ФЛ соответствуют литературным



Рис. 3. Спектр стационарной фотолюминесценции в контрольном образце, имплантированном эрбием.

данным [1–3]. Типичный спектр ФЛ контрольного образца представлен на рис. 3. В таблице приведены интегральные по спектру интенсивности ФЛ образцов без окисла ( $I_{PL}$  Er в Si) и с окислом ( $I_{PL}$  Er в SiO<sub>2</sub>) в сопоставлении со слоевой концентрацией эрбия, оставшегося в кремнии (D(Er) в Si) и сегрегированного в SiO<sub>2</sub> (D(Er) в SiO<sub>2</sub>).

Как можно видеть из таблицы, самая сильная ФЛ наблюдается в контрольном образце, при том, что доза эрбия в нем на порядок ниже. Известно, что сечение возбуждения эрбия по механизму рекомбинации электрон-дырочных пар в кремнии на 5 порядков выше, чем по механизму прямого поглощения фотона атомом эрбия ( $3 \cdot 10^{-15}$  и  $2.7 \cdot 10^{-20}$  cm<sup>2</sup>) [3,12,13]. Используемое в работе возбуждение на длине волны 405 nm позволяет реализовать первый механизм в кремнии и второй в SiO<sub>2</sub>, возбуждая довольно высокий внутренний уровень  $\mathrm{Er}^{3+}\mathrm{H}_{9/2}$  24457.2 cm<sup>-1</sup> [14,15] с последующей релаксацией до наблюдаемого перехода  ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ . Именно из-за столь различных сечений

Исследуемые образцы: контрольный и с внедренными атомами отдачи Ег и О после отжига, с сохраненным SiO<sub>2</sub> на поверхности и без него. Представлены измеренные слоевые концентрации эрбия (D(Er)), сегрегированного в SiO<sub>2</sub>, и оставшегося в кремнии, и соответствующие им интегральные интенсивности ФЛ  $(I_{PL})$ 

|                                                                                  | Характеристики                  |                                                     |                            |                                          |
|----------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|----------------------------|------------------------------------------|
| Образцы                                                                          | D(Er) = Si,<br>$\text{cm}^{-2}$ | $D(\text{Er}) \text{ B SiO}_2,$<br>cm <sup>-2</sup> | I <sub>PL</sub><br>Er в Si | I <sub>PL</sub><br>Er в SiO <sub>2</sub> |
| Контрольный,<br>имплантация Er                                                   | $1 \cdot 10^{13}$               |                                                     | 500                        |                                          |
| Имплантация атомов<br>отдачи Ег и О<br>$D(Ar) = 1 \cdot 10^{16} \text{ cm}^{-2}$ | $3\cdot 10^{14}$                | $4.7\cdot10^{14}$                                   | 16                         | 160                                      |
| Имплантация атомов<br>отдачи Ег и О<br>$D(Ar) = 2 \cdot 10^{15} \text{ cm}^{-2}$ | $1.4 \cdot 10^{14}$             | $1.1 \cdot 10^{14}$                                 | 14                         | 30                                       |

возбуждения интенсивность  $\Phi \Pi$  в кремнии, имплантированном эрбием, оказалась выше, чем у эрбия, сегрегированного в SiO<sub>2</sub>.

В пределах экспериментальной погрешности наблюдается прямая зависимость интенсивности фотолюминесценции от количества эрбия, сегрегированного в окисел (160 : 30 = 5.3 и 4.7 : 1.1 = 4.3, см. таблицу). Это подтверждает, во-первых, данные МСВИ о сегрегации эрбия в SiO<sub>2</sub> на поверхности. Кроме того, можно сделать вывод о том, что именно эрбий, сегрегированный в поверхностный SiO<sub>2</sub>, дает основной вклад в фотолюминесценцию образцов с имплантированными атомами отдачи Er.

После снятия SiO<sub>2</sub> ФЛ атомов отдачи эрбия, оставшихся в кремнии после отжига — самая слабая (см. таблицу). Она слабее, чем в контрольном образце, несмотря на большую дозу эрбия, и слабее, чем ФЛ от эрбия в SiO<sub>2</sub>, несмотря на большее сечение возбуждения. А кроме того, она не зависит от дозы эрбия, сохранившегося в кремнии (таблица: соотношение интенсивностей 16:11 для доз 3:1.4), т.е. основная доля атомов отдачи эрбия, оставшихся в кремнии, оптически не активна. В отличие от контрольного образца (рис. 2, *a*) в данном случае превышен порог преципитации эрбия  $1.3 \cdot 10^{18}$  cm<sup>3</sup> [5] (рис. 2, *b*, *c*), и

основная доля эрбия, по-видимому, находится в преципитатах. Но даже если оценить дозу оптически активных атомов эрбия с концентрацией  $1.3 \cdot 10^{18}$  cm<sup>-3</sup> на глубину до 50 nm (рис. 2, *b*, *c*), то получим величину  $5 \cdot 10^{12}$  cm<sup>-2</sup>. Сравнивая ее с дозой имплантированного кремния  $1 \cdot 10^{13}$  cm<sup>-2</sup>, видно все равно непропорционально слабую ФЛ (соотношение доз 5:10, а соотношение интенсивностей 14-16:500, см. таблицу). Отсюда можно сделать вывод, что в случае имплантации атомов отдачи эрбия сильны потери на безызлучательную рекомбинацию на остаточных дефектах после рекристаллизации решетки кремния и дефектах, обусловленных близостью поверхности.

В заключение можно отметить, что в работе апробирован способ легирования кремния эрбием методом имплантации атомов отдачи. Было осуществлено внедрение атомов отдачи эрбия до концентрации  $5 \cdot 10^{20}$  сm<sup>-3</sup> на глубину около десяти нанометров. В процессе последующей термообработки около половины внедренного эрбия сегрегировало в пленку SiO<sub>2</sub> на поверхности. Используемая в работе концентрация атомов О, полученная совместной с Ег имплантацией атомов отдачи, оказалась недостаточной для удержания эрбия в кремнии. В результате интенсивность ФЛ атомов отдачи Ег в кремнии была слабее, чем в SiO<sub>2</sub>, и слабее, чем для имплантированных атомов эрбия в кремнии в контрольном образце. Причиной тому является низкая концентрация оптически активных атомов отдачи эрбия и большие потери на безызлучательную рекомбинацию.

Работа выполнена при поддержке гранта программы президиума РАН 24.22.

## Список литературы

- Соболев Н.А. // ФТП. 1995. Т. 29. С. 1153. [Sobolev N.A. // Fizika i Tekhnika Poluprovodnikov. 1995. V. 29. Р. 1153.]
- [2] Polman A. // J. Appl. Phys. 1997. V. 82. P. 1.
- [3] Kenyon A.J. // Semicond. Sci. Technol. 2005. V. 20. P. R65.
- [4] Lockwood D.J. Light emission in silicon: from physics to devices. Academic Press, 1998. P. 126.
- [5] Eaglesham D.J., Michel J., Fitzgerald E.A., Jacobson D.C., Poate J.M., Benton J.L., Polman A., Xie Y.-H., Kimerling L.C. // Appl. Phys. Lett. 1991. V. 58. P. 2797.
- [6] Polman A., Custer J.S., Snoeks E., van den Hoven G.N. // Appl. Phys. Lett. 1993. V. 62. P. 507.

- [7] Serna R., Lohmeier M., Zagwijn P.M., Vlieg E., Polman A. // Appl. Phys. Lett. 1995. V. 66. P. 1385.
- [8] www.srim.org
- [9] Назыров Д.Э., Куликов Г.С., Малкович Р.Ш. // ФТП. 1991. Т. 25. С. 1653. [Nazirov D.E., Kulikov G.S., Malkovich R.S. // Fizika i Tekhnika Poluprovodnikov. 1991. V. 25. P. 1653.]
- [10] *National Bureau of Standards*, Selected Values of Chemical Thermodynamic Properties. Part 7. Tech. Notes 270-7. P. 65.
- [11] Choi C.J., Jang M.G., Kim Y.Y., Jun M.S., Kim T.Y., Song M.H. // Appl. Phys. Lett. 2007. V. 91. P. 012903; Choi C.J., Jang M.G., Kim Y.Y., Jun M.S., Kim T.Y., Song M.H. // Materials Transactions. 2010. V. 51. P. 793.
- [12] Hamelin N., Kik P.G., Suyver J.F., Kikoin K., Polman A., Schonecker A., Saris F.W. // J. Appl. Phys. 2000. V. 88. P. 5381.
- [13] Priolo F., Franzo G., Coffa S., Carnera A. // Phys. Rev. B. 1998. V. 57. P. 4443.
- [14] Carnall W.T., Fields P.R., Rajnak K. // J. Chem. Phys. 1968. V. 49. P. 4424.
- [15] Gruber J.B., Henderson J.R., Muramoto M., Rajnak K., Conway J.G. // J. Chem. Phys. 1966. V. 45. P. 477.